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Abstract

A Hamiltonian graph G is said to be ¢-path-Hamiltonian, where £
is a positive integer less than or equal to the order of G, if every path
of order £ in G is a subpath of some Hamiltonian cycle in G. The
Hamiltonian cycle extension number of G is the maximum positive
integer £ for which every path of order ¢ or less is a subpath of some
Hamiltonian cycle in G. If the order of G equals n, then it is known
that hce(G) = n if and only if G is a cycle or a regular complete
bipartite graph (when n is even) or a complete graph. We present a
complete characterization of Hamiltonian graphs of order n that are
¢-path-Hamiltonian for each £ € {n — 3,n — 2,n — 1,n}.

Keywords: Hamiltonian graph, ¢-path-Hamiltonian graph, Hamilto-
nian cycle extension number.

AMS subject classification: 05C38, 05C45, 05C75.

1 Introduction

We refer to the book [4] for graph theory notation and terminology not
described in this paper. A Hamiltonian graph G of order n > 3 is said to
be £-path-Hamiltonian for some integer £, where 1 < £ < n, if for every
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path P of order ¢, there exists a Hamiltonian cycle C in G such that P
is a path on C. Certainly, a graph is Hamiltonian if and only if it is
1-path-Hamiltonian. The largest positive integer £ for which a graph G is
i-path-Hamiltonian for 1 < i < ¢ is the Hamiltonian cycle extension number
hce(G) of G. Hence, 1 < hee(G) < n for every Hamiltonian graph of order
n. Furthermore, hce(G) =1 if and only if G contains an edges that lies on
no Hamiltonian cycle of G.

For each integer n > 3, it is not difficult to see that if G equals the
n-cycle C,, or the complete graph K, or, when n > 4 is even, the regular
complete bipartite graph K, 2 n/2, then a path of any possible length in G
can be extended to a Hamiltonian cycle in G. That is, hce(G) = n for each
of these graphs G. In fact, Chartrand and Kronk [3] showed that these are
the only Hamiltonian graphs possessing this property. Let

A = {Cn, Kn} if n is odd 1)
"7 | {Cn,Kn,Knjanse} if niseven.

Theorem 1.1 [3] Let G be a graph of order n > 3. Then hce(G) = n if
and only if G € A,.

By definition, if G is a graph of order n > 3 with hce(G) = n, then G is ¢-
path-Hamiltonian for 1 < £ < n. In particular, G is n-path-Hamiltonian. It
then follows by Theorem 1.1 that if G € A,,, then G is n-path-Hamiltonian.

In this work, we characterize (i) all graphs of order n > 3 that are ¢-
path-Hamiltonian for each £ € {n — 2,n — 1,n} and (ii) all graphs of order
n 2> 4 that are (n — 3)-path-Hamiltonian.

2 The First Characterization

In this section, we determine all graphs of order n > 3 that are ¢-path-
Hamiltonian for each £ € {n — 2,n — 1,n}. Recall that, if G € A,, where
A, is the set defined in (1), then G is n-path-Hamiltonian. It turns out that
the converse of this statement also holds, that is, the graphs in A, are the
only graphs of order n that are n-path-Hamiltonian. In fact, a Hamiltonian
graph G of order n belongs to A, if and only if G is ¢-path-Hamiltonian
for n — 2 < £ < n, as we will show.

We first show that if G is an n-path-Hamiltonian graph of order n, then
G € A,,. Although this fact can be derived from the proof of Theorem 1.1
provided in [3], we present an independent proof here. The following lemma
will be useful.
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Lemma 2.1 Let G be an n-path-Hamiltonian graph of order n with a
Hamiltonian cycle C = (vy,vy,...,vn,v1).

(a) If vivay1 € E(G) for some integera (2 <a<n-— 2), then v;ua4; €
E(G) for 1 <1 < n, where the subscripts are expressed modulo n. (In
other words, G is a circulant.)

(b) If G # C, then vyvq € E(G).

(¢) If vivay1 € E(G) for some integer a (2 < a < n —4), then vjv,43 €
E(G).

Proof. For (a), suppose that v1va+1 € E(G). Then there is an n-path
(v2,v3,...,Ya41,V1, Un,VUn_1,...,Vat+2) in G connecting v and v,45. Since
G is n-path-Hamiltonian, vovg42 € E(G). By the same argument, one can
show that v;41va4i41 € E(G) whenever v;v,4; € E(G) for 1 <i<n—1.

Next we verify (b). If G # C, then vyv,4) € E(G) for some a, where
2 < a £ n—2. By (a), we may assume that vov,42,v3ve+3 € E(G). Then G
contains an n-path (v1,vn,Vn_1,...,va+3, U3, V2, Ua42, Vas1,- - - , Vg), Which
implies that v,v4 € E(G).

For (c), suppose that v,vq41 € E(G) for some integer a (2 < a < n—4).
By (a), it follows that vov,42,vavn € E(G). One can then construct an
n-path

(v1,V3, V4, V2, Uny Un—1,. .., Us) ifa=2
(1)1, Va+1Va+4+2,U2,VU3y ..., Vay UnyUn—1,..., ‘Ua+3) otherwise

connecting vy and v,43. Consequently, v1v,43 € E(G).

By Lemma 2.1, if G is an n-path-Hamiltonian graph of order n con-
taining a Hamiltonian cycle C = (v3,va,...,vn,v1) as a proper subgraph,
then v;v; € E(G) for each pair ¢, j of integers where 1 < i,j < n and i # j
(mod 2). In particular, vjv; € E(G) for each even integer i (2 < i < n).
Thus, if n is even, then G contains K, /2,n/2 as a spanning subgraph. Fur-
thermore, G is complete if and only if v v3 € E(G) or vyvn—; € E(G). We
are now prepared to establish the following result.

Theorem 2.2 Let G be a graph of ordern > 3. If G is n-path-Hamiltonian,
then G € A,.

Proof. Let G be an n-path-Hamiltonian graph of order n. We may also
assume that G is neither C), nor K, /2 n/2. It remains to show that G = K.
Let C' = (v1,v2,...,0n,v;1) be a Hamiltonian cycle in G. If n is odd, then
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11Un—1 € E(G) and so G is complete. Thus, assume next that n is even and
G contains Ky /2 /2 as a proper spanning subgraph. Then v1vo4, for some
even integer a with 2 < a < n — 2, which in turn implies that v;v; € E(G)
for a < i < n. In particular, vjv,—1 € £(G) and so G is complete.

It was shown in [2] that there is no Hamiltonian graph of order n whose
Hamiltonian cycle extension number equals either n — 2 or n — 1. In fact,
if G is (n — 2)-path-Hamiltonian graph of order n > 3, then consider an
(n = 1)-path P = (v1,v2,...,Un-1) in G and the vertex v, € V(G)\V(P).
The (n — 2)-path P — v; must lie on a Hamiltonian cycle in G and so
v1v, € E(G). One can similarly show that v,_1v, € E(G) by considering
the path P — v,,—;. Hence, P can be extended to a Hamiltonian cycle in G
and so G is (n—1)-path-Hamiltonian. It is also straightforward to show that
G is n-path-Hamiltonian if G is (n — 1)-path-Hamiltonian. Consequently,
we have the following.

Observation 2.3 [2] If G is a graph of order n > 3 that is either (n — 2)-
path-Hamiltonian or (n—1)-path-Hamiltonian, then G is n-path- Hamiltonian.

As a consequence of Theorems 1.1 and 2.2 with Observation 2.3, we
obtain the following characterization of all Hamiltonian graphs of order n
that are ¢-path-Hamiltonian for n - 2 < £ < n.

Theorem 2.4 A graph G of order n > 3 is £-path-Hamiltonian forn—2 <
<nifand onlyif G€ A,.

Corollary 2.5 For a graph G of order n > 3, the following are equivalent.

(2) The graph G equals C, or K, or K, /3 n/2 (when n is even).

(b) The graph G is n-path-Hamiltonian.

(c) The graph G is (n — 1)-path-Hamiltonian.

(d) The graph G is (n — 2)-path-Hamiltonian.

(e) The graph G is i-path-Hamiltonian for 1 < i < n, that is, hee(G) = n.

3 The Second Characterization

In this section, we characterize all graphs of order n > 4 that are (n — 3)-
path-Hamiltonian. For each integer n > 4, let B, be the set of graphs G of
order n that are (n — 3)-path-Hamiltonian. It then follows by Corollary 2.5
that A, C B,. Therefore, we basically need to determine the set B,\A.
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Clearly, B\ A4y = {K>3,,1}. Now for n > 5, what can we say? First, we
already have the following.

Proposition 3.1 [2] If G is a graph of order n > 4 and §(G) = n — 2,
then hce(G) =n - 3.

For this reason, we should investigate graphs G of order n for which
2 £ 6(G) £ n—3. Suppose that G € Bs\As. If v € V(G) and degv =
2, say N(v) = {z,y}, then zy ¢ E(G) since otherwise (z,y) is a 2-
path that lies on no Hamiltonian cycle in G. Consequently, Bs\As =
{Ps+ P3,K32,1,K2,1,1,1}. Here, the graph P; + P, is the union, not the
join, of P; and P,.

To continue our search for (n — 3)-path-Hamiltonian graphs of order n
in general, let us first state an observation, which is elementary but useful.

Observation 3.2 [2] If G is a Hamiltonian graph with §(G) = 2 < A(G),
then hee(G) < 2.

We next state a few of the best-known sufficient conditions for a graph
to be traceable or Hamiltonian or Hamitonian-connected in terms of its
order. In the following theorem, (b) and (c) are both due to Ore [5, 6]
while (a) is an immediate consequence of (b).

Theorem 3.3 For a graph G of order n > 3, let 0 = min{degu + degv :
uwv ¢ E(G)}. (a) If 0 > n— 1, then G is traceable. (b) If o > n, then G is
Hamiltonian. (c) If o > n+1, then G is Hamiltonian-connected.

With the aid of Theorem 3.3, we obtain another result concerning graphs
in B,\ A, and their minimum degree.

Observation 3.4 Letn > 6. If G € B,\ Ay, then either §(G) =n—2 or
3<4(G) < (n+1)/2.

Proof. By Observation 3.2, let us assume that n > 8 and n/2+1 <
6(G) < n—3. We show that G is not (n — 3)-path-Hamiltonian. Since
6(G) £ n—3, there is a 3-set S C V(G) such that G[S] is disconnected.
Now let G' = G~ §. Then §(G') 2 6(G) -3 >n/2+1—-3 = (n' —1)/2,
where n’ = n — 3 is the order of G’. This implies that G’ contains an
(n — 3)-path which cannot be extended to a Hamiltonian cycle in G. The
result now follows.

If G is a graph of order n > 5 containing an (n — 3)-path P, then the
subgraph induced by the three vertices not belonging to P contains P; or
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hce(G) < n — 3. In general, if G is not (n — 3)-path-Hamiltonian, then G
contains an (n — 3)-path that cannot be a subpath of a Hamiltonian cycle
in G. The following observation categorizes such paths into five types.

Observation 3.5 A Hamiltonian graph G of order n > 5 is not (n — 3)-
path Hamilotnian if and only if there is an (n — 3)-path P in G that is of
one of the five types described in Figure 1, where P is shown in bold and
edges not belonging to G are shown as dashed line segments.

~
.
~

s
P

type 4 type 5

Figure 1: The five types of (n — 3)-paths in Observation 3.5

For example, if G is a Hamiltonian graph of order n > 5 containing a
vertex v such that deg v < n—3 and G~v contains a u—w Hamiltonian path
(u, P,w), where neither u nor w is adjacent to v, then P is an (n — 3)-path
of type 1, implying that G is not (n — 3)-path-Hamiltonian. In particular,
if G — v is Hamiltonian-connected, then G is not (n — 3)-path-Hamiltonian.

As another example, let G be a Hamiltonian graph of order n > 7 with
V(G) = {v1,v2,...,vn}, where degv; < degvy < -+ < degvn. Let us
define §;(G) = degv; for 1 < i < n. Thus, §;(G) = §(G) and 6,(G) =
A(G). If §;(G) £ n — 4 and §2(G) = n/2 + 2, then G is not (n — 3)-path-
Hamiltonian. To see this, let S be a 3-set such that SN N[v;) = 0. If H is
the graph of order n — 4 (> 3) obtained from G by deleting the four vertices
in SU {v}, then §(H) > §2(G) — 4 > (n — 4)/2 and so H is Hamiltonian.
This in turn implies that G contains an (n—3)-path whose vertex set equals
V(G)\S with v; as one of the two end-vertices. Note that this path is of
type 2. The following is a generalization of this fact.

Observation 3.6 Let n and ¢ be integers satisfyingn 2 7 and 3 < £ <
n — 3. If G is a Hamiltonian graph of order n with §(G) < £ — 1 and
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02(G) > n —~ (£ —1)/2, then G is not £-path-Hamiltonian.

For n = 6,7, the set B,\A, can be determined fairly easily. Let us
first consider the set Bs. By Proposition 3.1 and Observation 3.2, we may
assume that G € Bs and §(G) = 3. Then G # K3 3. One can then verify
that if G is either Cs (= C3 O P,, the Cartesian product of C3 and B,)
or 2P;, then G is 3-path-Hamiltonian. If G = C; + P, then G contains
a 3-path of type 3. Otherwise, G contains a 3-path of type 1. Thus,
Be\As = {C6,2P3, K222, K2.21,1, K2,1,1,1,1}.

Similarly, to determine the set B; , we may consider those graphs G
with 3 < 6(G) < 4. We will show that if G € B, then §(G) # 3. We first

state another lemma.

Lemma 3.7 Let G be an (n — 3)-path-Hamiltonian graph of order n > 5
with a Hamiltonian cycle (vy,vq,...,vUn,v)).

(a) If neither vivg nor vive4) is an edge in G for some a € {3,4,...,
n — 2}, then none of the edges vavgyo, VoV, Vo—1Vas2, Va—1Vn IS
contained in G. (Thus, if viv, € E(G) for somea € {3,4,...,n—2},
then at least one of va—1vn—1 and v,_ v, is an edge in G.)

(b) Forn > 7, if vivs is an edge in G, then at least one of vivn_3 and
V1Un—2 s an edge in G. (Thus, degv, > 4.)

Proof. For (a), the statement must hold in order to avoid type-1 paths in
G. For (b), assume, to the contrary, that v;u3 is an edge in G while neither
Up—3 NoOr Uy_2 is. Then by (a), it follows that {vavp—1,v2u,} N E(G) = 0.
However then, (v1,vs,v4,vs,...,vn-2) is an (n — 3)-path of type 1 in G.
This contradicts the fact that G is (n — 3)-path-Hamiltonian. =

We are prepared to show that a graph G of order 7 cannot be 4-path-
Hamiltonian if G contains a vertex whose degree is less than 4.

Lemma 3.8 Let G be a graph of order 7. If G is 4-path-Hamiltonian,
then 6(G) # 3.

Proof. Let G be a 4-path-Hamiltonian graph with a Hamiltonian cycle
(v1,v2,...,v7,v;) and assume, to the contrary, that degv, = 3. We show
that G must contain a path of type 1 or type 3. By Lemma 3.7(b), we may
assume that N(vy) = {vz,v4,v7}. Then N(v7) N {vs,v4} = 0 to avoid 4-
paths of type 1. In addition, at most one of vov4 and v3vr belongs to E(G).
Since vqv7 ¢ E(G) while degv; > 3, it follows by Lemma 3.7(b) again that
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vsvy € E(G). Consequently, vovs ¢ E(G). Then vovg € E(G) since the
path (vs, v4, v3,v7) cannot be of type 1. However then, either (v2,vs,vs,v3)
or (v1,v2,vs,v7) is a 4-path of type 3, depending on whether v3 and vs are
adjacent or not. Thus, if §(G) = 3, then G cannot be 4-path-Hamiltonian.

As a consequence, if G is a 4-path-Hamiltonian graph of order 7, then
8(G) € {4,5}. In fact, there is only one 4-path-Hamiltonian graph of order 7
and minimum degree 4, as we verify next.

Proposition 3.9 Let G be a graph of order 7. Then G € By if and only
if either 6(G) =5 or G = Cy + C3.

Proof. It is straightforward to verify that Cy + Cj is 4-path-Hamiltonian.
By Lemma 3.8, it suffices to prove that if §(G) = 4 and G # C, + Cs, then
G is not 4-path-Hamiltonian. Let G be a graph of order 7 and 6(G) = 4.
If G is neither Cy + C3 nor 2C3 + P;, then G contains a 4-path of type 1.
We also see that if G = 2C3 + Py, then G contains a 4-path of type 3. The
result now follows. =

Hence,

Bs\Ag = {K21,1}

Bs\As = {Ps + P, K22,1, K2,1,11}

Bg\As = {Cs,2P3, K222, K2.2,1,1, K2,1,1,1,1}
B\Ar = {C4 + C3,Ka,22,1, K2,2.1,1,1, K2,1,1,1.1,1 }-

These graphs are not only (n—3)-path-Hamiltonian but i-path-Hamiltonian
for each positive integer ¢ less than or equal to n — 3. Hence, hce(G) =
n — 3 for each of the graph G listed above. Note also that for n = 6,7, if
G € Bn\An, then §(G) equals either |(n +1)/2] or n — 2. This does not
hold for n > 8, which we discuss in the following subsections.

3.1 Graphs of Order n and Minimum Degree |(n + 1)/2]

In this subsection, we show that if G is an (n — 3)-path-Hamiltonian graph
of order n > 8, then §(G) # |(n +1)/2].

The closure G* of a graph G of order n is the graph obtained from G
by recursively joining pairs of nonadjacent vertices whose degree sum is at
least n (in the resulting graph at each stage) until no such pair remains.
The following is a consequence of a well-known theorem in 1976 by Bondy
and Chvétal (1].
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Theorem 3.10 A graph is Hamiltonian if and only if its closure is Hamil-
tonian.

For two disjoint subsets V and V' of V(G), let E[V, V"] denote the set
of edges joining a vertex in V and a vertex in V’. Also, for convenience, let
Ko be the “null graph” (the “graph” of order 0 and size 0).

Theorem 3.11 Let G be a graph of order n > 8 with §(G) = |(n + 1)/2].
Then G is (n — 3)-path-Hamiltonian if and only if n is even and G =

Kpjonj2-

Proof. Let G be a graph of order n > 8 with §(G) = § = |(n + 1)/2} and
assume that either G # K5 or n is odd. Our goal is to show that G is not
(n — 3)-path-Hamiltonian by finding an (n — 3)-path that is of one of the
five types in Observation 3.5.

Select a vertex x; with degz; = § and, among the vertices adjacent to
71, let x2 be one whose degree is the minimum. If degzy > § + 1, then
6(G—-z1) =2 § > n/2 and so G—xz; is Hamiltonian-connected. Consequently,
the graph G contains an (n — 3)-path of type 1. Thus, for the rest of the
proof, we assume that degzy = 4.

Let H be the graph of order n—2 obtained from G by deleting z; and z5.
For each integer ¢ = {0, 1,2}, let V; = {v € V(H) : |Ng(v) N {z1, 22} = i}.
Thus, {Vo, V1,V,} is a partition of V(H) and degy v = deggv —i> 6 — i
ifveV. If niseven, then 0 < |Vg| = |Vo| £ 6§ — 1. If n is odd, then
V2 # 0 and 0 < |Vp| = |Vo| — 1 < 6 — 2. In either case, if V} is nonempty
and H is Hamiltonian, say v € Vp and C is a Hamiltonian cycle in H, then
P = C - v is a path of type 1 in G. Thus, let us suppose that H is not
Hamiltonian or V = 0.

Case 1. H is not Hamiltonian. Then the closure H* of H is not Hamil-
tonian, neither. Suppose that u and w are not adjacent in H*. Then
degyu + degyw < n —3 = 2§ — 3. Recall that degy v > § — ¢ for each
v € V;. Thus, if n is even, then we may assume that either (i) ue V) and
w € V; or (ii) u,w € V,. Similarly, if n is odd, then u,w € Va.

Subcase 1.1. n is even. Since H* is not Hamiltonian it must be that,
in H, (i) none of Vo, Vi, and V, is nonemepty, (ii) V2 is independent,
and (iii) E[V1, V5] is empty. Thus, the degree of each vertex belonging to
ViUV, is exactly 6 in G. Since § = degpv < |[Vo| + 2 for each v € Vs,
it follows that |Vo| = |Vo| = 6 — 2 and |V}| = 2. Furthermore, every
vertex in Vo is adjacent to every vertex in V; U V5. Thus, if we write
Vo = {u1,u2,...,us-2}, Vi = {v1,v2}, and V5 = {w,wy,... ,Ws—2}, where
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zv; € E(G) for i = 1,2, then (vq,u;, w1, ug, wa,. .., Us—3, Ws—3, T2, W5—2)
is a type-1 path in G since z; is adjacent to neither vy nor us_s.

Subcase 1.2. n is odd. Then in H, it must be that V; is empty and V>
is independent. Thus, [V| = |Vo| +1 = § — 1 < degg v for every vertex
v in V3 and so Vp is not independent. Write Vo = {u1,us,...,us-2} and
Vo = {w1,w2,...,ws—1}. Also, without loss of generality, suppose that
wyup € E(G). Then (wy, 1, T2, we, u1, u2, @), where

Q _ Ko ifn=9
T (ws,us, wa,uay ..., w3, us—3) ifn =11,

is a type-3 path.
Case 2. H is Hamiltonian and Vy = §.

Subcase 2.1. n is even. Then |Vi| = n — 2 and V2 = 0. Among the
§ vertices adjacent to z;, some have degree § in G. Let N’ be the set
of such vertices. Obviously, o € N’. Let N” = Ng(z1)\N' and U =
V(G)\Ng|[z1]. If there exists a vertex z3 € N’ such that z; and z3 belong
to a common triangle, then let H' be the graph obtained from G by deleting
x; and z3. Then, by considering the closure of H’, one can verify, as done
earlier, that G contains an (n — 3)-path of type 1 regardless of whether or
not H' is Hamiltonian. Thus, suppose that N’ is independent and either
N" is empty or E[N’, N”| is empty.

If N7 = @, then U is not independent since G # Kss. Let U =
{uy,u,...,us—1} and, without loss of generality, suppose that ujuz €
E(G). Also, let N’ = {w;,ws,...,ws}. Then (w,,z;, wa,u;,us,Q), where

Q _ { Ko ifn=28
(w3, uz, w4, Ug, ..., ws-2,u5-2) if n>10,

is a type-3 path.

If N” is nonempty, then let C = (v1,v2,...,¥p-1,v1) be a Hamiltonian
cycle in H. If two vertices in U are adjacent in C, say vn—2,vn—1 € U,
then the path (vi,ve,...,vn-3) is of type 1. Otherwise, we may assume
that U = {v1,v3,...,Vn—3} and vn_2,vn—1 € N". If vju3 ¢ E(G), then
(z1,v4,v5,...,Un-1) is an (n — 3)-path of type 3. Similarly, G contains
an (n — 3)-path of type 3 if vsvs ¢ E(G). Also, if vovqg € E(G), then
(v2,v4,Vs,- .., Un-1) is of type 1. Hence, suppose that v3 is adjacent to
both v; and vs while v, is not adjacent to v4. Then

P= { (va,V5,...,Un-1,02) if vavn—; € E(G)

(v1,v3,Vs,06,-..,Un-2,T1) otherwise
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is of type 1.

Subcase 2.2. n is odd. Then |Vi| =n—3 and |Vo| = 1. Let V{ = Vi n
N(zy) and V{" = Vi N N(z3). Also, let C = (v1,v,...,Un—2,v1) be a
Hamiltonian cycle in H. Without loss of generality, assume that v,_o € Vs.
First, suppose that v; € V.

If there exists an integer a (1 < a < n — 4) such that both v, and vo41
belong to VY, then (va42,vata, ... Un—2,1,Q), where

Q__ KO ifa=1
B ('()1,'()2,...,'0a-1) ifQSaSn_‘l’

is a type-1 path.

Thus, let us next suppose that V{ is independent with respect to C.
If V{" is also independent with respect to C, then we may assume that
Vi = {v1,v3,...,vn-4} and V} = {vo,v4,...,v,—3}. Then consider the
(n — 3)-path P given by

po ] (®20n_2,v1,03,01...,0n4) if viv3 € E(G)
(v3,V4y. .., Un_2,21) otherwise

and note that P is of either type 1 or type 3.

Finally, suppose that, with respect to C, the set V/ is independent but
V)" is not. Let a be the smallest positive integer such that {v,,va41} C V7.
Due to the symmetry of the graph, we may assume that 1 < a < (n—3)/2.
If @ = 1, then the (n — 3)-path (v3,v4,...,Vpn=-2,72) is of type 1. If 2 <
a < (n—3)/2, then vo—1 € V{. If vo_1vay2 € E(G) or ve42 € V{", then
there exists an (n —3)-path P whose vertex set equals V(G)\{z1, Ve, Vas1}-
Otherwise, va-1a+2 ¢ E(G) and vay2 € V{. Then vo43 € V. In this
case, the path P’ given by

P = (‘Ua—l,-vm va+l,'0a+3y--~1'Un—2,vly'v2,--»,va—2) if Va+1Va+3 € E(G)
(Va+4,Ya+5, ..+, Unw2,01,2,...,Vau1, Va, T2, Vat+1) otherwise
is of type 3.

As desired, G is not (n — 3)-path-Hamiltonian.

By Corollary 2.5 and Theorem 3.11 with Proposition 3.1, therefore, if
G is an (n — 3)-path-Hamiltonian graph of order n > 8, then (i) G € A,
or (ii) 6(G) = n — 2 or (iii) 3 < §(G) < (n —1)/2. We next show that (iii)
never occurs.
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3.2 Graphs of Order n and Minimum Degree Less Than
[(n +1)/2]

Recall that, if G is a graph of order n > 8 belonging to B,\A,, then
8(G) =n—2o0r 3 < §(G) £ (n—1)/2. In this subsection, we pay attention
to graphs G of order n > 8 with 3 < §(G) < (n — 1)/2. More precisely, we
will show that such G cannot be (n — 3)-path-Hamiltonian. Let us begin

with graphs with minimum degree 3.

Proposition 3.12 If G is a graph of order n > 8 and §(G) = 3, then G
is not (n — 3)-path-Hemiltonian.

Proof. We prove that G is not (n — 3)-path-Hamiltonian by showing that
G must contain a path of type 1 or type 3. Let C = (v1,v2,...,n,v1) be
a Hamiltonian cycle in G and, without loss of generality, suppose that
degv, = 6(G) = 3. Let N = N(vn) = {v1,,Vn-1} for some a €
{2,3,...,n — 2}. By the symmetry of the graph, we may assume that
a<n/2 Thus,2<a<n-—4sincen >8 (and a =n—4 onlyif n = 8).
We consider the following two cases.

Case 1. C[N] = P, + P;. Then a = 2. We show that G contains a type-
1 path. Assume, to the contrary, that this is not the case. Let {z,y} =

{vn-2,vn-1}. Since (z,y,v1,v2,...,Un_5) cannot be a type-1 path, v, is
adjacent to neither v,_p nor v,—;. However then, another type-1 path
(vn,v2,v3,...,Un—3) results. Thus, this case is impossible. (Note that this

is also immediate by Lemma 3.7(b).)

Case 2. C[N] =3P,. Then 3 < a < n — 4. We show that G con-
tains a path of type 1 or type 3. Again, assume that this is not the case.
Then we first claim that N is an independent set in G. By the fact that
neither (Vn_1,v1,v2,...,Vn-4) NOT (V1,V2,...,%Va,Un-1,Vn=2,...,Va+3) i5 2
type-1 path, it follows that vjv,_1,V,0n—1 ¢ E(G). Similarly, if a > 4,
then viv, ¢ E(G) as (Vn—1,Yn-2,...,%a,V1,V2,...,V-3) is not a type-
1 path. If a = 3, then by the fact that viv,—; ¢ E(G) and the exis-
tence of the path (vn,vs,vs,...,Un-2), Which is not of type 1, we have
voun-1 € E(G). Thus, viv, = vivs ¢ E(G) in order for avoiding the
path (vn_1,v2,1,V3,a,...,Vn-4) in G, which is of type 1. As claimed,
therefore, no two vertices in N = {v}, s, Vn—1} are adjacent in G.

Since neither (vn—2,%n—3,-..,Vat1,v2,V3,...,vs) DO (V1,2,...,Va-1,
Un—2,Vn_3,..., Vat1) is of type 3, it follows that vava+1,Ve-1Vn-2 & E(G).
This in turn implies that v1va41,v—1Un—1 € E(G) since neither of the
paths (U3, V4, - -+, Va, Uny Une1,Un=2, - - -  Va+2) NOT (Un—3,Un—4;- -+ Va, Un, V1,
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V2,...,Va—2) is of type 1. However then, a type-1 path (vat4,%Vass,---,
Un—1,Ya—1,Va, Ya+1, V1,2, . . .,Ua—2) is produced. This contradicts the ini-
tial assumption.

Thus, a graph G of order n > 8 and minimum degree 3 must contain
a path that is of type 1 or type 3. Hence, G cannot be (n — 3)-path-
Hamiltonian. s

By Propositions 3.1 and 3.12 with Observation 3.4, there are exactly
four graphs of order 8 that are 5-path-Hamiltonian; namely

Bs\As = {G: §(G) = [V(G)| -2 =6}

={K2,2,2,2, K2,2,2,1,1, K2.2.1,1,1,1, K2,1,1,1,1,1,1} -

Finally, let us consider gﬁ).phs G of order n > 9 with 4 < §(G) <
(n —1)/2. For a path P, let P denote the reverse of P.

Theorem 3.13 If G is a Hamiltonian graph of order n > 9 and 4 <
(@) < (n—1)/2, then G is not (n — 3)-path-Hamiltonian.

Proof. We prove that G is not (n — 3)-path-Hamiltonian by showing
that G must contain a path of type 1-5 described in Observation 3.5. As-
sume, to the contrary, this is not the case. Let C = (v1,vz,...,vn,v1) be
a Hamiltonian cycle in G and, without loss of generality, suppose that
degvn, = 6(G) = 6. Let A = N(vn) = {va,,Vags---,Vas} and B =
V(G\N[vn] = {vb,,Vbyy -1 Ub,_s_, }, Wherel = a; < a3 < -+ < asg=n-1
and 2 < by < by <+ < bp_s_y < n—2 Let In = {ay,az,...,a5} and
Ig = {by,bs,...,bn_s5-1}. Also, let B8 be the largest integer such that 8 and
B — 1 both belong to Is. Since § < (n — 1)/2, such B always exists and
3 £ B < n—2. Considering the paths

(Un_l,’(}n_g, ey VB4, U1, U9, ,‘Uﬁ_l),
(vg+1,’l)g+2, ceiyUn—1,01,v2,..., vp_z),
(Ul,vg, e ,Uﬁ_g,vﬁ+],’vp+2, N ,’Un_l),
(’Ul,'vg, ey UB_2,Vn—1,VUp-2,... ,vp+1),

none of which is of type 1 in G, we have

o {V1Ug41, V1Un—1, Ug-2U841,UB—2Un—1,V4—1Vn, vavn} N E(G) = 0, )
* vgy1vn € E(G).
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We now consider two cases according to whether or not A contains two
vertices that are adjacent in C. Define Q; and Q2 by

_J Ko if8=3
Ql_{ (ve,v3,...,Y5-2) ifB>4

_[ Ko ifg>n—-4
Qg_{ (VB+1,VB+21 - -+ s Un—a) ifB<n-35.

Thus, Q; and Q; are subpaths of C when 8 > 4 and 8 < n—35, respectively.

Case 1. C[A] is not empty. Then let o be the smallest integer such that
both o and o + 1 belong to 74. Thus, a # 2. Also, by the symmetry of
the graph, we may assume that o < (n —1)/2. Since n > 9, it follows that
a<n-5(and @ =n—5 if and only if n = 9). Define Q3 and Q4 by

_ Ko fa=1
Qs—{ (v2,v3,...,Va) ifa>3

_ | Ko ifa=n-5(=4)
Qu= { (Vad1,Vas2s--rUnos)  ifa<n—86.

Thus, Q3 and Q4 are subpaths of C when a > 3 and o < n—6, respectively.
Then (Q3,vn, Q4, Un—4,vn—3) cannot be a type-1 path and so vjvn_2 €
E(G). By (2), therefore, 8 # n — 3. If there exists an integer b such that
{b—-2,b-1,b} C Ig, then (vp,Vb41,...,VUn-2,v1,V2,...,V-2) is & type-4
path, which cannot occur. Thus, there is no such integer b. In other words,
each component in C[B] is either P, or P,. Summarizing,

e 3I<PB<n—-4orf=n-—2,
e 1<aiy1—a;<83for1<i<éd-1 3)
o {v1Vn-2,VaVn,Va+1Vn, Vp-2Vn} C E(G).

In particular,n —4 < as_; <n—2.

Subcase 1.1. a=1. Then ay = 2 and 8 > 4. Also, @4 = (ve,vs,...,
Un-s). First, if as_y = n— 2, then 4 < f < n - 4. Then the path
(v8+2,Y843, - - - » Un—2,Un, Q1,Vp-1,vp) is of type 1 since v1vgs1,v1Vn-1 ¢
E(G) by (2). We therefore assume that a;_; € {n —4,n —3}. Let § =
{v1)va5_y,vn—1}-

Subcase 1.1.1. as.1 =n —4. Then § = n — 2. We first show that S
is independent. By (2), it suffices to verify that vjv,_4 ¢ E(G). Let
{z,y} = {vn-3,vn—2}. If vjun_4 € E(G), then G contains a path P given
by

pP= { (vn’Q‘hm,y) ifzxe N('Un_.5)
('Un—la Un,Un—4,V1,02,... 7”71—6) if z,y ¢ N('vn—5):
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which is of type 1. Therefore, as claimed, no two verities in S = {v1, vp_a,
vn_1} are adjacent in G. Now

P = (UI,Q&!,J?,y) ifze N('Un_5)
(’Ul,’Un,’Ug,'U3, -+ Un-6,%, y) ifz e N('U‘n—G)

is a type-3 path. Since such P’ does not exist, no edge joins a vertex
in {z,y} and a vertex in {vn_g,vn—5}. However then, a type-5 path
(Vn—5,Vn—4,Vn,V1,V2,...,Un_¢) results, which is a contradiction anyway.
We conclude that a5y # n — 4.

Subcase 1.1.2. ag—y =n — 3. Then 4 < 8 <n —4. As in Subcase 1.1.1,
we first show that S is independent. First, v,_3v.—1 ¢ E(G) since (Q2,
Un_3, Un—1, Vn—2, V1, @1) cannot be a type-1 path. Thus, when 8 = n—4, the
set § = {V1,Vn_3,Vn-1} is indeed independent by (2). For4 < 8 <n -5,
note first that v,_4vn_ € E(G) so that (vn_2,v1,vn,Q4) is not a type-1
path. This in turn implies that v1vn,_3 ¢ E(G) as (Q2,Vn—1,Vn-2, Un-3, 1,
Q1) cannot be a type-1 path. Thus, no two vertices in S are adjacent for 4 <
B < n—5 as well. However, this produces a type-3 path (v, vn, @4, Vn—4),
which is a contradiction.

Thus, Subcase 1.1 never occurs and so o # 1. Consequently, vav, ¢
E(G). By the symmetry of the graph, we may also assume that v,_sv, ¢
E(G).

Subcase 1.2. a#1. Then3 < a<n-6ora=n-5=4. By (3)
and what is verified in Subcase 1.1, we may assume that a; € {3,4} and
as-1 € {n—4,n—-3}. If n =9, then § =4 and so a = ay = a3z — 1, that is,
as—1=n—4 (= 5). As before, let S = {v1,v4,_,,¥n-1}.

Subcase 1.2.1. a5_y =n—4. Then 8 =n — 2 and so Q; = (va,v3,...,
Un—g4). Also, vg_oUn_; = Un_4vUn_) is not an edge in G by (2). Also,
V1Un-4 & E(G) since (v3,v4,...,Vn-4,91,%_2,Vn_1) cannot be a type-1
path. Thus, § = {v,vn_4,vn_1} is independent. This in turn implies
that vov,—2 € E(G), that is, {vs,vn—_2,vn} is independent, in order to
avoid a type-3 path (vn_4,Vpn_3,Vn—2,V2,v3,...,0,_5). Observe then that
we obtain a path

pP= { (Q1,Vn-3,9n-1) if vp_3vn_; € E(G)

(vn—-2,v1,Q1) otherwise,

which is of either type 1 or type 3.

Subcase 1.2.2. as_y =n —3. Then 5 < 8 < n -4 and n > 10. Hence,
3 < a<n—6. Then vn_gvn_y ¢ E(G) since (Q2,Un—3,Un—1,Vn-2,71,Q1)
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cannot be a type-1 path. Hence, vov,_2 ¢ E(G), that is, {v2,Un-2,vn} is
independent, as the path (vn—2, @3,vn,Q4,Vn—4) is not of type 1. Then
v1Un-3 € E(G) or a type-3 path (Qs,Q4,Vn—4,vn—3,v1) results. Conse-
quently, § = {v1,vn—3,Vn—1} must be independent. However then, we
obtain a type-3 path (v1,Q3,vn, Q4,¥n—4). This is again impossible.

Thus, Subcase 1.2 never occurs. Consequently, Case 1 never occurs and
so C[A] must be empty.

Case 2. C[A] is empty. Then aiyy —a; > 2 for 1 < i < 6 — 1. Hence,
ag > 3 while as_; < n—3. For the rest of the proof, let us write a* = as—;.

Define the subpaths Qs and Qg of C by

Qs = (U3,V4,...,Va—2) ifa*2>5

Ko fa*=n—-3
Qs = e

(Vo +1,Var 425+« + » Un—3) ifa*<n-—4.

Note that Qs is always a subpath of C since a* = as—1 > a2 +2 > 5 while
Q¢ is a subpath of C when a* < n — 4 In summary,

o {vaUn,Vay4+1VUn,Var—10n} N E(G) =0, -
o {vivy:a*+1<i<n—-2}NE(G) =9, (4)
* vgyovn € E(G).

Subcase 2.1. o* < n —4. Then § =n — 2. We first show that (i) S =
{v1,Va*,Vn-1} is independent and (ii) vas—1vn~1 € E(G). By (4), observe
that va-vp—1 € E(G) as the path (vy,v2,Q5,%a*~1,Va*sUn—1,Un-2,--.,
Uas+3) is not of type 1. For (i), therefore, it suffices to verify that viv,. ¢
E(G).

Subcase 2.1.1. as—2 < a* — 3. Then va-—2v, ¢ E(G) and so clearly
1V ¢ E(G), that s, (i) holds, as (Un—1, Un—2, J6, Vas, V1, U2, . - ., Uae—3) IS
not a type-1 path. Then, since (v;,vo, @s, va._l,vn_g,@) is not a type-3
pgﬁh, Vg —1Un—2 & E(G). It then follows that (ii) holds so that the path
(Q6, Var , Un, 01,2, @s) is not of type 1.

Subcase 2.1.2. as_o = a* — 2. In this case, that (ii) must hold as (vs, @s,
Un, Vo=, @6, Un—2) is not a type-1 path and viv,—1 ¢ E(G) by (2). There-
fore, (i) must hold so that the path (vh_4,Vn_s,...,%-,v1,v2, @5, Va~-1,
vn-1), which is of type 1, does not exist.

Hence, as claimed, S is independent and ve-—_1vn—1 € E(G). By the
fact that S is independent, voun—2 ¢ E(G) as (va-, @6, Un—2, V2, @5, Var—1)
cannot be a type-3 path. Thus, {vs2, v,—2,vn} is independent by (4), which
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—
in turn implies that va-_2vn_3 € E(G) since (v2, @s, Q6, Var) Va1, Vn-1)
is not a type-3 path, either. However then, the path

p= (Vn—a4,Vn=5,...,Var—1,Un=1,Vn-2,V1,02,...,%a*—3) if v1vn-2 € E(G)
(Qs5,Vas~1,Vn—1,Vn, Va",Qs) otherwise

is a type-1 path. As a result, Subcase 2.1 is impossible.

Subcase 2.2. o* =n —3. Then vn_4v, ¢ E(G) by (4). In this case,
3<B<n—-6or B =mn-—4. Since (vz,v3,...,Vn-3,Vn) is not a type-
1 path, it follows that viv,_2 € E(G). Also, vgt1vn—1 ¢ E(G) while
Un—4Un-1 € E(G) as neither of the paths ((Cz,vl,'un_g,vn_l, Q2,vn—3) and
(Un-3,Vn—-2,v1,V2,...,Vn_s) is of type 1. Note therefore that {vi,vg41,
Un-1} is independent by (2). Then the path (vi,Q1,v5-1,V8, V542, Y843, - - - »
vn—2) cannot be of type 3 and so vgvgt2 ¢ E(G), that is, {vg, vg+2,vn} is
also independent by (4). Then, we obtain a path

{ (v1,Q1,Y8-1,Vn-3,Yn-2,Q7) if vg_1vn_3 € E(G)
(031 QZa Un—1,Un-2,01, QI) OtherWise,

where
Q ={ Ko ifB=n—-4
7 (Un-1,Vn—a,Vn=5,...,0p42) if B<n—6,
is either a type-1 or type-3 path. We conclude that Subcase 2.2 is impos-
sible, that is, Case 2 never occurs.

We have considered all possible cases. Therefore, if G is a graph of order
n 2 9 with 4 < §(G) < (n — 1)/2, then G must contain a path of type 1-5
and so G cannot be (n — 3)-path-Hamiltonian.

Let us conclude this section by stating the main result and a corollary.

Theorem 3.14 A graph G of order n > 4 is (n — 3)-path-Hamiltonian
if and only if (i) G is n-path-Hamiltonian, that is, G equals C, or K, or
Kpjanj2 (when n is even) or (ii) G € {Ps + P2, Cs,2P3,Cy + Cs} or (iii)
0(G)=n—-2.

For a graph G, every path of order at most §(G) can be further extended
to a path of order §(G) + 1. Thus, if G is an ¢-path-Hamiltonian graph,
where 1 < £ < §(G) +1, then hee(G) > £. Since §(G) > n—3 for the graphs
G in Theorem 3.14 (ii)(iii), the following also holds.

Corollary 3.15 A graph G of order n > 4 is (n — 3)-path- Hamiltonian if
and only if hce(G) € {n — 3,n}.
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