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Abstract

A balanced complete bipartite graph is a complete bipartite
graph the degrees of whose vertices differ by at most 1. In a
red-blue-green coloring of the edges of a graph G, every edge
of G is colored red, blue or green. For three graphs Fy, Fy and
F;, the 2-Ramsey number Ry(Fy, Fy, F3) of F1,F, and Fi, if
it exists, is the smallest order of a balanced complete bipartite
graph G for which every red-blue-green coloring of the edges of
G results in a red Fy, a blue F; or a green Fs. In this note, we
show that 20 < R2(04,C4,C4) < 21.
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1 Introduction

The Ramsey number R(F, H) of two graphs F and H is the smallest positive
integer n for which every red-blue coloring (in which every edge is colored
red or blue) of the complete graph K, of order n results in a red F (a
subgraph of K, isomorphic to F each edge of which is colored red) or a
blue H. It is well known that R(F, H) exists for every two graphs F and
H although R(F, H) has been determined for relatively few pairs F, H of
graphs.

For bipartite graphs F' and H, the bipartite Ramsey number BR(F, H)
is defined in (1] as the smallest positive integer r for which every red-blue
coloring of the r-regular complete bipartite graph K., results in a red F or
a blue H. It is known that the bipartite Ramsey number exists for every
two bipartite graphs (see [1]). If BR(F, H) = r, then there exists a red-
blue coloring of K,_; ,_; for which there is neither a red F nor a blue H.
Whether there is a red-blue coloring of K. _1,r for which there is neither a
red F nor a blue H depends on the graphs F and H. This observation led to
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the introduction of the k-Ramsey number of two graphs in [2]. A balanced
complete k-partite graph, k > 2, is a complete k-partite graph the degrees
of whose vertices differ by at most 1. For two bipartite graphs F and H
and an integer k with 2 < k < R(F, H), the k-Ramsey number Ry (F, H)
of F and H is the smallest order of a balanced complete k-partite graph
G for which every red-blue coloring of G results in a red F or a blue H.
If R(F,H) = n, then R,(F,H) = R(F, H). For the 4-cycle Cj of order 4,
the Ramsey number is B(Cy,Cy4) = 6 and the bipartite Ramsey number is
BR(C4,C4) = 5. Furthermore, for 2 < k < 6 = R(C;,C4), it was shown in
[2] that Ri(C4,C4) = 12 — k. It is not surprising that Ry (F, H) has been
determined for very few pairs F, H of graphs for integers k > 2 (see [4]).
Ramsey numbers have also been defined for three or more graphs. In
particular, for three graphs F, F; and F3, the Ramsey number R(Fy, Fy, F3)
of F,,F, and F3 is the smallest positive integer n for which every red-
blue-green coloring (in which every edge is colored red, blue or green) of
the complete graph K, of order n results in a red Fj, a blue Fy or a
green F3. This gives rise to the concept of k-Ramsey number of three
(or more) graphs. For three graphs Fy, F3 and F3 and an integer k& with
2 < k < R(R\, F3, F3), the k-Ramsey number Ry (Fy, Fy, F3) of Fi,F; and
F;, if it exists, is the smallest order of a balanced complete k-partite graph
G for which every red-blue-green coloring of the edges of G results in a red
Fy, a blue F; or a green F3. In particular, if £ = 2 and F; = F for some
graph F where i = 1,2,3, then the 2-Ramsey number Ry(F, F, F) is the
smallest order of a balanced complete bipartite graph G for which every
red-blue-green coloring of the edges of G results in a monochromatic F (all
of whose edges are colored the same). In general, it is very challenging to
determine the value of Ry(F, F, F') even when F is a graph of smallest size.
In this note, we show that 20 < Ry(C4,Cy,C4) < 21. We refer to the book
(3] for graph theory notation and terminology not described in this paper.

2 The values of R2(C4, 04, 04)
First, we show that Ro(Cy, Cy, Cy) is at least 20.
Theorem 2.1 R2(04,C4, C4) > 20.

Proof. We describe a red-blue-green coloring ¢ of Ky 10 that avoids a
monochromatic Cy4, which implies that Ry(C4,C4,C4) > 20. Let U =
{u1,u2,...,u9} and V = {vy,va,...,v10} be the partite sets of Ko,j0. The
edge coloring ¢ of Ky 1o is defined by the following table, where the u; — v;
entry in row u; and column v; indicates the color of the edge u;v; for
1<i<9and1<j<10.
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A red-blue-green coloring of Ky, 10

Next, we describe the structures of the red, blue and green subgraphs
Gr,Gp and G, of Ky 10 produced by this edge coloring c. Figure 1 shows
a spanning subgraph G of size 30 in Ky 10, where each solid vertex is a
vertex in U and each empty vertex is a vertex in V. In fact, each of the
resulting red, blue and green subgraphs G,, G, and G is isomorphic to the
graph G of Figure 1. To illustrate this fact, we label a vertex u € U by a
triple (up, ug,u,), 1 < p,q,s <9, and a vertex v € V by a triple (vp, vy, vs),
1 < p,q,s £ 10, such that (1) the label (up, uq, u,) of u € U indicates that
u=up in Gr, u = U4 in Gp and u = u, in G4 and (2) the label (vp, Vg, vs)
of v € V indicates that v = v, in Gy, v = v in Gp and v = v, in G,.
Furthermore, if a vertex « € U is labeled by uy, then u = u, in each of
Gr, Gy, Gg. Similarly, a vertex v € V labeled v, indicates that v = v, in
each of Gy, Gy, G,.

The table below lists the red-neighborhood, blue-neighborhood and
green-neighborhood Ng(u) of each vertex u € U. Observe that Ng(u) U
Np(u)UNg(u) =V for eachu e U.

Np(u1) = {v1,v2,v3,v4}
Ngr(uz) = {va, vs, ve, v7}
Ng(u3) = {vr,vs,ve, 1}
Np(uq) = {v2, ve, ve}
Nr{us) = {va4,vs,v10}
Nr(ue) = {vs, vs, vo}
Nr(uz) = {v2,v7,v10}
Np(us) = {vs,ve, vs}
Np(ug) = {v1,vs,v10}

Np(u1) = {v7,vs,v10}
Np(u2) = {v1,v2,v10}
Ng(ua) = {v4,v5,v10}
NB(u4) = {v1,03,v4,vg}
Np(us) = {v:;,'us,vs}
NB(us) = {v2,v4,v6,v7}
Np(u7) = {ve,vs,v0}
Ngp(ug) = {vi,vs,v7,ve}
NB(UQ) = {112,1)3,‘09}

Ne(u1) = {vs,ve,vs}
Ng(u2) = {va,vs,ve}
NG(u3) = {'02,'"3,116}
Ng(uq) = {vs,vr,v10}
Ne(us) = {v1,v2,v7,v0}
Ne(us) = {v1,v8,v10}
Ng(u7) = {v1,v3,v4,vs}
Ng(us) = {v2,v4,v10}
Ne(uo) = {vs, ve,v7,vs}

Since no two vertices in U have two common neighbors in G, it follows
that G is Cys-free and so G, Gy and G, are Cy-free. Therefore, there is no
monochromatic Cy in this edge-colored Ky 19 and so R3(Cy4,C4,Cy4) > 20.m
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(ue, ug, u2)

(vs, vs,v2)

(u3, us, us) (w7, u1,uq) (u2. us, ug)

vr

Figure 1: A spanning subgraph G of size 30 in Ky 10

Next, we show that Ry(Cjy, Cy, Cy) is at most 21.
Theorem 2.2 Ry(C4,C4,Cy) < 21.

Proof. We show that every red-blue-green coloring of Kjo,11 results in a
monochromatic Cy4, which implies that Ro(Cy,C4,Cy) < 21. Let

U= {ul,uz,. ..,'U.u} and V = {Ul,vz,...,vlo}

be partite sets of Ki; 10. Assume, to the contrary, that there is a red-blue-
green coloring ¢ of Kjo,1; that avoids a monochromatic Cy. Let m,, mp
and m, be the sizes of the resulting red, blue and green subgraphs G, Gs
and Gg, respectively, where say m, > mp 2 my. Thus

11
0
my = Zdegcru,- > [1; .l = 37.

i=1

In what follows, we show that G, contains C4 as a subgraph, producing a
contradiction.
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Suppose, without loss of generahty, that degg_u; > degg uz > --+ >
degg_ u11. Thus, degg, uy1 2> [ ] = 4. Since there is no red Cy in Gr, it
follows that

|Nr(u:) N Nr(u;)| < 1for1 <i<j<1l 1)
This implies that
ZLI degg, ui < |V|+3=13 2)
and
i1 degg, ui < [V + (3) =16, 3)

Since [311€] = 3, it follows that degs_us > 3 and so
degg, u; >3 for 2 <i <5. (4)

If deg, u1 > 8, then 3.0 degg u; > 8 + 3 +3 = 14 by (4), which
contradicts (2). Thus degs_u; = 4,5,6,7 and so there are four cases to
consider. First, we make an observation. If 3>  degg w; = 13, then
Npr(u1) U Nr(u2) U Ng(us) = V and each of the followmg conditions (i),
(ii) and (iii) hold in G,:

(i) Since |V| = 10, it follows by (1) that |N(u;) N N(u;)|=1for1<i<
j<3.

(ii) If degg, us = 3, then degg,_u; = 3 for 4 <i < 11, as m, > 37.

(iii) No vertex of degree 3 or more in G, is adjacent to the vertex in
N(ui) N N(u;) for 1 <i < j < 3. To see this, let « € U such that
Np(u) contains the vertex v € N(u;) N N(uz) say. Thus, (Np(u) —
{v}) N Np(u;) = @ for ¢ = 1,2 by (1). Since Ng(u) contains at
most one vertex in Np(us) =V — [Nr(u;) U Np(ug)), it follows that
degg, u < 2.

We are now prepared to consider these four cases.

Case 1. degg u1 = 7. Then degg uz = degg_us = 3 by (2) and (4)
and so Yo, degg_u; = 13. Hence degg u; = 3 for 2 < i < 11 by (ii).
We may assume, without loss generality, that Np(u;) = {vy,vz,.. S Urh
Npg(ug) = {v7,v8,v9} and Ngr(u3) = {vg, v10,v1}. Since

dege, ug = degg, us = 3,

it follows by (1) that each of u4 and us is adjacent in G, to exactly one
vertex in Np(u;) for each i = 1,2,3 but not adjacent to any of v;, v7, v in
G.. This implies that each of u4 and us is adjacent in G, to vg € Nr(uz)
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and is adjacent to vjp € Ng(uz). However then, {vs,vi0} € Ng(uq) N
Ng(us) and results in a red C4, which is a contradiction.

Case 2. degg_u; = 6. Since degg_uz > [315] = 4, it follows that
degg, ui = 3 for i = 3,4,5 by (2) and (4) and degg_uz = 4. We may
assume, without loss generality, that Ng(uy) = {v1,v2,...,v}, Nr(u2) =
{ve,v7, vs, v9} and Np(us) = {ve, v10,v1}. Sincedegg_u; = 3 fori =4,5,6,
it follows by (1) that each of ug, us, ug is adjacent in G to exactly one vertex
in Np(u;) in G, for i = 1,2, 3 but not adjacent in G, to any of v, ve,vg in
G.. This implies that at least two of u4, us and ug are both adjacent to v7 or
both adjacent to vs in G, say u4 and us are adjacent to vz, and each of u4,
ug and ug is adjacent to v1g in Gr. However then, v7, vi0 € Nr(ug)NNg(us)
and so there is a red C4 in G,, which is a contradiction.

Case 3. degg_ uy = 5. Since degg_uz > [¥52] = 4, it follows that
degg, uz = 4,5. We consider these two subcases.

Subcase 3.1. degg, uz = 5. Thus degg us = 3 by (2) and (4). Since
m, > 37, it follows that degg_u; = 3 for 3 < ¢ < 11. We may as-
sume, without loss generality, that Nr(u;) = {v1,v2,v3,vs,v5}, Nr(uz) =
{vs,ve,v7,v8,u9} and Np(uz) = {vg,vi0,v1}. Since degg u; = 3 for
i =4,5,6,7, each of ug, us, us, u7 is adjacent to exactly one vertex in Ng(u;)
in G, for i = 1,2, 3 but not to any of v1, vs, vg in G,. Hence u;v1p € E(Gr)
for i = 4,5,6,7. Furthermore, at least two vertices in {uq4,us,ug, u7} are
both adjacent to one of vg, v7,vs € Nr(u2) in G,, say u4 and us are adja-
cent to v7 in G,.. However then, v7,v10 € Nr(u4) N Nr(us) and so there is
a red C; in G,., which is a contradiction.

Subcase 3.2. degg, uz = 4. Since degg_uz > [3552] = 4, it follows
that degz_us = 4. We may assume that Np(u1) = {v1,v2,v3,v4,0s},
NR(uz) = {‘Us,vs,'v-;,vs} and NR(U3) = {vg,vg,'vm,vl}. If degG.- ug = 4,
then ZL, degg, u; = 17, a contradiction. Thus, degg, u4 = 3 and so
degg, u; = 3 for 4 < i < 11, as m, > 37. Hence, each of uy, us, ug, u7, ug
is adjacent to exactly one vertex in Ng(u;) for each i € {1,2,3} but not
adjacent to any vertex in {v1,vs,vs} in G,.. Therefore, each of five vertices
ugq, Us, Ug, U7, Ug IS adjacent to exactly one of vg,v7 € Nr(uz) and exactly
one of vg, v10 € Ngr(us) in G,. Since there are only four such possibilities,
namely

Ay = {vg,ve}, Az = {vs,v10}, Az = {v7,v9}, A4 = {v7,v10},

there is t € {1,2,3,4} such that A, € Ng(u;) N Ng(u;) where ¢,j €
{4,5,6,7,8} and ¢ # j, which is a contradiction.

Case 4. degg_u1 = 4. Since degg uz > [¥F2] = 4, degg us 2
[%g] = 4 and degg, uq > [Lglz] = 4, it follows that degg u; = 4

276



for 1 < i < 4. First, suppose that either Ng(u;) N Ng(u;) = @ for some
pair ij € {1,2,3} and ¢ # j or Nr(u1) N Np(u1) N Np(us) # 0. Then
Np(u1) U Np(u1) U Np(uz) = V. Since degg, uq > 4, it follows that
u4 must be adjacent to two vertices in one of the sets Np(u;), Np(u2),
Np(u3), resulting in a red Cy, which is a contradiction. Next, suppose that
|Nr(u:) N Np(u;)| =1 for every pair ij € {1,2,3} and i # j and Ng(u;) N
Npg(u;) N Ng(uz) = 0. We may assume that Ng(u)) = {v1,v2,v3,v4},
Ng(u2) = {v4,vs,v6,v7} and Nr(us) = {v7,vs, ve,v1}. Furthermore, u4 is
adjacent to exactly one vertex in each of the sets {vo,v3}, {vs,vs}, {vs, v}
and is adjacent to vy in G,. We may assume, without loss of generality,
that Np(us) = {v2,vs,vs,v10}. Since degg_us > [3L318] = 3, it follows
that degg, us = 3,4. We consider these two subcases.

Subcase 4.1. degg_ugs = 4. Since (a) us is adjacent to exactly one vertex
in each of {v2,v3}, {vs, ve}, {vs,ve} and is adjacent to v;o and (b) Nr(u4) =
{v2,vs,v8,v10}, it follows that Ng(us) = {vs, ve, v9, v10}. Hence, each ver-
tex v € V belongs to exactly two of the five sets Ng(u1), Nr(uz), ..., Nr(us).
Next, we consider ug. Since degg, us > [3522] = 3, it follows that Ng(us)
contains at least three vertices. Each of these three vertices, however, must
belong to two of the red neighborhoods of uj, us, u3, u4 and us. Therefore,
at least one of u,,uy, u3, us and us must share two red neighbors with ug,

which is impossible.

Subcase 4.2. degg_us = 3. Since m, > 37, it follows that degg, u; =3
for 5§ < ¢ < 11. We now consider the possible 3-element sets for Np(u;)
for 5 <4 < 11. Let S € {Nr(us), Nr(us),..., Nr(u11)} and let i be the
smallest integer i € {1,2,...,10} such that v; € S. Hence 1 <i < 7.

(1) i = 1. Since v; € Npg(u1) N Ng(ua), vs,v6 € Nr(uz), vs,v10 €
Np(u4) and us ¢ S, it follows that vo,v3,v4,v7,v8,v9 ¢ S and so
S= {vl,vs,vlo}-

(2) ¢ = 2. Since vz € Np(u1) N Nr(u4), vs,v7 € Nr(ug), v7,v9 €

Np(u3) and u7 ¢ S, it follows that vs,vs,vs,vs,v10 € S and so
S = {‘Ug,‘vs,‘vg}.

(3) i = 3. Since v3 € Np(uy), it follows that vy ¢ S.

(3.1) If vs € S, then v4,ve,v7,u8,v10 ¢ S because vs € Ng(uz) N
Np(u4). Hence S = {v3,vs,v9}.

(3.2) If vs ¢ S but vg € S, then vg,vs,v7 € S because vg € Np(uz).
Hence S is one of the three sets {vs,vs,vs}, {vs,v6,v9} and
{1)3,’06,'010}.

(3.3) If vs,v6 ¢ S but v7 € S, then vg,vs ¢ S because v7 € Nr(us3).
Hence S = {’03,1}7,'010}.
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(3.4) If vs,v6,v7 ¢ S, then ug ¢ S because vg,v9 € Np(uz) and
vg,v10 € Ng(u4). Hence S = {vs, v, v10}.

(4) i = 4. Since v4 € Ng(u2), it follows that vs, vg, v7 ¢ S. Furthermore,
because vg,vs € Nr(us) and vs,v10 € Np(us), it follows that ug ¢ S
and so S = {vg4, Ve, v10}-

(5) ¢ =5. Since vs € Nr(uz) N Nr(u4), it follows that vg, vz, vg,vi0 & S.
However then, |S| < 3, which is impossible.

(6) i = 6. Since vg € Ng(us), it follows that v7 ¢ S. Because vg,v9 €
Npg(u3) and vg,v10 € Ng(ua4), it follows that ug ¢ S and so § =

{vs,vg,vw}-

(7) i = 7. Hence, S must contain at least one of vg and vy, say vg € S.
However then, |S N Ng(us)| = 2, which is impossible.

In summary, there are only six possibilities for the seven sets Ng(u;) for
5<i<1l:

S1: {v1,ve,v10}

Syt {va,ve,v9}

S3: {vs,vs,ve}

Ss: {vs,vr,v10}

Ss: {vs,ve,vs},{v3,ve,ve}, {v3,ve,v10}
Se : {vs,ve,v10}, {vs, vo, v10}, {ve, Vo, v10}

Therefore, there are two sets Ng(u;) and Ng(u;), where ,j € {5,6,...,11}
and i # j, such that Ng(u;) and Ng(u;) are chosen to be the same set.
This produces a red Cy, which is a contradiction.

By Theorems 2.1 and 2.2, it follows that 20 < Ry(C4,Cy,Cy) < 21.
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