Characterizations of Highly Path-Hamiltonian Graphs

FUTABA FUJIE
Graduate School of Mathematics,
Nagoya University,
Nagoya, 464-8602, Japan.

ZHENMING BI and PING ZHANG Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, USA.

Abstract

A Hamiltonian graph G is said to be ℓ -path-Hamiltonian, where ℓ is a positive integer less than or equal to the order of G, if every path of order ℓ in G is a subpath of some Hamiltonian cycle in G. The Hamiltonian cycle extension number of G is the maximum positive integer ℓ for which every path of order ℓ or less is a subpath of some Hamiltonian cycle in G. If the order of G equals n, then it is known that hce(G)=n if and only if G is a cycle or a regular complete bipartite graph (when n is even) or a complete graph. We present a complete characterization of Hamiltonian graphs of order n that are ℓ -path-Hamiltonian for each $\ell \in \{n-3, n-2, n-1, n\}$.

Keywords: Hamiltonian graph, ℓ -path-Hamiltonian graph, Hamiltonian cycle extension number.

AMS subject classification: 05C38, 05C45, 05C75.

1 Introduction

We refer to the book [4] for graph theory notation and terminology not described in this paper. A Hamiltonian graph G of order $n \geq 3$ is said to be ℓ -path-Hamiltonian for some integer ℓ , where $1 \leq \ell \leq n$, if for every

path P of order ℓ , there exists a Hamiltonian cycle C in G such that P is a path on C. Certainly, a graph is Hamiltonian if and only if it is 1-path-Hamiltonian. The largest positive integer ℓ for which a graph G is i-path-Hamiltonian for $1 \leq i \leq \ell$ is the Hamiltonian cycle extension number hce(G) of G. Hence, $1 \leq hce(G) \leq n$ for every Hamiltonian graph of order n. Furthermore, hce(G) = 1 if and only if G contains an edges that lies on no Hamiltonian cycle of G.

For each integer $n \geq 3$, it is not difficult to see that if G equals the n-cycle C_n or the complete graph K_n or, when $n \geq 4$ is even, the regular complete bipartite graph $K_{n/2,n/2}$, then a path of any possible length in G can be extended to a Hamiltonian cycle in G. That is, hce(G) = n for each of these graphs G. In fact, Chartrand and Kronk [3] showed that these are the only Hamiltonian graphs possessing this property. Let

$$\mathcal{A}_n = \begin{cases} \{C_n, K_n\} & \text{if } n \text{ is odd} \\ \{C_n, K_n, K_{n/2, n/2}\} & \text{if } n \text{ is even.} \end{cases}$$
 (1)

Theorem 1.1 [3] Let G be a graph of order $n \geq 3$. Then hce(G) = n if and only if $G \in A_n$.

By definition, if G is a graph of order $n \geq 3$ with hce(G) = n, then G is ℓ -path-Hamiltonian for $1 \leq \ell \leq n$. In particular, G is n-path-Hamiltonian. It then follows by Theorem 1.1 that if $G \in \mathcal{A}_n$, then G is n-path-Hamiltonian.

In this work, we characterize (i) all graphs of order $n \geq 3$ that are ℓ -path-Hamiltonian for each $\ell \in \{n-2, n-1, n\}$ and (ii) all graphs of order $n \geq 4$ that are (n-3)-path-Hamiltonian.

2 The First Characterization

In this section, we determine all graphs of order $n \geq 3$ that are ℓ -path-Hamiltonian for each $\ell \in \{n-2, n-1, n\}$. Recall that, if $G \in \mathcal{A}_n$, where \mathcal{A}_n is the set defined in (1), then G is n-path-Hamiltonian. It turns out that the converse of this statement also holds, that is, the graphs in \mathcal{A}_n are the only graphs of order n that are n-path-Hamiltonian. In fact, a Hamiltonian graph G of order n belongs to \mathcal{A}_n if and only if G is ℓ -path-Hamiltonian for $n-2 \leq \ell \leq n$, as we will show.

We first show that if G is an n-path-Hamiltonian graph of order n, then $G \in \mathcal{A}_n$. Although this fact can be derived from the proof of Theorem 1.1 provided in [3], we present an independent proof here. The following lemma will be useful.

Lemma 2.1 Let G be an n-path-Hamiltonian graph of order n with a Hamiltonian cycle $C = (v_1, v_2, \dots, v_n, v_1)$.

- (a) If $v_1v_{a+1} \in E(G)$ for some integer $a \ (2 \le a \le n-2)$, then $v_iv_{a+i} \in E(G)$ for $1 \le i \le n$, where the subscripts are expressed modulo n. (In other words, G is a circulant.)
- (b) If $G \neq C$, then $v_1v_4 \in E(G)$.
- (c) If $v_1v_{a+1} \in E(G)$ for some integer $a \ (2 \le a \le n-4)$, then $v_1v_{a+3} \in E(G)$.

Proof. For (a), suppose that $v_1v_{a+1} \in E(G)$. Then there is an n-path $(v_2, v_3, \ldots, v_{a+1}, v_1, v_n, v_{n-1}, \ldots, v_{a+2})$ in G connecting v_2 and v_{a+2} . Since G is n-path-Hamiltonian, $v_2v_{a+2} \in E(G)$. By the same argument, one can show that $v_{i+1}v_{a+i+1} \in E(G)$ whenever $v_iv_{a+i} \in E(G)$ for $1 \le i \le n-1$.

Next we verify (b). If $G \neq C$, then $v_1v_{a+1} \in E(G)$ for some a, where $2 \leq a \leq n-2$. By (a), we may assume that $v_2v_{a+2}, v_3v_{a+3} \in E(G)$. Then G contains an n-path $(v_1, v_n, v_{n-1}, \ldots, v_{a+3}, v_3, v_2, v_{a+2}, v_{a+1}, \ldots, v_4)$, which implies that $v_1v_4 \in E(G)$.

For (c), suppose that $v_1v_{n+1} \in E(G)$ for some integer $a \ (2 \le a \le n-4)$. By (a), it follows that $v_2v_{n+2}, v_av_n \in E(G)$. One can then construct an n-path

$$\begin{array}{ll} (v_1,v_3,v_4,v_2,v_n,v_{n-1},\ldots,v_5) & \text{if } a=2 \\ (v_1,v_{a+1},v_{a+2},v_2,v_3,\ldots,v_a,v_n,v_{n-1},\ldots,v_{a+3}) & \text{otherwise} \end{array}$$

connecting v_1 and v_{a+3} . Consequently, $v_1v_{a+3} \in E(G)$.

By Lemma 2.1, if G is an n-path-Hamiltonian graph of order n containing a Hamiltonian cycle $C=(v_1,v_2,\ldots,v_n,v_1)$ as a proper subgraph, then $v_iv_j\in E(G)$ for each pair i,j of integers where $1\leq i,j\leq n$ and $i\not\equiv j\pmod 2$. In particular, $v_1v_i\in E(G)$ for each even integer i $(2\leq i\leq n)$. Thus, if n is even, then G contains $K_{n/2,n/2}$ as a spanning subgraph. Furthermore, G is complete if and only if $v_1v_3\in E(G)$ or $v_1v_{n-1}\in E(G)$. We are now prepared to establish the following result.

Theorem 2.2 Let G be a graph of order $n \geq 3$. If G is n-path-Hamiltonian, then $G \in A_n$.

Proof. Let G be an n-path-Hamiltonian graph of order n. We may also assume that G is neither C_n nor $K_{n/2,n/2}$. It remains to show that $G = K_n$. Let $C = (v_1, v_2, \ldots, v_n, v_1)$ be a Hamiltonian cycle in G. If n is odd, then

 $v_1v_{n-1} \in E(G)$ and so G is complete. Thus, assume next that n is even and G contains $K_{n/2,n/2}$ as a proper spanning subgraph. Then v_1v_{a+1} for some even integer a with $2 \le a \le n-2$, which in turn implies that $v_1v_i \in E(G)$ for $a \le i \le n$. In particular, $v_1v_{n-1} \in E(G)$ and so G is complete.

It was shown in [2] that there is no Hamiltonian graph of order n whose Hamiltonian cycle extension number equals either n-2 or n-1. In fact, if G is (n-2)-path-Hamiltonian graph of order $n \geq 3$, then consider an (n-1)-path $P=(v_1,v_2,\ldots,v_{n-1})$ in G and the vertex $v_n \in V(G) \setminus V(P)$. The (n-2)-path $P-v_1$ must lie on a Hamiltonian cycle in G and so $v_1v_n \in E(G)$. One can similarly show that $v_{n-1}v_n \in E(G)$ by considering the path $P-v_{n-1}$. Hence, P can be extended to a Hamiltonian cycle in G and so G is (n-1)-path-Hamiltonian. It is also straightforward to show that G is n-path-Hamiltonian if G is (n-1)-path-Hamiltonian. Consequently, we have the following.

Observation 2.3 [2] If G is a graph of order $n \geq 3$ that is either (n-2)-path-Hamiltonian or (n-1)-path-Hamiltonian, then G is n-path-Hamiltonian.

As a consequence of Theorems 1.1 and 2.2 with Observation 2.3, we obtain the following characterization of all Hamiltonian graphs of order n that are ℓ -path-Hamiltonian for $n-2 \le \ell \le n$.

Theorem 2.4 A graph G of order $n \geq 3$ is ℓ -path-Hamiltonian for $n-2 \leq \ell \leq n$ if and only if $G \in \mathcal{A}_n$.

Corollary 2.5 For a graph G of order $n \geq 3$, the following are equivalent.

- (a) The graph G equals C_n or K_n or $K_{n/2,n/2}$ (when n is even).
- (b) The graph G is n-path-Hamiltonian.
- (c) The graph G is (n-1)-path-Hamiltonian.
- (d) The graph G is (n-2)-path-Hamiltonian.
- (e) The graph G is i-path-Hamiltonian for $1 \le i \le n$, that is, hce(G) = n.

3 The Second Characterization

In this section, we characterize all graphs of order $n \geq 4$ that are (n-3)-path-Hamiltonian. For each integer $n \geq 4$, let \mathcal{B}_n be the set of graphs G of order n that are (n-3)-path-Hamiltonian. It then follows by Corollary 2.5 that $\mathcal{A}_n \subseteq \mathcal{B}_n$. Therefore, we basically need to determine the set $\mathcal{B}_n \setminus \mathcal{A}_n$.

Clearly, $\mathcal{B}_4 \setminus \mathcal{A}_4 = \{K_{2,1,1}\}$. Now for $n \geq 5$, what can we say? First, we already have the following.

Proposition 3.1 [2] If G is a graph of order $n \geq 4$ and $\delta(G) = n - 2$, then hce(G) = n - 3.

For this reason, we should investigate graphs G of order n for which $2 \le \delta(G) \le n-3$. Suppose that $G \in \mathcal{B}_5 \backslash \mathcal{A}_5$. If $v \in V(G)$ and $\deg v = 2$, say $N(v) = \{x,y\}$, then $xy \notin E(G)$ since otherwise (x,y) is a 2-path that lies on no Hamiltonian cycle in G. Consequently, $\mathcal{B}_5 \backslash \mathcal{A}_5 = \{P_3 + P_2, K_{2,2,1}, K_{2,1,1,1}\}$. Here, the graph $P_3 + P_2$ is the *union*, not the join, of P_3 and P_2 .

To continue our search for (n-3)-path-Hamiltonian graphs of order n in general, let us first state an observation, which is elementary but useful.

Observation 3.2 [2] If G is a Hamiltonian graph with $\delta(G) = 2 < \Delta(G)$, then $hce(G) \leq 2$.

We next state a few of the best-known sufficient conditions for a graph to be traceable or Hamiltonian or Hamiltonian-connected in terms of its order. In the following theorem, (b) and (c) are both due to Ore [5, 6] while (a) is an immediate consequence of (b).

Theorem 3.3 For a graph G of order $n \geq 3$, let $\sigma = \min\{\deg u + \deg v : uv \notin E(G)\}$. (a) If $\sigma \geq n-1$, then G is traceable. (b) If $\sigma \geq n$, then G is Hamiltonian. (c) If $\sigma \geq n+1$, then G is Hamiltonian-connected.

With the aid of Theorem 3.3, we obtain another result concerning graphs in $\mathcal{B}_n \setminus \mathcal{A}_n$ and their minimum degree.

Observation 3.4 Let $n \geq 6$. If $G \in \mathcal{B}_n \setminus \mathcal{A}_n$, then either $\delta(G) = n - 2$ or $3 \leq \delta(G) \leq (n+1)/2$.

Proof. By Observation 3.2, let us assume that $n \geq 8$ and $n/2 + 1 \leq \delta(G) \leq n-3$. We show that G is not (n-3)-path-Hamiltonian. Since $\delta(G) \leq n-3$, there is a 3-set $S \subseteq V(G)$ such that G[S] is disconnected. Now let G' = G - S. Then $\delta(G') \geq \delta(G) - 3 \geq n/2 + 1 - 3 = (n'-1)/2$, where n' = n-3 is the order of G'. This implies that G' contains an (n-3)-path which cannot be extended to a Hamiltonian cycle in G. The result now follows.

If G is a graph of order $n \geq 5$ containing an (n-3)-path P, then the subgraph induced by the three vertices not belonging to P contains P_3 or

hce(G) < n-3. In general, if G is not (n-3)-path-Hamiltonian, then G contains an (n-3)-path that cannot be a subpath of a Hamiltonian cycle in G. The following observation categorizes such paths into five types.

Observation 3.5 A Hamiltonian graph G of order $n \geq 5$ is not (n-3)-path Hamiltonian if and only if there is an (n-3)-path P in G that is of one of the five types described in Figure 1, where P is shown in bold and edges not belonging to G are shown as dashed line segments.

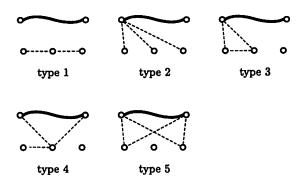


Figure 1: The five types of (n-3)-paths in Observation 3.5

For example, if G is a Hamiltonian graph of order $n \geq 5$ containing a vertex v such that $\deg v \leq n-3$ and G-v contains a u-w Hamiltonian path (u,P,w), where neither u nor w is adjacent to v, then P is an (n-3)-path of type 1, implying that G is not (n-3)-path-Hamiltonian. In particular, if G-v is Hamiltonian-connected, then G is not (n-3)-path-Hamiltonian.

As another example, let G be a Hamiltonian graph of order $n \geq 7$ with $V(G) = \{v_1, v_2, \ldots, v_n\}$, where $\deg v_1 \leq \deg v_2 \leq \cdots \leq \deg v_n$. Let us define $\delta_i(G) = \deg v_i$ for $1 \leq i \leq n$. Thus, $\delta_1(G) = \delta(G)$ and $\delta_n(G) = \Delta(G)$. If $\delta_1(G) \leq n-4$ and $\delta_2(G) \geq n/2+2$, then G is not (n-3)-path-Hamiltonian. To see this, let S be a 3-set such that $S \cap N[v_1] = \emptyset$. If H is the graph of order $n-4 (\geq 3)$ obtained from G by deleting the four vertices in $S \cup \{v_1\}$, then $\delta(H) \geq \delta_2(G) - 4 \geq (n-4)/2$ and so H is Hamiltonian. This in turn implies that G contains an (n-3)-path whose vertex set equals $V(G) \setminus S$ with v_1 as one of the two end-vertices. Note that this path is of type 2. The following is a generalization of this fact.

Observation 3.6 Let n and ℓ be integers satisfying $n \geq 7$ and $3 \leq \ell \leq n-3$. If G is a Hamiltonian graph of order n with $\delta(G) \leq \ell-1$ and

 $\delta_2(G) \geq n - (\ell - 1)/2$, then G is not ℓ -path-Hamiltonian.

For n=6,7, the set $\mathcal{B}_n \setminus \mathcal{A}_n$ can be determined fairly easily. Let us first consider the set \mathcal{B}_6 . By Proposition 3.1 and Observation 3.2, we may assume that $G \in \mathcal{B}_6$ and $\delta(G)=3$. Then $G \neq K_{3,3}$. One can then verify that if G is either $\overline{C_6}$ (= $C_3 \square P_2$, the Cartesian product of C_3 and P_2) or $\overline{2P_3}$, then G is 3-path-Hamiltonian. If $G=\overline{C_3+P_3}$, then G contains a 3-path of type 3. Otherwise, G contains a 3-path of type 1. Thus, $\mathcal{B}_6 \setminus \mathcal{A}_6 = \{\overline{C_6}, \overline{2P_3}, K_{2,2,2}, K_{2,2,1,1}, K_{2,1,1,1,1}\}$.

Similarly, to determine the set \mathcal{B}_7 , we may consider those graphs G with $3 \leq \delta(G) \leq 4$. We will show that if $G \in \mathcal{B}_7$, then $\delta(G) \neq 3$. We first state another lemma.

Lemma 3.7 Let G be an (n-3)-path-Hamiltonian graph of order $n \geq 5$ with a Hamiltonian cycle $(v_1, v_2, \ldots, v_n, v_1)$.

- (a) If neither v_1v_a nor v_1v_{a+1} is an edge in G for some $a \in \{3, 4, \ldots, n-2\}$, then none of the edges v_2v_{a+2} , v_2v_n , $v_{a-1}v_{a+2}$, $v_{a-1}v_n$ is contained in G. (Thus, if $v_1v_a \in E(G)$ for some $a \in \{3, 4, \ldots, n-2\}$, then at least one of $v_{a-1}v_{n-1}$ and $v_{a-1}v_n$ is an edge in G.)
- (b) For $n \geq 7$, if v_1v_3 is an edge in G, then at least one of v_1v_{n-3} and v_1v_{n-2} is an edge in G. (Thus, $\deg v_1 \geq 4$.)

Proof. For (a), the statement must hold in order to avoid type-1 paths in G. For (b), assume, to the contrary, that v_1v_3 is an edge in G while neither v_{n-3} nor v_{n-2} is. Then by (a), it follows that $\{v_2v_{n-1}, v_2v_n\} \cap E(G) = \emptyset$. However then, $(v_1, v_3, v_4, v_5, \ldots, v_{n-2})$ is an (n-3)-path of type 1 in G. This contradicts the fact that G is (n-3)-path-Hamiltonian.

We are prepared to show that a graph G of order 7 cannot be 4-path-Hamiltonian if G contains a vertex whose degree is less than 4.

Lemma 3.8 Let G be a graph of order 7. If G is 4-path-Hamiltonian, then $\delta(G) \neq 3$.

Proof. Let G be a 4-path-Hamiltonian graph with a Hamiltonian cycle $(v_1, v_2, \ldots, v_7, v_1)$ and assume, to the contrary, that $\deg v_1 = 3$. We show that G must contain a path of type 1 or type 3. By Lemma 3.7(b), we may assume that $N(v_1) = \{v_2, v_4, v_7\}$. Then $N(v_7) \cap \{v_2, v_4\} = \emptyset$ to avoid 4-paths of type 1. In addition, at most one of v_2v_4 and v_3v_7 belongs to E(G). Since $v_4v_7 \notin E(G)$ while $\deg v_7 \geq 3$, it follows by Lemma 3.7(b) again that

 $v_3v_7 \in E(G)$. Consequently, $v_2v_4 \notin E(G)$. Then $v_2v_6 \in E(G)$ since the path (v_5, v_4, v_3, v_7) cannot be of type 1. However then, either (v_2, v_6, v_5, v_3) or (v_1, v_2, v_6, v_7) is a 4-path of type 3, depending on whether v_3 and v_5 are adjacent or not. Thus, if $\delta(G) = 3$, then G cannot be 4-path-Hamiltonian.

As a consequence, if G is a 4-path-Hamiltonian graph of order 7, then $\delta(G) \in \{4,5\}$. In fact, there is only one 4-path-Hamiltonian graph of order 7 and minimum degree 4, as we verify next.

Proposition 3.9 Let G be a graph of order 7. Then $G \in \mathcal{B}_7$ if and only if either $\delta(G) = 5$ or $G = \overline{C_4 + C_3}$.

Proof. It is straightforward to verify that $\overline{C_4 + C_3}$ is 4-path-Hamiltonian. By Lemma 3.8, it suffices to prove that if $\delta(G) = 4$ and $\overline{G} \neq C_4 + C_3$, then G is not 4-path-Hamiltonian. Let G be a graph of order 7 and $\delta(G) = 4$. If \overline{G} is neither $C_4 + C_3$ nor $2C_3 + P_1$, then G contains a 4-path of type 1. We also see that if $\overline{G} = 2C_3 + P_1$, then G contains a 4-path of type 3. The result now follows.

Hence,

$$\begin{split} \mathcal{B}_4 \backslash \mathcal{A}_4 &= \{K_{2,1,1}\} \\ \mathcal{B}_5 \backslash \mathcal{A}_5 &= \{\overline{P_3 + P_2}, K_{2,2,1}, K_{2,1,1,1}\} \\ \mathcal{B}_6 \backslash \mathcal{A}_6 &= \{\overline{C_6}, \overline{2P_3}, K_{2,2,2}, K_{2,2,1,1}, K_{2,1,1,1,1}\} \\ \mathcal{B}_7 \backslash \mathcal{A}_7 &= \{\overline{C_4 + C_3}, K_{2,2,2,1}, K_{2,2,1,1,1}, K_{2,1,1,1,1,1}\}. \end{split}$$

These graphs are not only (n-3)-path-Hamiltonian but i-path-Hamiltonian for each positive integer i less than or equal to n-3. Hence, hce(G)=n-3 for each of the graph G listed above. Note also that for n=6,7, if $G \in \mathcal{B}_n \backslash \mathcal{A}_n$, then $\delta(G)$ equals either $\lfloor (n+1)/2 \rfloor$ or n-2. This does not hold for $n \geq 8$, which we discuss in the following subsections.

3.1 Graphs of Order n and Minimum Degree $\lfloor (n+1)/2 \rfloor$

In this subsection, we show that if G is an (n-3)-path-Hamiltonian graph of order $n \geq 8$, then $\delta(G) \neq \lfloor (n+1)/2 \rfloor$.

The closure G^* of a graph G of order n is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at least n (in the resulting graph at each stage) until no such pair remains. The following is a consequence of a well-known theorem in 1976 by Bondy and Chvátal [1].

Theorem 3.10 A graph is Hamiltonian if and only if its closure is Hamiltonian.

For two disjoint subsets V and V' of V(G), let E[V, V'] denote the set of edges joining a vertex in V and a vertex in V'. Also, for convenience, let K_0 be the "null graph" (the "graph" of order 0 and size 0).

Theorem 3.11 Let G be a graph of order $n \ge 8$ with $\delta(G) = \lfloor (n+1)/2 \rfloor$. Then G is (n-3)-path-Hamiltonian if and only if n is even and $G = K_{n/2,n/2}$.

Proof. Let G be a graph of order $n \geq 8$ with $\delta(G) = \delta = \lfloor (n+1)/2 \rfloor$ and assume that either $G \neq K_{\delta,\delta}$ or n is odd. Our goal is to show that G is not (n-3)-path-Hamiltonian by finding an (n-3)-path that is of one of the five types in Observation 3.5.

Select a vertex x_1 with $\deg x_1 = \delta$ and, among the vertices adjacent to x_1 , let x_2 be one whose degree is the minimum. If $\deg x_2 \geq \delta + 1$, then $\delta(G-x_1) \geq \delta \geq n/2$ and so $G-x_1$ is Hamiltonian-connected. Consequently, the graph G contains an (n-3)-path of type 1. Thus, for the rest of the proof, we assume that $\deg x_2 = \delta$.

Let H be the graph of order n-2 obtained from G by deleting x_1 and x_2 . For each integer $i=\{0,1,2\}$, let $V_i=\{v\in V(H):|N_G(v)\cap\{x_1,x_2\}|=i\}$. Thus, $\{V_0,V_1,V_2\}$ is a partition of V(H) and $\deg_H v=\deg_G v-i\geq \delta-i$ if $v\in V_i$. If n is even, then $0\leq |V_0|=|V_2|\leq \delta-1$. If n is odd, then $V_2\neq\emptyset$ and $0\leq |V_0|=|V_2|-1\leq \delta-2$. In either case, if V_0 is nonempty and H is Hamiltonian, say $v\in V_0$ and C is a Hamiltonian cycle in H, then P=C-v is a path of type 1 in G. Thus, let us suppose that H is not Hamiltonian or $V_0=\emptyset$.

<u>Case 1. H is not Hamiltonian.</u> Then the closure H^* of H is not Hamiltonian, neither. Suppose that u and w are not adjacent in H^* . Then $\deg_H u + \deg_H w \le n - 3 = 2\delta - 3$. Recall that $\deg_H v \ge \delta - i$ for each $v \in V_i$. Thus, if n is even, then we may assume that either (i) $u \in V_1$ and $w \in V_2$ or (ii) $u, w \in V_2$. Similarly, if n is odd, then $u, w \in V_2$.

Subcase 1.1. n is even. Since H^* is not Hamiltonian it must be that, in H, (i) none of V_0 , V_1 , and V_2 is nonemepty, (ii) V_2 is independent, and (iii) $E[V_1, V_2]$ is empty. Thus, the degree of each vertex belonging to $V_1 \cup V_2$ is exactly δ in G. Since $\delta = \deg_G v \leq |V_0| + 2$ for each $v \in V_2$, it follows that $|V_0| = |V_2| = \delta - 2$ and $|V_1| = 2$. Furthermore, every vertex in V_0 is adjacent to every vertex in $V_1 \cup V_2$. Thus, if we write $V_0 = \{u_1, u_2, \ldots, u_{\delta-2}\}$, $V_1 = \{v_1, v_2\}$, and $V_2 = \{w_1, w_2, \ldots, w_{\delta-2}\}$, where

 $x_i v_i \in E(G)$ for i = 1, 2, then $(v_1, u_1, w_1, u_2, w_2, \dots, u_{\delta-3}, w_{\delta-3}, x_2, w_{\delta-2})$ is a type-1 path in G since x_1 is adjacent to neither v_2 nor $u_{\delta-2}$.

Subcase 1.2. n is odd. Then in H, it must be that V_1 is empty and V_2 is independent. Thus, $|V_2| = |V_0| + 1 = \delta - 1 < \deg_G v$ for every vertex v in V_2 and so V_0 is not independent. Write $V_0 = \{u_1, u_2, \ldots, u_{\delta-2}\}$ and $V_2 = \{w_1, w_2, \ldots, w_{\delta-1}\}$. Also, without loss of generality, suppose that $u_1u_2 \in E(G)$. Then $(w_1, x_1, x_2, w_2, u_1, u_2, Q)$, where

$$Q = \begin{cases} K_0 & \text{if } n = 9\\ (w_3, u_3, w_4, u_4, \dots, w_{\delta-3}, u_{\delta-3}) & \text{if } n \ge 11, \end{cases}$$

is a type-3 path.

Case 2. H is Hamiltonian and $V_0 = \emptyset$.

Subcase 2.1. n is even. Then $|V_1| = n - 2$ and $V_2 = \emptyset$. Among the δ vertices adjacent to x_1 , some have degree δ in G. Let N' be the set of such vertices. Obviously, $x_2 \in N'$. Let $N'' = N_G(x_1) \setminus N'$ and $U = V(G) \setminus N_G[x_1]$. If there exists a vertex $x_3 \in N'$ such that x_1 and x_3 belong to a common triangle, then let H' be the graph obtained from G by deleting x_1 and x_3 . Then, by considering the closure of H', one can verify, as done earlier, that G contains an (n-3)-path of type 1 regardless of whether or not H' is Hamiltonian. Thus, suppose that N' is independent and either N'' is empty or E[N', N''] is empty.

If $N'' = \emptyset$, then U is not independent since $G \neq K_{\delta,\delta}$. Let $U = \{u_1, u_2, \ldots, u_{\delta-1}\}$ and, without loss of generality, suppose that $u_1u_2 \in E(G)$. Also, let $N' = \{w_1, w_2, \ldots, w_{\delta}\}$. Then $(w_1, x_1, w_2, u_1, u_2, Q)$, where

$$Q = \begin{cases} K_0 & \text{if } n = 8\\ (w_3, u_3, w_4, u_4, \dots, w_{\delta-2}, u_{\delta-2}) & \text{if } n \ge 10, \end{cases}$$

is a type-3 path.

If N'' is nonempty, then let $C=(v_1,v_2,\ldots,v_{n-1},v_1)$ be a Hamiltonian cycle in H. If two vertices in U are adjacent in C, say $v_{n-2},v_{n-1}\in U$, then the path (v_1,v_2,\ldots,v_{n-3}) is of type 1. Otherwise, we may assume that $U=\{v_1,v_3,\ldots,v_{n-3}\}$ and $v_{n-2},v_{n-1}\in N''$. If $v_1v_3\notin E(G)$, then $(x_1,v_4,v_5,\ldots,v_{n-1})$ is an (n-3)-path of type 3. Similarly, G contains an (n-3)-path of type 3 if $v_3v_5\notin E(G)$. Also, if $v_2v_4\in E(G)$, then $(v_2,v_4,v_5,\ldots,v_{n-1})$ is of type 1. Hence, suppose that v_3 is adjacent to both v_1 and v_5 while v_2 is not adjacent to v_4 . Then

$$P = \begin{cases} (v_4, v_5, \dots, v_{n-1}, v_2) & \text{if } v_2 v_{n-1} \in E(G) \\ (v_1, v_3, v_5, v_6, \dots, v_{n-2}, x_1) & \text{otherwise} \end{cases}$$

is of type 1.

<u>Subcase 2.2. n is odd.</u> Then $|V_1|=n-3$ and $|V_2|=1$. Let $V_1'=V_1\cap N(x_1)$ and $V_1''=V_1\cap N(x_2)$. Also, let $C=(v_1,v_2,\ldots,v_{n-2},v_1)$ be a Hamiltonian cycle in H. Without loss of generality, assume that $v_{n-2}\in V_2$. First, suppose that $v_1\in V_1'$.

If there exists an integer a $(1 \le a \le n-4)$ such that both v_a and v_{a+1} belong to V'_1 , then $(v_{a+2}, v_{a+3}, \ldots, v_{n-2}, x_1, Q)$, where

$$Q = \begin{cases} K_0 & \text{if } a = 1\\ (v_1, v_2, \dots, v_{a-1}) & \text{if } 2 \le a \le n - 4, \end{cases}$$

is a type-1 path.

Thus, let us next suppose that V_1' is independent with respect to C. If V_1'' is also independent with respect to C, then we may assume that $V_1' = \{v_1, v_3, \ldots, v_{n-4}\}$ and $V_1'' = \{v_2, v_4, \ldots, v_{n-3}\}$. Then consider the (n-3)-path P given by

$$P = \begin{cases} (x_2, v_{n-2}, v_1, v_3, v_4, \dots, v_{n-4}) & \text{if } v_1 v_3 \in E(G) \\ (v_3, v_4, \dots, v_{n-2}, x_1) & \text{otherwise} \end{cases}$$

and note that P is of either type 1 or type 3.

Finally, suppose that, with respect to C, the set V_1' is independent but V_1'' is not. Let a be the smallest positive integer such that $\{v_a,v_{a+1}\}\subseteq V_1''$. Due to the symmetry of the graph, we may assume that $1\leq a\leq (n-3)/2$. If a=1, then the (n-3)-path $(v_3,v_4,\ldots,v_{n-2},x_2)$ is of type 1. If $2\leq a\leq (n-3)/2$, then $v_{a-1}\in V_1'$. If $v_{a-1}v_{a+2}\in E(G)$ or $v_{a+2}\in V_1''$, then there exists an (n-3)-path P whose vertex set equals $V(G)\backslash\{x_1,v_a,v_{a+1}\}$. Otherwise, $v_{a-1}v_{a+2}\notin E(G)$ and $v_{a+2}\in V_1''$. Then $v_{a+3}\in V_1''$. In this case, the path P' given by

$$P' = \begin{cases} (v_{a-1}, v_a, v_{a+1}, v_{a+3}, \dots, v_{n-2}, v_1, v_2, \dots, v_{a-2}) & \text{if } v_{a+1}v_{a+3} \in E(G) \\ (v_{a+4}, v_{a+5}, \dots, v_{n-2}, v_1, v_2, \dots, v_{a-1}, v_a, x_2, v_{a+1}) & \text{otherwise} \end{cases}$$

is of type 3.

As desired, G is not (n-3)-path-Hamiltonian.

By Corollary 2.5 and Theorem 3.11 with Proposition 3.1, therefore, if G is an (n-3)-path-Hamiltonian graph of order $n \geq 8$, then (i) $G \in \mathcal{A}_n$ or (ii) $\delta(G) = n-2$ or (iii) $3 \leq \delta(G) \leq (n-1)/2$. We next show that (iii) never occurs.

3.2 Graphs of Order n and Minimum Degree Less Than $\lfloor (n+1)/2 \rfloor$

Recall that, if G is a graph of order $n \geq 8$ belonging to $\mathcal{B}_n \setminus \mathcal{A}_n$, then $\delta(G) = n - 2$ or $3 \leq \delta(G) \leq (n - 1)/2$. In this subsection, we pay attention to graphs G of order $n \geq 8$ with $3 \leq \delta(G) \leq (n - 1)/2$. More precisely, we will show that such G cannot be (n - 3)-path-Hamiltonian. Let us begin with graphs with minimum degree 3.

Proposition 3.12 If G is a graph of order $n \geq 8$ and $\delta(G) = 3$, then G is not (n-3)-path-Hamiltonian.

Proof. We prove that G is not (n-3)-path-Hamiltonian by showing that G must contain a path of type 1 or type 3. Let $C=(v_1,v_2,\ldots,v_n,v_1)$ be a Hamiltonian cycle in G and, without loss of generality, suppose that $\deg v_n=\delta(G)=3$. Let $N=N(v_n)=\{v_1,v_a,v_{n-1}\}$ for some $a\in\{2,3,\ldots,n-2\}$. By the symmetry of the graph, we may assume that $a\leq n/2$. Thus, $2\leq a\leq n-4$ since $n\geq 8$ (and a=n-4 only if n=8). We consider the following two cases.

Case 1. $C[N] = P_1 + P_2$. Then a = 2. We show that G contains a type-1 path. Assume, to the contrary, that this is not the case. Let $\{x,y\} = \{v_{n-2}, v_{n-1}\}$. Since $(x, y, v_1, v_2, \ldots, v_{n-5})$ cannot be a type-1 path, v_1 is adjacent to neither v_{n-2} nor v_{n-1} . However then, another type-1 path $(v_n, v_2, v_3, \ldots, v_{n-3})$ results. Thus, this case is impossible. (Note that this is also immediate by Lemma 3.7(b).)

Case 2. $C[N]=3P_1$. Then $3 \le a \le n-4$. We show that G contains a path of type 1 or type 3. Again, assume that this is not the case. Then we first claim that N is an independent set in G. By the fact that neither $(v_{n-1},v_1,v_2,\ldots,v_{n-4})$ nor $(v_1,v_2,\ldots,v_a,v_{n-1},v_{n-2},\ldots,v_{a+3})$ is a type-1 path, it follows that $v_1v_{n-1},v_av_{n-1} \notin E(G)$. Similarly, if $a \ge 4$, then $v_1v_a \notin E(G)$ as $(v_{n-1},v_{n-2},\ldots,v_a,v_1,v_2,\ldots,v_{a-3})$ is not a type-1 path. If a=3, then by the fact that $v_1v_{n-1} \notin E(G)$ and the existence of the path $(v_n,v_3,v_4,\ldots,v_{n-2})$, which is not of type 1, we have $v_2v_{n-1} \in E(G)$. Thus, $v_1v_a = v_1v_3 \notin E(G)$ in order for avoiding the path $(v_{n-1},v_2,v_1,v_3,v_4,\ldots,v_{n-4})$ in G, which is of type 1. As claimed, therefore, no two vertices in $N=\{v_1,v_a,v_{n-1}\}$ are adjacent in G.

 v_2, \ldots, v_{a-2}) is of type 1. However then, a type-1 path $(v_{a+4}, v_{a+5}, \ldots, v_{n-1}, v_{a-1}, v_a, v_{a+1}, v_1, v_2, \ldots, v_{a-2})$ is produced. This contradicts the initial assumption.

Thus, a graph G of order $n \geq 8$ and minimum degree 3 must contain a path that is of type 1 or type 3. Hence, G cannot be (n-3)-path-Hamiltonian.

By Propositions 3.1 and 3.12 with Observation 3.4, there are exactly four graphs of order 8 that are 5-path-Hamiltonian; namely

$$\mathcal{B}_8 \setminus \mathcal{A}_8 = \{ G : \delta(G) = |V(G)| - 2 = 6 \}$$

= \{ K_{2,2,2,2}, K_{2,2,2,1,1}, K_{2,2,1,1,1,1}, K_{2,1,1,1,1,1,1} \}.

Finally, let us consider graphs G of order $n \geq 9$ with $4 \leq \delta(G) \leq (n-1)/2$. For a path P, let \overline{P} denote the reverse of P.

Theorem 3.13 If G is a Hamiltonian graph of order $n \geq 9$ and $4 \leq \delta(G) \leq (n-1)/2$, then G is not (n-3)-path-Hamiltonian.

Proof. We prove that G is not (n-3)-path-Hamiltonian by showing that G must contain a path of type 1-5 described in Observation 3.5. Assume, to the contrary, this is not the case. Let $C=(v_1,v_2,\ldots,v_n,v_1)$ be a Hamiltonian cycle in G and, without loss of generality, suppose that $\deg v_n=\delta(G)=\delta$. Let $A=N(v_n)=\{v_{a_1},v_{a_2},\ldots,v_{a_{\delta}}\}$ and $B=V(G)\backslash N[v_n]=\{v_{b_1},v_{b_2},\ldots,v_{b_{n-\delta-1}}\}$, where $1=a_1< a_2<\cdots< a_{\delta}=n-1$ and 1=1 both belong to 1=1 and 1=1 belong to 1=1 belong to 1=1 belong to 1=1 belong to 1=1 belong the paths

$$(v_{n-1}, v_{n-2}, \dots, v_{\beta+1}, v_1, v_2, \dots, v_{\beta-1}),$$

$$(v_{\beta+1}, v_{\beta+2}, \dots, v_{n-1}, v_1, v_2, \dots, v_{\beta-2}),$$

$$(v_1, v_2, \dots, v_{\beta-2}, v_{\beta+1}, v_{\beta+2}, \dots, v_{n-1}),$$

$$(v_1, v_2, \dots, v_{\beta-2}, v_{n-1}, v_{n-2}, \dots, v_{\beta+1}),$$

none of which is of type 1 in G, we have

•
$$\{v_1v_{\beta+1}, v_1v_{n-1}, v_{\beta+2}v_{\beta+1}, v_{\beta-2}v_{n-1}, v_{\beta-1}v_n, v_{\beta}v_n\} \cap E(G) = \emptyset,$$

• $v_{\beta+1}v_n \in E(G).$ (2)

We now consider two cases according to whether or not A contains two vertices that are adjacent in C. Define Q_1 and Q_2 by

$$Q_{1} = \begin{cases} K_{0} & \text{if } \beta = 3\\ (v_{2}, v_{3}, \dots, v_{\beta-2}) & \text{if } \beta \geq 4 \end{cases}$$

$$Q_{2} = \begin{cases} K_{0} & \text{if } \beta \geq n-4\\ (v_{\beta+1}, v_{\beta+2}, \dots, v_{n-4}) & \text{if } \beta \leq n-5. \end{cases}$$

Thus, Q_1 and Q_2 are subpaths of C when $\beta \geq 4$ and $\beta \leq n-5$, respectively.

Case 1. C[A] is not empty. Then let α be the smallest integer such that both α and $\alpha + 1$ belong to I_A . Thus, $\alpha \neq 2$. Also, by the symmetry of the graph, we may assume that $\alpha \leq (n-1)/2$. Since $n \geq 9$, it follows that $\alpha \leq n-5$ (and $\alpha = n-5$ if and only if n=9). Define Q_3 and Q_4 by

$$Q_3 = \begin{cases} K_0 & \text{if } \alpha = 1\\ (v_2, v_3, \dots, v_{\alpha}) & \text{if } \alpha \ge 3 \end{cases}$$

$$Q_4 = \begin{cases} K_0 & \text{if } \alpha = n - 5 \ (= 4)\\ (v_{\alpha+1}, v_{\alpha+2}, \dots, v_{n-5}) & \text{if } \alpha \le n - 6. \end{cases}$$

Thus, Q_3 and Q_4 are subpaths of C when $\alpha \geq 3$ and $\alpha \leq n-6$, respectively. Then $(Q_3, v_n, Q_4, v_{n-4}, v_{n-3})$ cannot be a type-1 path and so $v_1v_{n-2} \in E(G)$. By (2), therefore, $\beta \neq n-3$. If there exists an integer b such that $\{b-2, b-1, b\} \subseteq I_B$, then $(v_b, v_{b+1}, \ldots, v_{n-2}, v_1, v_2, \ldots, v_{b-2})$ is a type-4 path, which cannot occur. Thus, there is no such integer b. In other words, each component in C[B] is either P_1 or P_2 . Summarizing,

•
$$3 \le \beta \le n - 4 \text{ or } \beta = n - 2,$$

• $1 \le a_{i+1} - a_i \le 3 \text{ for } 1 \le i \le \delta - 1$
• $\{v_1 v_{n-2}, v_{\alpha} v_n, v_{\alpha+1} v_n, v_{\beta-2} v_n\} \subseteq E(G).$ (3)

In particular, $n-4 \le a_{\delta-1} \le n-2$.

<u>Subcase 1.1.</u> $\alpha = 1$. Then $a_2 = 2$ and $\beta \geq 4$. Also, $Q_4 = (v_2, v_3, \ldots, v_{n-5})$. First, if $a_{\delta-1} = n-2$, then $4 \leq \beta \leq n-4$. Then the path $(v_{\beta+2}, v_{\beta+3}, \ldots, v_{n-2}, v_n, Q_1, v_{\beta-1}, v_\beta)$ is of type 1 since $v_1v_{\beta+1}, v_1v_{n-1} \notin E(G)$ by (2). We therefore assume that $a_{\delta-1} \in \{n-4, n-3\}$. Let $S = \{v_1, v_{a_{\delta-1}}, v_{n-1}\}$.

Subcase 1.1.1. $a_{\delta-1}=n-4$. Then $\beta=n-2$. We first show that S is independent. By (2), it suffices to verify that $v_1v_{n-4} \notin E(G)$. Let $\{x,y\}=\{v_{n-3},v_{n-2}\}$. If $v_1v_{n-4}\in E(G)$, then G contains a path P given by

$$P = \left\{ \begin{array}{ll} (v_n, Q_4, x, y) & \text{if } x \in N(v_{n-5}) \\ (v_{n-1}, v_n, v_{n-4}, v_1, v_2, \dots, v_{n-6}) & \text{if } x, y \notin N(v_{n-5}), \end{array} \right.$$

which is of type 1. Therefore, as claimed, no two verities in $S = \{v_1, v_{n-4}, v_{n-1}\}$ are adjacent in G. Now

$$P' = \begin{cases} (v_1, Q_4, x, y) & \text{if } x \in N(v_{n-5}) \\ (v_1, v_n, v_2, v_3, \dots, v_{n-6}, x, y) & \text{if } x \in N(v_{n-6}) \end{cases}$$

is a type-3 path. Since such P' does not exist, no edge joins a vertex in $\{x,y\}$ and a vertex in $\{v_{n-6},v_{n-5}\}$. However then, a type-5 path $(v_{n-5},v_{n-4},v_n,v_1,v_2,\ldots,v_{n-6})$ results, which is a contradiction anyway. We conclude that $a_{\delta-1} \neq n-4$.

Subcase 1.1.2. $a_{\delta-1}=n-3$. Then $4\leq \beta \leq n-4$. As in Subcase 1.1.1, we first show that S is independent. First, $v_{n-3}v_{n-1}\notin E(G)$ since $(Q_2,v_{n-3},v_{n-1},v_{n-2},v_1,Q_1)$ cannot be a type-1 path. Thus, when $\beta=n-4$, the set $S=\{v_1,v_{n-3},v_{n-1}\}$ is indeed independent by (2). For $4\leq \beta \leq n-5$, note first that $v_{n-4}v_{n-1}\in E(G)$ so that (v_{n-2},v_1,v_n,Q_4) is not a type-1 path. This in turn implies that $v_1v_{n-3}\notin E(G)$ as $(Q_2,v_{n-1},v_{n-2},v_{n-3},v_1,Q_1)$ cannot be a type-1 path. Thus, no two vertices in S are adjacent for $4\leq \beta \leq n-5$ as well. However, this produces a type-3 path (v_1,v_n,Q_4,v_{n-4}) , which is a contradiction.

Thus, Subcase 1.1 never occurs and so $\alpha \neq 1$. Consequently, $v_2v_n \notin E(G)$. By the symmetry of the graph, we may also assume that $v_{n-2}v_n \notin E(G)$.

<u>Subcase 1.2.</u> $\alpha \neq 1$. Then $3 \leq \alpha \leq n-6$ or $\alpha = n-5 = 4$. By (3) and what is verified in Subcase 1.1, we may assume that $a_2 \in \{3,4\}$ and $a_{\delta-1} \in \{n-4,n-3\}$. If n=9, then $\delta=4$ and so $\alpha=a_2=a_3-1$, that is, $a_{\delta-1}=n-4$ (= 5). As before, let $S=\{v_1,v_{a_{\delta-1}},v_{n-1}\}$.

Subcase 1.2.1. $a_{\delta-1}=n-4$. Then $\beta=n-2$ and so $Q_1=(v_2,v_3,\ldots,v_{n-4})$. Also, $v_{\beta-2}v_{n-1}=v_{n-4}v_{n-1}$ is not an edge in G by (2). Also, $v_1v_{n-4}\notin E(G)$ since $(v_3,v_4,\ldots,v_{n-4},v_1,v_{n-2},v_{n-1})$ cannot be a type-1 path. Thus, $S=\{v_1,v_{n-4},v_{n-1}\}$ is independent. This in turn implies that $v_2v_{n-2}\notin E(G)$, that is, $\{v_2,v_{n-2},v_n\}$ is independent, in order to avoid a type-3 path $(v_{n-4},v_{n-3},v_{n-2},v_2,v_3,\ldots,v_{n-5})$. Observe then that we obtain a path

$$P = \begin{cases} (Q_1, v_{n-3}, v_{n-1}) & \text{if } v_{n-3}v_{n-1} \in E(G) \\ (v_{n-2}, v_1, Q_1) & \text{otherwise,} \end{cases}$$

which is of either type 1 or type 3.

 $\frac{Subcase\ 1.2.2.\ a_{\delta-1}=n-3.\ \text{Then}\ 5\leq \beta \leq n-4\ \text{and}\ n\geq 10.\ \text{Hence,}}{3\leq \alpha \leq n-6.\ \text{Then}\ v_{n-3}v_{n-1}\notin E(G)\ \text{since}\ (Q_2,v_{n-3},v_{n-1},v_{n-2},v_1,Q_1)}$

cannot be a type-1 path. Hence, $v_2v_{n-2} \notin E(G)$, that is, $\{v_2, v_{n-2}, v_n\}$ is independent, as the path $(v_{n-2}, Q_3, v_n, Q_4, v_{n-4})$ is not of type 1. Then $v_1v_{n-3} \notin E(G)$ or a type-3 path $(Q_3, Q_4, v_{n-4}, v_{n-3}, v_1)$ results. Consequently, $S = \{v_1, v_{n-3}, v_{n-1}\}$ must be independent. However then, we obtain a type-3 path $(v_1, Q_3, v_n, Q_4, v_{n-4})$. This is again impossible.

Thus, Subcase 1.2 never occurs. Consequently, Case 1 never occurs and so C[A] must be empty.

 $\frac{Case \ 2. \ C[A] \ is \ empty.}{2 \ge 3 \ \text{while} \ a_{\delta-1} \le n-3.} \ \text{For the rest of the proof, let us write} \ \alpha^* = a_{\delta-1}.$ Define the subpaths Q_5 and Q_6 of C by

$$Q_{5} = (v_{3}, v_{4}, \dots, v_{\alpha^{*}-2}) \qquad \text{if } \alpha^{*} \geq 5$$

$$Q_{6} = \begin{cases} K_{0} & \text{if } \alpha^{*} = n - 3\\ (v_{\alpha^{*}+1}, v_{\alpha^{*}+2}, \dots, v_{n-3}) & \text{if } \alpha^{*} \leq n - 4. \end{cases}$$

Note that Q_5 is always a subpath of C since $\alpha^* = a_{\delta-1} \ge a_2 + 2 \ge 5$ while Q_6 is a subpath of C when $\alpha^* \le n-4$ In summary,

•
$$\{v_2v_n, v_{\alpha_2+1}v_n, v_{\alpha^*-1}v_n\} \cap E(G) = \emptyset,$$

• $\{v_iv_n : \alpha^* + 1 \le i \le n-2\} \cap E(G) = \emptyset,$
• $v_{\beta+2}v_n \notin E(G).$ (4)

<u>Subcase 2.1.</u> $\alpha^* \leq n-4$. Then $\beta=n-2$. We first show that (i) $S=\{v_1,v_{\alpha^*},v_{n-1}\}$ is independent and (ii) $v_{\alpha^*-1}v_{n-1} \in E(G)$. By (4), observe that $v_{\alpha^*}v_{n-1} \notin E(G)$ as the path $(v_1,v_2,Q_5,v_{\alpha^*-1},v_{\alpha^*},v_{n-1},v_{n-2},\ldots,v_{\alpha^*+3})$ is not of type 1. For (i), therefore, it suffices to verify that $v_1v_{\alpha^*}\notin E(G)$.

Subcase 2.1.1. $a_{\delta-2} \leq \alpha^* - 3$. Then $v_{\alpha^*-2}v_n \notin E(G)$ and so clearly $v_1v_{\alpha^*} \notin E(G)$, that is, (i) holds, as $(v_{n-1}, v_{n-2}, \overline{Q_6}, v_{\alpha^*}, v_1, v_2, \dots, v_{\alpha^*-3})$ is not a type-1 path. Then, since $(v_1, v_2, Q_5, v_{\alpha^*-1}, v_{n-2}, \overline{Q_6})$ is not a type-3 path, $v_{\alpha^*-1}v_{n-2} \notin E(G)$. It then follows that (ii) holds so that the path $(\overline{Q_6}, v_{\alpha^*}, v_n, v_1, v_2, Q_5)$ is not of type 1.

Subcase 2.1.2. $a_{\delta-2} = \alpha^* - 2$. In this case, that (ii) must hold as $(v_2, Q_5, v_n, \overline{v_{\alpha^*}, Q_6, v_{n-2}})$ is not a type-1 path and $v_1v_{n-1} \notin E(G)$ by (2). Therefore, (i) must hold so that the path $(v_{n-4}, v_{n-5}, \dots, v_{\alpha^*}, v_1, v_2, Q_5, v_{\alpha^*-1}, v_{n-1})$, which is of type 1, does not exist.

Hence, as claimed, S is independent and $v_{\alpha^*-1}v_{n-1} \in E(G)$. By the fact that S is independent, $v_2v_{n-2} \notin E(G)$ as $(v_{\alpha^*}, Q_6, v_{n-2}, v_2, Q_5, v_{\alpha^*-1})$ cannot be a type-3 path. Thus, $\{v_2, v_{n-2}, v_n\}$ is independent by (4), which

in turn implies that $v_{\alpha^*-2}v_{n-3} \notin E(G)$ since $(v_2, Q_5, \overleftarrow{Q_6}, v_{\alpha^*}, v_{\alpha^*-1}, v_{n-1})$ is not a type-3 path, either. However then, the path

$$P = \begin{cases} (v_{n-4}, v_{n-5}, \dots, v_{\alpha^*-1}, v_{n-1}, v_{n-2}, v_1, v_2, \dots, v_{\alpha^*-3}) & \text{if } v_1 v_{n-2} \in E(G) \\ (Q_5, v_{\alpha^*-1}, v_{n-1}, v_n, v_{\alpha^*}, Q_6) & \text{otherwise} \end{cases}$$

is a type-1 path. As a result, Subcase 2.1 is impossible.

Subcase 2.2. $\alpha^* = n-3$. Then $v_{n-4}v_n \notin E(G)$ by (4). In this case, $3 \leq \beta \leq n-6$ or $\beta = n-4$. Since $(v_2, v_3, \ldots, v_{n-3}, v_n)$ is not a type-1 path, it follows that $v_1v_{n-2} \in E(G)$. Also, $v_{\beta+1}v_{n-1} \notin E(G)$ while $v_{n-4}v_{n-1} \in E(G)$ as neither of the paths $(\overline{Q_1}, v_1, v_{n-2}, v_{n-1}, Q_2, v_{n-3})$ and $(v_{n-3}, v_{n-2}, v_1, v_2, \ldots, v_{n-5})$ is of type 1. Note therefore that $\{v_1, v_{\beta+1}, v_{n-1}\}$ is independent by (2). Then the path $(v_1, Q_1, v_{\beta-1}, v_{\beta}, v_{\beta+2}, v_{\beta+3}, \ldots, v_{n-2})$ cannot be of type 3 and so $v_{\beta}v_{\beta+2} \notin E(G)$, that is, $\{v_{\beta}, v_{\beta+2}, v_n\}$ is also independent by (4). Then, we obtain a path

$$P = \begin{cases} (v_1, Q_1, v_{\beta-1}, v_{n-3}, v_{n-2}, Q_7) & \text{if } v_{\beta-1}v_{n-3} \in E(G) \\ (v_{\beta}, Q_2, v_{n-1}, v_{n-2}, v_1, Q_1) & \text{otherwise,} \end{cases}$$

where

$$Q_7 = \begin{cases} K_0 & \text{if } \beta = n - 4\\ (v_{n-1}, v_{n-4}, v_{n-5}, \dots, v_{\beta+2}) & \text{if } \beta \le n - 6, \end{cases}$$

is either a type-1 or type-3 path. We conclude that Subcase 2.2 is impossible, that is, Case 2 never occurs.

We have considered all possible cases. Therefore, if G is a graph of order $n \geq 9$ with $4 \leq \delta(G) \leq (n-1)/2$, then G must contain a path of type 1-5 and so G cannot be (n-3)-path-Hamiltonian.

Let us conclude this section by stating the main result and a corollary.

Theorem 3.14 A graph G of order $n \geq 4$ is (n-3)-path-Hamiltonian if and only if (i) G is n-path-Hamiltonian, that is, G equals C_n or K_n or $K_{n/2,n/2}$ (when n is even) or (ii) $\overline{G} \in \{P_3 + P_2, C_6, 2P_3, C_4 + C_3\}$ or (iii) $\delta(G) = n - 2$.

For a graph G, every path of order at most $\delta(G)$ can be further extended to a path of order $\delta(G)+1$. Thus, if G is an ℓ -path-Hamiltonian graph, where $1 \leq \ell \leq \delta(G)+1$, then $\mathrm{hce}(G) \geq \ell$. Since $\delta(G) \geq n-3$ for the graphs G in Theorem 3.14 (ii)(iii), the following also holds.

Corollary 3.15 A graph G of order $n \ge 4$ is (n-3)-path-Hamiltonian if and only if $hce(G) \in \{n-3, n\}$.

References

- [1] J.A. Bondy and V. Chvátal, A method in graph theory. Discrete Math. 15 (1976), 111-136.
- [2] G. Chartrand, F. Fujie, and P. Zhang, On an extension of an observation of Hamilton. J. Combin. Math. Combin. Comput. To appear.
- [3] G. Chartrand and H.V. Kronk, Randomly traceable graphs. SIAM J. Appl. Math. 16 (1968), 696-700.
- [4] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs: 5th Edition. Chapman & Hall/CRC, Boca Raton, FL (2010).
- [5] O. Ore, Note on Hamilton circuits. Amer. Math. Monthly 67 (1960),
- [6] O. Ore, Hamilton connected graphs. J. Math. Pures Appl. 42 (1963), 21-27.