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ABSTRACT

Let G be an edge-colored connected graph. A path P is a proper
path in G if no two adjacent edges of P are colored the same.
An edge coloring is a proper-path coloring of G if every pair u, v
of distinct vertices of G are connected by a proper u — v path
in G. The minimum number of colors required for a proper-
path coloring of G is the proper connection number pc(G) of
G. We study proper-path colorings in those graphs obtained by
some well-known graph operations, namely line graphs, pow-
ers of graphs, coronas of graphs and vertex or edge deletions.
Proper connection numbers are determined for all iterated line
graphs and powers of a given connected graph. For a connected
graph G, sharp lower and upper bounds are established for the
proper connection number of (i) the k-iterated corona of G in
terms of pc(G) and k and (ii) the vertex or edge deletion graphs
G — v and G — e where v is a non-cut-vertex of G and e is a
non-bridge of G in terms of pc(G) and the degree of v. Other
results and open questions are also presented.
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1 Introduction

A rainbow coloring of a connected graph G is an edge coloring ¢ of G with
the property that for every two vertices u and v of G, there exists a u — v
rainbow path (no two edges of the path are colored the same). In this case,
G is rainbow-connected (with respect to c). The minimum number of colors
needed for a rainbow coloring of G is referred to as the rainbow connection
number of G and denoted by rc(G). There is a related concept concerning
rainbow colorings. Let ¢ be a rainbow coloring of a connected graph G. For
two vertices u and v of G, a rainbow u — v geodesic in G is a rainbow u —v
path of length d(u,v), where d(u,v) is the distance between u and v (the
length of a shortest v — v path in G). The graph G is strongly rainbow-
connected if G contains a rainbow v — v geodesic for every two vertices u
and v of G. In this case, the coloring c is called a strong rainbow coloring
of G. The minimum number of colors needed for a strong rainbow coloring
of G is referred to as the strong rainbow connection number src(G) of G.
Thus rc¢(G) < src(G) for every connected graph G. These concepts were
introduced and studied by Chartrand, Johns, McKeon and Zhang in (3, 4].
In recent years, this topic has been studied by many and there is now a
book [8] on this subject.

The most-studied edge colorings of a graph G are proper edge colorings
in which every two adjacent edges of G are assigned distinct colors. The
minimum number of colors needed in a proper coloring of G is referred to as
the chromatic indez of G, denoted by x'(G). One property that a properly
edge-colored graph G has is that for every two vertices u and v, each u — v
path of G is properly colored. However, if we are primarily concerned with
a graph G containing a properly colored u — v path for every two vertices
u and v of G, then it is possible that this can be accomplished using fewer
than x/(G) colors.

Inspired by rainbow colorings and proper colorings in graphs, the con-
cepts of proper-path colorings and strong proper-path colorings were intro-
duced and studied [1]. Let G be an edge-colored connected graph, where
adjacent edges may be colored the same. A path P in G is properly colored
or, more simply, P is a proper path in G if no two adjacent edges of P are
colored the same. An edge coloring c is a proper-path coloring of a connected
graph G if every pair u, v of distinct vertices of G are connected by a proper
u — v path in G. If k colors are used, then c is referred to as a proper-path
k-coloring. The minimum k for which G has a proper-path k-coloring is
called the proper connection number pc(G) of G. A proper-path coloring
using pc(G) colors is referred to as a minimum proper-path coloring. Since
every rainbow coloring and every proper coloring is a proper-path coloring,
it follows that pc(G) exists. If G is a nontrivial connected graph of order
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n and size m, then
1 £ pe(G) < min{x'(G),rc(G)} < m. (1)

Furthermore, pc(G) = 1 if and only if G = K,, and pc(G) = m if and only
if G = K, is a star of size m.

As with rainbow colorings and strong rainbow colorings, there is an
analogous concept of proper-path colorings, which was introduced in [1].
Let ¢ be a proper-path coloring of a nontrivial connected graph G. For
two vertices u and v of G, a proper u — v geodesic in G is a proper u — v
path of length d(u,v). If there is a proper u — v geodesic for every two
vertices u and v of G, then c is called a strong proper-path coloring of G or
a strong proper-path k-coloring if k colors are used. The minimum number
of colors needed to produce a strong proper-path coloring of G is called
the strong proper connection number spc(G) of G. A strong proper-path
coloring using spc(G) colors is referred to as a minimum strong proper-path
coloring . In general, if G is a nontrivial connected graph, then 1 < pc(G) <
spc(G) < x'(G). Since every strong rainbow coloring of G is a strong proper-
path coloring of G, it follows that spc(G) < src(G). Therefore, if G is a
nontrivial connected graph of order n and size m, then

1 < spe(G) < min{x'(G),src(G)} < m. (2)

Similarly, spc(G) = 1 if and only if G = K, and spc(G) = m if and
only if G = K, is the star of size m. In [1] the numbers pc(G) and
spc(G) were determined for several well-known classes of graphs G and re-
lationships among these five edge colorings (namely, proper-path colorings,
strong proper-path colorings, rainbow colorings, strong rainbow colorings
and proper edge colorings) were investigated. Furthermore, several realiza-
tion theorems were established for the five edge coloring parameters (namely
pc(G), spe(G), re(G), sre(G) and x/(G)) of a connected graph G. By (1)
and (2), if G is a nontrivial connected graph of size m, then pc(G) < m and
spe(G) < m. As we mentioned above, the star K, ,, of size m is the only
nontrivial connected graph of size m having proper connection number and
strong proper connection number m. This is also the case for the rainbow
connection numbers of graphs. In (9], all graphs of size m having rainbow
connection numbers m—2 and m—3 have been characterized by Li, Sun and
Zhao; while in (7], all connected graphs of size m having proper connection
number or strong proper connection number m — 1, m — 2 or m — 3 have
been characterized. Furthermore, the proper-path colorings in the joins
and Cartesian products of two graphs as well as the permutation graph of
a graph have been studied in [1). In this paper, we determine the proper
connection numbers of iterated line graphs, powers of graphs and iterated
corona graphs. Moreover, we study how the proper connection number of
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a graph can be affected by deleting a vertex or an edge from the graph
and establish sharp lower and upper bounds pe(G — v) and pe(G — €) in
terms of pc(G) where v is a non-cut-vertex of G and e is a non-bridge of
G. We refer to the books [5, 6] for graph theory notation and terminology
not described in this paper.

2 Iterated Line Graphs

The most familiar graph operation of a graph is that of the line graph.
The line graph L(G) of a graph G is that graph whose vertices can be put
in one-to-one correspondence with the edges of G in such a way that two
vertices of L(G) are adjacent if and only if the corresponding edges of G
are adjacent. We determine the proper connection number of L(G) of every
connected graph G of order at least 3. In order to do this, we first present
an additional definition. For a connected graph G and two sets X and ¥
of vertices of G, the distance d(X,Y) between X and Y is defined as

d(X,Y)=min{d(z,y): z€ X andyeY}.
Thus d(X,Y) =0if and only if X NY # 0.
Theorem 2.1 For each connected graph G of order at least 3,
pe(L(G)) < 2.

Proof. Let G be a connected graph of order n > 3 with V(G)= {vo, 1,
v2, ..., Un—1} and T a rooted spanning tree of G where the root of T is vg.
For each d where 0 < d < er(w), let Ly = {v € V(G) : dr(vo,v) = d}.
Thus, Lo = {vo}. First, we define a vertex coloring ¢ : V(G) — {1,2} of G
as follows. For 0< k<n—1and 0 <d < er(v), let

o(ve) = 1 ifvx € Lg and d is odd
k)= 2 ifvg € Lqanddiseven.

Observe that each vertex of L(G) can be represented as v;v; for some i and
j where 0 £ i # j € n — 1 since it corresponds to an edge v;v; in G and
two vertices v;v; and vxv, of L(G) are adjacent if and only if (exactly) one
of these four conditions occurs: i =k,i=¢,j=kor j=4¢.

Next, we define an edge coloring ¢ : E(L(G)) — {1,2} of L(G) by
cr(e) = c(v;) where, without loss of generality, e = zy in which z = v;v;
and y = v;vk are edges of G. It remains to show that ¢, is a proper-path
2-coloring of L(G). For z,y € V(L(G)), we show that there is a properly
colored z — y path in L(G). We may assume z and y are nonadjacent. Let
z = vv; and y = vve, where then v;,v;,vx and v, are distinct vertices
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of G. Without loss of generality, for X = {v;,v;} and Y = {vi, v¢} we let
dr(X,Y) = dr(vj,vx) > 1. Then there is a unique v; — v path P/ in T
that does not contain v; and v,.
Let P be a v; — vg path of G obtained from the path P’ in T by joining
v; to v; and joining ve to vg. Thus P = (v; = wy,v; = wa,ws, ..., We—1 =
Uk, wq = vg) for some integer ¢ > 4. Moreover, we may assume for 2 < ¢t <
g — 1 that
1 iftisodd
c(we) = { 2 iftis even. (3)

Then L(P) = (ey,e2,...,€4—1) is a path of order ¢ — 1 in L(G), where
e; = wiwiy1 (1 <4< g—1). In particular, ey = and eg—; = y. Observe
that e; and e are both incident with w; and so the edge ejez in L(G) is
colored 2 by cr; that is cL(eje2) = ¢(w2) = 2 by (3). Next, ez and e3 are
both incident with w3 and so cp(eze3) = c(wz) = 1 again by (3). This is
illustrated in Figure 1 for ¢ = 8, where the edges in L(G) are indicated by
dash lines. In general,

(eieinn) = 2 ifiis odd
CL(€i€iy1) = 1 ifiis even.

Since the edges of L(P) are colored alternatively by 1 and 2, it follows that
L(P) is a properly colored = — y path in L(G). Therefore, pc(L(G)) < 2.

2 1 2 1 2 1
,”-\\ P NN ’/’-\\/”_\\," “\
L(P): z ¥ ¥ ¥ ’ . oy
2 1 2 1 2 1
p: © o o o o ° o o
wn wo w3 Wy Ws we wr ws

Figure 1: Illustrating the proper-path coloring cg,
in the proof of Theorem 2.1

For a connected graph G, the line graph L(G) of G is complete if and
only if G is a star or G is a triangle. Since the complete graph of order n > 2
is-the only connected graph of order n with proper connection number 1,
the following is a consequence of Theorem 2.1.

Corollary 2.2 If G is a connected graph of order n > 3, then
1 fGe{KsKin-1}

2  otherwise.

pe(L(G)) = {
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There is a more general concept in line graphs. For a nonempty graph
G, we write L%(G) to denote G and L!(G) to denote L(G). For an integer
k > 2, the k-iterated line graph L*(G) is defined as L(L*~!(G)), where
L*~1(G) is assumed to be nonempty. In order to determine the proper
connection number of each iterated line graph of a graph, we first present
some useful information in line graphs. A graph H is called a line graph
if there exists a graph G such that H = L(G). A natural question to ask
is whether a given graph H is a line graph. Several characterizations of
line graphs have been obtained, perhaps the best known of which is a 1970
forbidden subgraph characterization due to Beineke.

Theorem 2.3 [2] A graph H is a line graph if and only if none of the
graphs of Figure 2 is isomorphic to an induced subgraph of H.

Y >
v @
<] &

Figure 2: The induced subgraphs not contained in any line graph

A

By Theorem 2.3, the star K; ,—; of order n > 4 is not a line graph. Fur-
thermore, L(K n-1) = Kn—1 and L¥(K3) = K; for each positive integer k.
It then follows by Corollary 2.2 that if G # K3, then L¥(G) = 2 for each
integer k > 2. Therefore, the following corollary is a consequence of Theo-
rem 2.3 and Corollary 2.2, which provides the exact value of pc(L¥(G)) for
every connected graph G and each £ > 1.



Corollary 2.4 IfG is a connected graph of order n > 3 and k is a positive
integer, then
1 ’if either (2) Ge {K3,K1!3} andk >1
pe(LX(@)) = or (1) G =Ky ) wheren# 4 andk =1

2 otherwise.

3 Powers of Graphs

For a connected graph G and a positive integer k, the kth power G* of G
is that graph whose vertex set is V(G) such that uv is an edge of G* if
1 < dg(u,v) < k. The graph G? is called the square of G and G® is the
cube of G. In order to determine the proper connection numbers of powers
of graphs, we first present the following useful information. A fundamental
property of the chromatic number or chromatic index is that if H is a
subgraph of a graph G, then x(H) < x(G) and x/(H) < x/(G). For the
proper connection number, the situation is different.

Proposition 3.1 (1] If G is a nontrivial connected graph and H is a
connected spanning subgraph of G, then pc(G) < pc(H). Furthermore,

pc(G) < min{A(T): T is a spanning tree of G}.

A Hamiltonian path in a graph G is a path containing every vertex of
G and a graph having a Hamiltonian path is often called a traceable graph.
The following is an immediate consequence of Proposition 3.1.

Corollary 3.2 (1] If G is a traceable graph that is not complete, then
pc(G) = 2.
Theorem 3.3 For each connected graph G of order at least 3,
pe(G?) < 2.
Proof. Let G be a connected graph of order n > 3 and T a spanning tree

of G. Thus T is a spanning tree of G2 as well. Moreover, T? is a spanning
subgraph of G2. Define an edge coloring ¢ : E(G?) — {1,2} of G? by

1 ifeec E(T)
ole) = { 2 ifee E(G?) - E(T).

If we can show, for any two vertices = and y of T2, that there is a properly
colored z — y path in T2, then the result follows since T2 is a spanning
subgraph of G2.
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Let = and y be two vertices of T2 and P = (z = vp,v1,v2,...,¥ = U4) &
unique z — y path in T (and so in T?) of length d. We may assume that z
and y are nonadjacent in 72 and so d > 3. We claim that thereis an z — y
path P’ in T? obtained from P that is properly colored.

e If d = 0 (mod 3), say d = 3t for some positive integer ¢, then P’ =
(z = vo,v1,V3, V4, V6, . - - , V3(t-1)s U3t—2, V3t = y) is an z -y path in T?
whose edges are colored alternatively by 1 and 2.

e If d = 1 (mod 3), say d = 3t + 1 for some positive integer ¢, then
P' = (z = vo,v1,V3,V4, V6, V7, - - -, U3(t—1), V3t—2, V3, U3t+1 = ) is an
z — y path in T2 whose edges are colored alternatively by 1 and 2.

e If d = 2 (mod 3), say d = 3t + 2 for some positive integer ¢, then
P' = (x = vo,v2,v3,Vs,V6, Vs, - - - , V3(t—1)» V3t—1, V3t, V342 = ¥) is an
z — y path in T2 whose edges are colored alternatively by 1 and 2.

In any case, P’ is a properly colored z — y path in T2 and so in G2. Hence
pe(G?) < 2. .

In 1960 Sekanina [10] proved that the cube of every connected graph
G is Hamiltonian-connected and, consequently, G® is Hamiltonian if its
order is at least 3. Furthermore, the k-power G* of a connected graph G is
complete if and only if diam(G) < k. Thus, the following is a consequence
of Corollary 3.2 and Theorem 3.3.

Corollary 3.4 Let k > 2 be an integer. If G is a connected graph of
order at least 3, then pc(G*) < 2. Furthermore, pc(G*) = 1 if and only if
diam(G) < k.

4 Iterated Corona Graphs

For a given graph G, the corona cor(G) of G is obtained from G by adding
a pendant edge to each vertex of G. Thus, if the order of G is n, then the
order of cor(G) is 2n. As with iterated line graphs, there is a more general
concept in coronas of graphs. For a nonempty graph G, we write cor’(G)
to denote G and cor!(G) to denote cor(G). For an integer k > 2, the k-
iterated corona graph cor®(G) is defined as cor(cor*~1(G)). The following
two results will be useful.

Proposition 4.1 [1] Let G be a nontrivial connected graph containing
bridges. If b is the mazimum number of bridges incident with a single
verter in G, then pc(G) > b.

Proposition 4.2 (1] IfT is a nontrivial tree, then pc(T) = x'(T) = A(T),
where A(T) is the mazimum degree of T'.
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With the aid of Proposition 4.1 and the property of trees in Proposi-
tion 4.2, we will see that iterated corona graphs have relatively large proper
connection numbers. First, we introduce an additional definition. For a
proper-path coloring ¢ of a graph G, the restriction cy of ¢ to a subgraph
H of G is the coloring defined by cy(e) = c(e) for every edge e of H.

Theorem 4.3 If G is a nontrivial connected graph and k is a positive
integer, then

max{pc(G), k} < pe(cor*(G)) < pe(G) + k. (4)

Proof. Let G be a connected graph of order n > 2. In the graph cor®*(G),
each vertex is incident with at least k bridges. It then follows by Propo-
~ sition 4.1 that pc(cor*(G)) > k. Furthermore, for every two vertices of u
and v in cor*(G) such that u,v € V(G), each u — v path lies completely in
G. This implies that the restriction of a proper-path coloring of cor*(G)
to G must be a proper-path coloring of G. Hence pc(cor*(G)) > pc(G).
Therefore, the lower bound in (4) holds.

To show that pc(cor*(G)) < pe(G) + k, let ¢g be a minimum proper-
path coloring of G using the colors 1,2, ..., pc(G) and F = cor*(G) — E(G).
Then F is a forest consisting of n components Ty, 75, .. ., T},. The maximum
degree of each component T} is k. By Proposition 4.2, pc(T;) = k. Let cr.
be a minimum proper-path coloring of T; using the colors pc(G)+1, pc(G)+
2,...,pc(G) + k. Now, define the coloring ¢ of cor*(G) by

_ [ ccle) ife€ E(G)
o) = { cri(e) ifeeE(T)for1<i<n.

Since c is a proper-path coloring of cor®(G) using exactly pc(G) + k colors,
it follows that pc(cor®(G)) < pe(G) + k.

Both upper and lower bounds in Theorem 4.3 are sharp. For example,
if G is a tree, then cor*(G) is a tree with A(cor*(G)) = A(G) + k. Hence
pe(cor®(G)) = pe(G) + k by Proposition 4.2 and so the upper bound in
Theorem 4.3 is sharp. Furthermore, there are connected graphs G that is
not a tree for which pe(cor®*(G)) = pc(G) + k for each integer k > 1. For
example, the 3-regular graph G of Figure 3 has pc(G) = 3 (a proper-path
3-coloring is shown in the figure) and pc(cor®*(G)) = 3 + k for each positive
integer k.

To show that the lower bound in Theorem 4.3 is sharp, we determine
pc(cor®(K,)) for each complete graph K, of order n > 3 and each positive
integer k.
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Figure 3: A 3-regular graph G with pc(G) =3

Theorem 4.4 For integersk > 1 and n > 3,

k+1 ifeitherk=1ork=2andn=3

¢(cor®(K,)) = 5
pe( (Kn)) k if eitherk=2 andn>4 ork > 3. (5)

Proof. In the graph cor*(K.,), let V(K,) = {u1,u2,...,un} where k > 1
and n > 3. Let G be the k-corona of K,,; that is, G is obtained from
K, by adding exactly k pendant edges at each vertex of of K,. Since
pe(T) = A(T) for each tree T, every proper-path coloring of G can be
extended to a proper-path coloring of cor*(K,,) with the same set of colors
and so pc(G) > pe(cor®(K,)). On the other hand, if z and y are vertices
of cor*(K,) such that z,y € V(G), then every z — y path lies completely
in G. Hence the restriction of a proper-path coloring of cor*(K,) to G is
a proper-path coloring of G and so pc(G) < pe(cor*(K,)) and so pc(G) =
pc(cor*(K,)). Thus, it suffices to show that pc(G) satisfies the formula
given in (5). For 1 < 7 £ n, let v;3,v,2,...,v; % be the k end-vertices
adjacent to u; in G. Thus, every proper-path coloring of G must assign
distinct & colors to these k pendant edges at each vertex of K,,. We consider
three cases, according to whether k =1,k =2o0r k > 3.

Case 1. k = 1. Since pc(G) > 2, it suffices to find a proper-path 2-
coloring of G. The coloring that assigns the color 1 to each pendant edge of
G and the color 2 to the remaining edges of G is a proper-path 2-coloring
of G and so pc(G) = 2.

Case 2. k = 2. First, suppose that n = 3. The coloring that assigns the
colors 1 and 2 to the two pendant edges at each vertex of K3 and the color 3
to each edge of K3 is a proper-path 3-coloring of G and so pc(G) < 3. If
there were a proper-path 2-coloring ¢ of G, then ¢ must assign two edges
of K3 the same color, say c(ujus) = ¢(uguz) = 1. Furthermore, we may

248



assume that c¢(uzvz,1) = 1. However then, there is neither a proper vy ; —u,
path nor a proper vz ; — u3 path in G. Thus pc(G) = 3.

Next, suppose that n > 4. Since pc(G) > 2, it suffices to find a proper-
path 2-coloring of G. Let C = (uy,uz, - ,un,u;) be 2 Hamiltonian cycle
of K,. Define a coloring ¢ by assigning (1) the colors 1 and 2 to the two
pendant edges at each vertex of Kp,, (2) the color 1 to each edge of C and
(3) the color 2 to the remaining edges of K,,. Since ¢ is a proper-path
2-coloring of G, it follows that pc(G) = 2.

Case 3. k > 3. Since pc(G) > k by Proposition 4.1, it suffices to
find a proper-path k-coloring of G. The coloring defined on Case 2 can be
extended to a proper-path k-coloring of G; that is, we assign (1) the col-
ors 1,2...,k to the k pendant edges at each vertex of Ky, (2) the color 1 to
each edge of a Hamiltonian cycle of K, and (3) the color 2 to the remaining
edges of K,,. Therefore, pc(G) = k.

Every connected graph G that we considered so far has the property
that either pc(cor®(G)) = max{pc(G),k} or pc(cor®(G)) = pc(G) + k.
Furthermore, we know of no connected graphs G for which max{pc(G), k} <
pc(cor®(G)) < pe(G) + k. Thus, we are left with the following question.

Problem 4.5 Are there connected graphs G and integers k > 3 for which
max{pc(G), k} < pc(cor*(G)) < pc(G) + k?

5 Vertex or Edge Deletions

Let G be a connected graph of order at least 3. For each vertex v of G and
each edge e of G, it is known that

X(G) =1 < x(G - v) < x(G) and x(G) -1 < x(G —e) < x(G).

However, this is not the case for the proper connection number of a graph
in general. In order to show this, we first present a useful observation.

Observation 5.1 If T is a nontrivial tree with marimum degree A and
having ny end-vertices, then A < n,.

Theorem 5.2 Let G be a connected graph of order at least 3. Ifv is a
non-cut-vertex of G, then

pe(G) — 1 < pe(G — v) < pe(G) + degv. (6)

Proof. Suppose that pc(G — v) = a and degv = d. First, observe that if
¢ is a proper-path coloring of G — v using the colors 1,2,...,a, then ¢ can
be extended to a proper-path coloring of G by assigning the color a + 1 to
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each edge incident with v in G. Thus, pc(G) < pe(G —v) + 1, establishing
the lower bound.

To verify the upper bound, let c¢ : E(G) — {1,2,...,k} be a minimum
proper-path coloring of G and let N(v) be the neighborhood of v, where
then |N(v)| = d. Since G — v is connected, there is a tree T of minimum
order in G — v such that N(v) C V(T). Necessarily, each end-vertex of T
belongs to N(v). Thus, if the number of end-vertices of T is n3, then n; < d.
Now, let A = A(T) be the maximum degree of T. By Proposition 4.2
and Observation 5.1, it follows that x'(T) = pc(T) = A < n; < d. Let
cer: E(T) - {k+1,k+2,...,k+ A} be a proper edge coloring of T'. Define
an edge coloring ¢ : E(G —v) — {1,2,...,k+ A} of G—v by

{ ccle) ifee E(G—v)—E(T)
c(e) =

. (M
cr(e) ifee E(T).

It remains to show that ¢ is a proper-path coloring of G — v. Let z and

y be two nonadjacent vertices of G — v. We show that there is a properly

colored = — y path in G —v. Since cg is a proper-path coloring of G, there

is an z — y path in G that is properly colored by the edge coloring cg of G.

We consider two cases.

Case 1. There is an = — y path P in G that does not contain v and is
properly colored by cq. If E(P)NE(T) =0, then Pisan z—y pathin G—v
that is properly colored by c. Thus, we may assume that E(P)NE(T) # 0.
We now divide the path P into a finite number of blocks A,, B;, A, Ba, ...
for which

P=(A,,B,Ay,B,,...)

where each block is a subpath of P such that E(A;) C E(G —v) — E(T) for
each i > 1 and E(B;) C E(T) for each j > 1 (or E(A;) C E(T) for each
i > 1 and E(B;) C E(G —v) — E(T) for each j > 1). Since P is properly
colored by cg and T is properly colored by cr, it follows by the definition
of ¢ in (7) that each of the blocks A; and Bj; is properly colored by ¢ in
G — v. Furthermore, the colors of edges in A; belong to {1,2,...,k} and
the colors of edges in B; belong to {k+1,k+2,...,k+ A}. Therefore, P
is properly colored by ¢ and so P is a proper z — y path in G —v.

Case 2. Every x — y path in G that is properly colored by cg contains
the vertez v. Let Q be an = — y path in G that is properly colored by cg.
Thus Q contains a subpath (u, v, w) where u,w € N(v). Let W be the z—y
walk in G — v obtained from Q by replacing the subpath (u,v,w) by the
u —w path Rin T. Let Q.. be the z — u subpath of Q and Q. be the
w — y subpath of Q. Furthermore, let u’ be the first vertex (from z to u)
that belongs to V(Qz,.) N V(R) and let w’ be the last vertex (from w to
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y) that belong to V(Quw,y) N V(R). Then u’ # w’ where it is possible that
u=1u'orw =w. Now let Q.. be the z — u’ subpath of Q, let Qu'y
be the w’ — y subpath of Q and let Ry, be the 4/ — w’ subpath of R.
Now the path P = (Qz,u, Ry w', Qu',y) is an £ — y path in G — v. Since
the colors of edges in Q. and Qu,y belong to {1,2,...,k} and the colors
of edges in Ry . belong to {k+1,k+2,...,k + A}, it follows that P is
properly colored by ¢ and so P is a proper £ — y path in G — v.
Therefore, the edge coloring ¢ : E(G —v) — {1,2,...,k + A} defined
in (7) is a proper-path coloring of G — v and so pc(G —v) < k+ A <
pc(G) + degw. ]

Both lower and upper bounds in (6) are sharp. For example, let G =
K, be the star of order ¢t + 1 > 3 and let v be an end-vertex of G. Since
pc(G) =t and pc(G —v) =t -1 = pe(G) —~ 1, it follows that the lower
bound is sharp. For the upper bound in (6), we start with the complete
bipartite graph K, of order 2 4+t > 4 where u and v are the vertices of
degree t in K5,. It was shown in [1] that if G is a complete multipartite
graph that is neither a complete graph nor a tree, then pc(G) = 2. Thus
pc(K2:) = 2. The graph H is then obtained from K, by adding two
pendant edges at the vertex u of degree ¢ in Ky,. It can be shown that
pc(H) = 2. In fact, a proper-path 2-coloring of H can be obtained from
a proper-path 2-coloring of K3, (using the colors 1 and 2) by assigning
the colors 1 and 2 to the two pendant edges incident with the vertex u in
H. Then H —v = Kj 49. Since degyv =t and pc(H —v) =t + 2, it
follows that pc(H — v) = pc(H) + degy v. Therefore, the upper bound
in (6) is sharp. Furthermore, strict equalities are also possible in (6). For
example, let F' = K5, where t > 3 and so pc(F) = 2. Now let v be a vertex
of degree ¢t in F. Then F — v = K, and so pc(F — v) = t. Therefore,
Pc(F) < pe(F —v) =t = pc(F) + degv — 2 < pc(F) + degv.

Theorem 5.3 Let G be a connected graph of order at least 3. If e is an
edge of G that is not a bridge, then

pc(G) < pe(G —€) < pe(G) + 2. (8)

Proof. Since G —eis a spanning subgraph of G for each nonbridge e of G,
it follows by Proposition 3.1 that pc(G) < pe(G — e), establishing the lower
bound. It remains to verify the upper bound. Suppose that pc(G) = k and
e = uv where u,v € V(G). Let c¢ : E(G) — {1,2,...,k} be a minimum
proper-path coloring of G. Since e is not a bridge, there is a u — v path P
inG—e. Let cp: E(P) — {k+ 1,k + 2} be a proper edge coloring of P.
Define an edge coloring c: E(G —€) — {1,2,...,k+2} of G — e by

{ cgle) ifee E(G—-e)— E(P)

ele) = cple) ifec E(P).
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Applying an argument similar to one used in the proof of Theorem 5.2
where the tree T is replaced by the u — v path P, it can be shown that c is
a proper-path coloring of G — e and so pe(G —e) <k+2=pc(G) +2. =

Both lower and upper bounds in (8) are sharp. For example, pc(Cr) =
pc(Cr—e) = 2 for n > 4 and any edge e in C,,. Furthermore, if G = K; ¢ +e
where t > 5, then pc(G) =t — 2 and so pc(G — €) =t = pc(G) + 2.
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