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Abstract

A bipancyclic graph on v vertices is a bipartite graph that con-
tains, as subgraphs, cycles of length n for every even integer n such
that 4 < n < v. Such a graph is uniquely bipancyclic if it contains
exactly one subgraph of each permissible length.

In this paper we find all uniquely bipancyclic graphs on 30 or
fewer vertices.

1 Introduction

For definitions and theorems involving graph theory, the reader is referred
to standard texts on the subject, such as [12]. In this paper all graphs will
be finite, simple and undirected.

A graph with v vertices is called pancyclic if it contains cycles of every
length from 3 to v. Pancyclic graphs were first defined by Bondy in 1971
([3])). A pancyclic graph with exactly one cycle of every possible order is
called uniquely pancyclic (11, 6]).

Recall that a bipartite graph G is a graph whose vertices can be parti-
tioned into two sets, V; and V,, where no edge joins two members of the
same set. Say there are n; vertices in V) and n, vertices in V3; we shall
say G is bipartite of type (n1,n2). G is a complete bipartite graph Kn, n,
if every vertex in V) is joined to every vertex in V,, otherwise G will he
a proper subgraph of Ky, n,. Clearly the largest cycle in a type (ni,n2)
bipartite graph will contain at most 2 x min(n;,n,) edges, so the graph
can be Hamiltonian only if ny = n,.

Obviously a bipartite graph can only contain cycles of even length, so
such a graph cannot be pancyclic — no cycle of length 3 is possible. To get
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around this problem, a graph with v vertices is defined to be bipancyclic
if it is bipartite and contains cycles of every even length from 4 to v. For
further discussion of bipancyclic graphs, see (1, 2, 7, 8, 10].

In this paper we look at the problem of uniquely bipancyclic graphs, that
is bipartite graphs that contain exactly one cycle of each length from 4 up to
the number of vertices. If such a graph contains ¢ cycles, their lengths are 4,
6, ..., 2c+2, so the graph has 2c+2 edges; moreover the sum of the lengths
of the cycles (total number of edges in the cycles, with multiple appearances
in different cycles counted multiply) is 4 + 6+ ...+ (2c¢ +2) = ¢ + 3¢c. We
shall denote this as s(c).

This topic arose in conversation with Saad El-Zanati. I wish to express
my gratitude for his help and support.

2 Representing the graphs and counting
cycles

Suppose we have a bipancyclic graph on v vertices. It must contain a
Hamilton cycle, so the graph could be represented as a cycle of length v
together with some other edges which we shall call chords.

In every case, we represent our graph as a circle with the chords as
straight lines. The segments of the outer circle may contain a number of
vertices, but the chords only have vertices at their ends. If vertex labels
are needed, we assume the vertices are z;,z3,...,, in clockwise order.

If a v-vertex graph contains a chord zy, there will be two cycles contain-
ing it, one obtained by going from z to y clockwise and then along yz, the
other by going anticlockwise. The numbers of vertices in these two cycles
will total v + 2, because the edges on the cycle will be counted once each
and the chord counted twice. We shall say a chord is of type (p, q) if the
two cycles it generates have lengths p and g. If there are two chords, there
may be one or two cycles that contain both of them; in the latter case, the
total is v + 4. Any collection of chords generates either one or two cycles
that contain them all; if there are ¢ chords and they generate two cycles,
then the two lengths will add to v + 2¢.

In this paper we shall examine all cases of three or fewer chords.
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3 Graphs with fewer than two chords

If there are no chords, the graph contains only one (Hamilton) cycle, of
length v, and the only bipancyclic case is v = 4. If there is one chord,
there are two further (one-chord) cycles. So, if the graph has only one
chord, there are exactly three cycles. These cycles are illustrated in Figure
1 (there are three drawings of the same graph, with the cycles shown in

bold).
N
N

Figure 1: Cycles in the case of one chord

If the graph is uniquely bipancyclic the lengths of the cycles must be
4, 6 and 8. This can be achieved by inserting a chord z,z4 into a cycle of
length 8; any other example will obviously be isomorphic to this.

One can construct a bipancyclic graph on six vertices, again by inserting
chord z,z4, but the graph will contain two cycles z 29734 and T,T6TsT4
of length 4, so it is not uniquely bipancyclic.

Figure 2: The uniquely bipancyclic graph of order 8

As we shall see in the next section, any uniquely bipancyclic graph with
more than one chord will have at least six cycles and therefore at least 14
vertices, so there are no uniquely bipancyclic graphs on 6, 10 or 12 vertices.

4 Two chords

There are three possible patterns for two chords: case A, where the chords
share an endpoint; case B, where they do not cross in the standard diagram,
and case C, where they cross. The three types are illustrated in Figure 3.

In addition to the cycles that contain no chord or one chord, there well
be new cycles that contain two chords. Let us count cycles in the three

281



QIQIP

Figure 3: The possible cases with two chords

cases:

A. There is one new cycle, so together with the Hamilton cycle and the four
one-chord cycles (two per chord) there are six cycles in total;

B. There is one new cycle, for six in total;

C. There are two new cycles, for seven in total.

Types A and B produce 6 cycles (including the Hamiltonian) so a
uniquely bipancyclic graph of type A or B would have 14 vertices; one
of type C would have 16.

In the 14-vertex case, the total number of edges in the two cycles con-
taining a given chord (but not the other one) will total 16, so four cycles
each containing exactly one chord will contain a total of 32 edges, and the
Hamiltonian cycle contains 14, so if the cycle containing both chords has 2
edges then

144+32+2=4+4+6+8+410+12+4+14 =54

and z = 8.

In the 16-vertex case, the total number of edges in the two cycles con-
taining a given chord (but not the other one) will total 18, the two cycles
that contain both chords will have a total of 20 edges, and the Hamiltonian
cycle contains 16. So the seven cycles have a total of 16 + 18 +184-20 = 72
edges. But 4+ 6 +8 + 10+ 12+ 14+ 16 = 70. So there is no uniquely
bipancyclic graph on 16 vertices.

Type A The four cycles containing one edge each must contain 4, 6, 10
and 12 edges. So one chord must be of type (4,12) and the other of type
(6,10). Up to isomorphosm, we can assume the common endpoint of the
chords to be z; and the first chord to be (z1,z4). The second must be
(z1,76) or (z1,z10). Only the second choice causes the cycle containing
both chords to be of length 8. So there is exactly one solution.

Without loss of generality the chords are (z1,z;) and (z;, z«) where, in
order for the cycle containing both chords to have length 8, (j—4)+(15—k) =
6. (The eight edges include the two chords.) The first chord is of type
(i,16 —%) and the second is of type (k—j+1,15—j+k). One of these pairs
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must be (4,12), so let us take ¢ = 4. Then (j — i) + (15 — k) = 6 becomes
j+11—k==6o0r k=j+5. Then type (k~j+1,15 —j + k) becomes type
(6,10), as required. There are five possibilities: j = 5,6,7,8 or 9. Cases
J = 5 and j = 9 are easily seen to be isomorphic, as are cases j = 6 and
J = 8. So there are three solutions, giving a total of four nonisomorphic
uniquely bipancyeclic graphs of order 14.

The four uniquely bipancyclic graphs are shown in Figure 4.

SEARERY

Figure 4: The possible cases with two chords

o

5 Three chords

If a graph has three chords, we classify by looking at the three pairs of
chords. We refer to the configuration by the string of three letters corre-
sponding to the three types of chord interaction. For example, type AAB
is a graph in which two of the pairs of chords are type A (they do not
cross, and have no common endpoint) and one pair is type B (they have
a common endpoint). There are 14 types of graph: AAAi, AAAii, AABi,
AABIi, AAC, ABBi, ABBii, ABC, ACC, BBBi, BBBii, BBC, BCC, CCC.
(There are two types AAA, two types AAB, two types ABB (one where
the three chords form a “C” pattern and one where they form a “Z”), and
two types BBB (one where all three chords have a common endpoint and
one where they form a triangle).) They are illustrated in Figure 5, below,
which is taken from [4], where they were used to look for minimal pancyclic

graphs.

Nel=lelslalsls

Ai AAAii AABI AABii ABBi ABBiIi

@@@

ABC ACC BBBi BBBii BB

Figure 5: Cases of three chords
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The following table, also from that paper, counts the number c of cycles
in a graph, in each of the 14 cases. C(n) means the number of cycles
involving exactly n chords. We have added rows showing the number v of
vertices required for a uniquely bipancyclic graph with this chord structure,
- and the total s(c) of the edges in the cycles.

AAAi | AAAii | AABi | AABIi | AAC | ABBi | ABBii

Co) | 1 1 1 1 1 1 1
ca)| 6 6 6 6 6 6 6
c@ | 3 3 3 3 4 3 3
c@) | 1 0 1 0 1 1 0

c 11 10 11 10 12 | 11 10

v 24 22 24 22 26 | 24 22
s(c) | 154 | 130 | 154 | 130 | 180 | 154 | 130

ABC | ACC | BBBi | BBBii | BBC [ BCC | CCC

cy | 1 1 1 1 1 1 1
ca)| 6 6 6 6 6 6 6
c@e) | 4 5 3 3 4 5 6
c@)| 1 2 1 0 1 1 2

c 12 14 11 10 | 12 | 13 15

v 26 30 24 22 | 26 | 28 32
s(c) | 180 | 238 | 154 | 130 | 180 | 208 | 270

Whenever a diagram is shown in the discussion of a chord pattern, lower-
case letters in the figure are the numbers of edges between the points where
chord and basic cycle meet; we refer to these sets of edges as arcs and the
number of edges is the arc length. Capitals are chord names. We identify
cycles by the chords that they contain: for example, “an XY cycle” will
mean one that contains chords X and Y and no others.

Given a chord X, the lengths of the two X cycles will add to 2v + 2,
because they each contain the edge X and every edge of the Hamilton cycle
appears once. Similarly, if chords X and Y are of type C, the lengths of
the two XY cycles adds to 2v +4. If there are two cycles containing chords
X, Y and Z, their lengths total 2v + 6.

Type AAAi

This graph has v = 24 vertices. There will need to be 11 cycles, totalling
154 edges. The Hamiltonian cycle and the six one-chord cycles have a total
of v + 3(v + 2) = 102 edges. Therefore the remaining three cycles have a
total of 52 edges.



e

Figure 6: Chord type AAAi

The cycle containing both chords X and Y has b+d+e+ f+2 edges, the
Y Z cycle has a+b+d+ f +2 edges, the X Z cycle has b+c+d+ f +2 edges,
and the XY Z cycle has b+d+ f +3 edges. So the four cycles together total
3(b+d+f)+(a+b+c+d+e+f)+9 edges. Since (a+b+c+d+e+f =24,
we have 3(b+d + f) =19, so b+ d + f is not an integer, a contradiction.
So there is no uniquely bipancyclic graph with chord pattern AAAi.

Type AAAii

S
Figure 7. Chord type AAAii

This graph has v = 22 vertices. There will need to be 10 cycles, totalling
130 edges. The Hamiltonian cycle and the six one-chord cycles have a total
of v+ 3(v + 2) = 94 edges. Therefore the remaining three cycles have a
total of 36 edges.

The cycle containing both chords X and Y has a + b+ 2 edges, the Y Z
cycle has ¢+ d + 2 edges, and the XZ cycle has a + b+ c+ d + 2 edges. So
the three cycles together total 2(a + b+ c+ d) + 6 edges. This equals 36, so
a+b+c+d=15,and e+ f = 7. But there are cycles of lengths e + 1 and
f+1, soeand f must both be odd, which is a contradiction. So there is
no uniquely bipancyclic graph — and in fact no bipancyclic graph — with
chord pattern AAAii.

Type AABI
The graph will have v = 24 vertices; a + b+ ¢+ d + e = 24. There are
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Figure 8: Chord type AABI

11 cycles, of lengths 24,1 +a,1 +b,1 +¢€,25—a,25— 5,25 -e,c+d+e+
2,b+c+d+2,a+c+d+2and c+d+3, and for a uniquely bipancyclic
graph these must all be different. As the cycles have even length a, b, e are
all odd numbers and c + d is also odd. Without loss of generality we can
assume a < b < e. Then the only way to have a cycle of length 4 isifa = 3.
To form a 6-cycle, we must have d + e = 3 or b = 5. In the former case,
wemust have 5+1 > 8,s0b> 7. Ifb=7thenb+1=8=a+c+d, a
repeated cycle length. If b > 7 we would have e < b, a contradiction. So
d + e = 3 is impossible, and b = 5. There are three cases: e=7,c+d =9,
and 25—e=18=c+d+e+2;e=9,c+d="7,ande+1=10=a+c+d;
ore=11,e+d=25,and e+1=12 =b+ c+d+ 2. Therefore there is no
uniquely bipancyclic graph with chord pattern AABi.

Type AABii

Q

Figure 9: Chord type AABii

This pattern involves 10 cycles (including the Hamiltonian). So, if there
is a uniquely bipancyclic graph with this pattern, it has chords of lengths
4, 6, 8, 10, 12, 14, 16, 18, 20, 22. So the number of vertices is 22, and
a+b+c+d+e=22 Eachofa,b,c,d,e is greater than 0.

Here are the cycle lengths (left column names them; second column
shows all chords in the cycle.)

286



Cl | —— |22

C?2 X |la+1

C3 X [b+c+d+e+1l = 21—a

C4 Y |e+d+1

C5 Y |a+b+e+1 = 21—c—-d
C6 Z |d+1

CrT Z la+b+c+e+1l = 21-d

C8 | XY ib+e+2 = 24—a—-c—-d
CY9 | XZ|b+c+e+2 = 24—a-—-d
Cl0lYZ |c+2

Since all cycles must be even, we must have
a is odd (from C?2)
d is odd (from C6)
c+d is odd (from C4) so ¢ is even (also follows from C10)
b+ e is even (from C8)
Also, since all cycles are length 4 or greater,
a > 3 (from C2)
d > 3 (from C6)
and since no two cycles are the same length,
a # 3 (from C2 and C86).
Now there must be a cycle of length 4. Candidates are
C2, implying a = 3
C6, implying d = 3
C8, implyingb=e =1
C10, implying ¢ = 2
Two other cases,
C4, implying ¢ =2,d =1
C5, implyinga=b=d=1
are ruled out by the facts that a and d are each at least 3.
C2: This does not work, because both C7 and C9 would be length 21 — d.
C6: This does not work, because both C3 and C9 would be length 21 — a.
C8: We assume b =e =1 Also a > 5 and d > 5 (both are odd, > 3, and
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if either equalled 3 we have two cycles length 4). Similarly ¢ > 4. Cycle
lengths are

C1:22, C2:a+1, C3:21—a Cd:c+d+1, C5:21—c—d
C6:d+1, C7:21—-d, C8:4, C9:c+4, C10:c+2.

As a+c+d = 20, we can get upper bounds on a, ¢ and d by using the given
lower bounds. For example, d > 5 and ¢ > 4 imply a < 11,s0 5 < a < 11;
similarly 5 < d < 11 and 4 < ¢ < 10. (Actually, as a # d, a +d > 12 and
c<8.

So how do we get a cycle of length 20?7 The only case not immediately
eliminated is C4, but that would need c+d =19, so a =1 ...impossible.

C10: We assume ¢ = 2. Again a > 5 and d > 5 (both are odd, > 3, and
if either equalled 3 we have two cycles length 4). Also b+ e > 4. Cycle
lengths are

Cl:22, C2:a+1, C3:21-a C4:d+3, C5:19—-d
C6:d+1, C7:21~d, C8:22—a—d, C9:24—a—d, C10:4.

The only way to get a cycle of length 20 is if d = 17 or 19. But a+b+c+e >
9, so d < 13. So there is no uniquely bipancyclic graph with chord pattern
AABIi.

Type AAC

Figure 10: Chord type AAC

A uniquely bipancyclic graph will contain 12 cycles, v = 26 and the
chords total 180 edges. The cycles with 0 and 1 chord and two XY cycles
total 140 edges; XZ has 2+b+c+e, YZ has2+b+d+e, and XYZ
has 3+ a+d+e So7+a+b+c+3d+3e = 40. Using the fact
that a + b+ c+d+e+ f = 26, we have 33+ 2(d+€e) — f = 40, or
2(d +e) — f = 7. Therefore 2(d+e+ f) =7+ 3f,and 2(a+b+¢c) =
2a+b+c+d+e+f)—2d+e+f)=52-7-3f =45-3f. Upto
isomorphism we can assume b > c.
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The cycle lengths are

a+b+1 27—a-b at+c+1 27—-a—c
f+1 27— f 24+b+c 28—b—c
24+c+d+e 2+4+b+d+e 3+a+d+e 26

So b and ¢ cannot be equal, or there would be two equal cycles. Also b
and c are of the same parity, opposite to that of a. Moreover, none of the
1-chord cycle lengths a + b+ 1,a + ¢+ 1 and f + 1 can equal 14, as the
other cycle associated with the same chord would also be of length 14.

The only possible lengths for a 4-cycle area+b+1,a+c+1, f+1 and
2+b+c Buta+b+1=4implies a+c+1 < 4, which is impossible, and
24 b+ c =4 implies b = ¢ =1, also impossible.

Suppose a+c+1 = 4. Then 2(a+b+c) = 45—3 f becomes 2b+6 = 45—3f
or 2b = 39 — 3f. So b is a multiple of 3.If b = 15 then f = 3, which gives
another 4-cycle. So b = 3,6,9 or 12. Clearly {a,c} = {1,2}, butifc =1
thena+b+1=24+b+c, soc=2,a =1, and therefore b is even. There
remain two cases:

b=6,a=1,c=2,f=9,d+e=8,inwhich f+1=2+b+c¢=10;
b=12,a=1,c=2,f =5,d+e =06, in whicha+b+1 =27—a-b = 14.
So there are no examples witha +c+1 =4.

Suppose f+1=4. Thend+e =5 and a+b+c=18. a must be even
and b and ¢ odd. If we avoid cases where a + b+ 1 or a + ¢ + 1 equals 14,
there remain ten cases, all with f =3 and d+ e = 5:

a=2b=9,c=7inwhich27—a—-c=2+b+c=18;
a=2,b=13,c=3,in which27~-a—-b=28-b—c=12;
a=4,b=11,¢=3,in whicha+b+1=2+b+ c=16;

a =4,b=13,¢ =1, and no problem arises;
a=6,b=9,c=3,in whicha+b+1=28—-b-c=16;
a=6b=11,c=1,inwhicha+c+1=2+c+d+e=8;
a=8b="7c=3,inwhich27T-a-b=1+a+c=12;
a=8b=9,c=1,in which27—-a~-b=14+a+c=10;
a=10,b=7,c=1,in which27—a-b=24+b+c=10;
a=14,b=3,c=1, in which27— f =28 —b— c = 24.

So there is one solution. This gives rise to four uniquely bipancyclic graphs
with chord pattern AAC, according as (d,e) = (1,4),(2,3),(3,2) or (4,1).
An example is shown in Figure 11.
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Figure 11: Uniquely bipancyclic graphs of type AAC: d = 1,2,34.

Type ABBi

X
X ;

Figure 12: Chord type ABBi

v = 24 and the chords total 154 edges. A uniquely bipancyclic graph
will contain 11 cycles. The Hamiltonian cycle and the six one-chord cycles
have a total of v + 3(v + 2) = 102 edges. Therefore the remaining four
cycles have a total of 52 edges. The XY, XZ,YZ and XY Z cycles have
(b+c+2), (b+d+2), (a+b+2) and (b + 3) edges respectively, for a
total of (a + b+ c+d) +3b+9, which equals 3b+33 asa+b+c+d=v.
So 3b = 19, which is not a multiple of 3 — a contradiction. So there is no
uniquely bipancyclic graph with chord pattern ABBi.

Type ABBii

[+

Figure 13: Chord type ABBii

v = 22 and the chords total 130 edges. A uniquely bipancyclic graph
will contain 10 cycles. The Hamiltonian cycle and the six one-chord cycles
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have a total of 94 edges. Therefore the remaining four cycles have a total of
36 edges. The XY, XZ and Y Z cycles have (b+2), (b+d+2) and (d +2)
edges respectively, for a total of 2(b+ d) + 6, so b+ d = 15, and the XZ
cycle has 17 vertices, an odd number.. So there is no uniquely bipancyclic
graph with chord pattern ABBii.

Type ABC

(L)
oS-

Figure 14: Chord type ABC

A uniquely bipancyclic graph will contain 12 cycles, v = 26 and the
chords total 180 edges. The cycles with 0 and 1 chord and two XY cycles
total 140 edges; the XZ cycle havs 2 +c+e, YZ's has 2+ b + ¢, and
XYZ'shas3+a+c So7+a+b+3c+e = 40. Using the fact that
a+b+c+d+e=26,wehave33+2c—d=40,0r2c—d=17.

The cycle lengths are (Hamilton) 26; (X): a+b+1,c+d+e+1; (Y):
ate+1l,b+c+d+1;(Z):d+1l,a+b+c+e+1; (XY): a+c+d+2,
b+e+2;,(XZ): c+e+2;(YZ): b+c+2;(XYZ): a+c+3. From these
we see that @ # b+ 1 (or the cycle lengths a + e+ 1 and b + e + 2 would
be equal), a # e + 1 (or the cycle lengths a + b+ 1 and b + e + 2 would be
equal), and d # 1 (or there would be a cycle of length 2); since d is odd,
d > 3 and therefore ¢ > 5. The only possible cycles of length 4 have lengths
a+b+1 (which would imply a = 1,b = 2), a + e + 1 (which would imply
a=1,e=2),b+e+2 (which would imply b = e = 1), and d+1 (so d = 3).

Casea = 1,b = 2: then c+d+e = 23; from 2¢—d = 7, we get 3c+e = 30.
So e is a multiple of 3. Asa+e+1=e+2iseven, eis even, so e = 6,12, 18
or 24. But c+d > 8, so the only possibilities are e = 6 and e = 12. Ife = 6
thenc=8,s0d=9,s0d+1=10=0b+e+2, and there are two cycles of
length 10. f e=12thenc=6,d=5,anda+e+1=14=b+c+d+1,
and there are two cycles of length 14. Neither case is uniquely bicyclic.

Case a = l,e = 2: b+ c+d = 23, and similarly to the above we
deduce b + 3c = 30, b is even, so 6 divides b. The only possibilities are
b=6,c=8,d=09, whence d+1=10=b+e+2, and there are two cycles
of length 10, and b =12,c=6,d=5,s0 a+b+1=14=c+d+e+1, and
there are two cycles of length 14. Neither case is uniquely bicyclic. .
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Case b = e = 1 is impossible because the cycles of length a + b+ 1 and
a + e + 1 would be of the same length.

Case d = 3: ¢ = 5. Clearly a is even and b and e are odd. Cycle
lengths are 26,a+b+1,e+9,a+e+1,b+9,4,24 (and e + b+ e = 18),
a+10,b+e+2,e +7,b+ 7,a + 8 Clearly b and e differ by at least 4
(otherwise {e+7,b+7,e+9,b+ 9} must contain a duplication) so b+e > 6
and therefore a < 12. If a = 2 we have cycles of length 10 and 12, so neither
b nor e can equal 3 or 5; the only solution for b+ e = 16 is that they equal
7 and 9, so they do not differ by at least 4, a contradiction. If a = 4 the
only possibilities for a cycle of length 6 are the a+b+1and a+e+1
cycles, with b = 1 and e = 1 respectively. Both of these work, yielding two
uniquely bipaneyclic graphs on 26 vertices, shown in Figure 15.

4 ] 4
13

3
Figure 15: Uniquely bipancyclic graphs of type ABC

Ifa=6,thena+b+1=b+7ifa=8thena+b+1=5b+9; so
both of these cases yields a duplication. If a = 10 there are cycles of length
e+ 11 and b + 11, so b and e cannot differ by 4; the only possibility is
{b,e} = {1,7}. Then b+ e+ 2 = 10, and so does either e + 9 or b+ 9. If
a =10 then {b,e} = {1,7}. Then b+ e+2 = 8, and so does either e+ 7 or
b+ 7. So there are no further uniquely bipancyclic graphs of type ABC.

Type ACC

Figure 16: Chord type ACC

A uniquely bipancyclic graph will contain 14 cycles, v = 30 and the
chords total 238 edges. The cycles with 0 and 1 chord, the two XY cycles,
the two Y Z cycles and the two XY Z cycles total 230 edges; the X Z cycle
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has 2+ c+d, s0 24+ c+d =8, c+d = 6. Without loss of generality, we
can assume ¢ < d, so ¢ £ 3 < d. Each arc length is at least 1, so the only
possible cycles of length 4 are the X cycle of length (1+a+b), the Y cycle
of length (1 + a + ¢ + €) and the Z cycle of length (1 + e + f); all others
include at least five pieces (chords and arcs) or the arc of length d and at
least two other pieces.

If(l+a+c+e)=4,thena=c=e=1andd =5 One X
cycle has length 1+ c+d+e+ f = 8+ f and one XY cycle has length
2+4+a+d+ f =8+ f — a duplication. So there is no uniquely bipancyclic
example with (1+a+c+e)=4.

If (14 a +b) =4, then either a = 1,b = 2, and the Y Z cycle of length
2+ b+ d + e is the same length as the XY Z cycle of length 3 + a + d + ¢;
orelse a = 2,b = 1, and the YZ cycle of length 2 + a + ¢ + f is the same
length as the XY Z cycle of length 3 + b+ ¢ + f — a duplication in either
case. So there is no uniquely bipancyclic example with (1 +a + b) = 4.

If (1+ e+ f) =4 then either e = 1, f = 2, and the XY cycle of length
2+ a+d+ f is the same length as the XY Z cycle of length 3 +a+d + ¢;
orelse e =2, f =1, and the XY cycle of length 2 + b+ ¢ + e is the same
length as the XY Z cycle of length 3 + b+ ¢+ f — a duplication in either
case. So there is no uniquely bipancyclic example with (1 + e + f) = 4.

So in no case is there a uniquely bipancyclic graph of chord type ACC.
Type BBBIi

This is impossible because it would contain a cycle of length 3.

Type BBBii

Figure 17: Chord type BBBii

In this case, there are 10 cycles and 22 vertices, so the sum of the
numbers of edges in the cycles is 4+ 6 + ...+ 22 = 130. There is one cycle
of length 22 (the Hamilton circuit), six whose edges add to 3v+6 = 72 (the
one-chord cycles), and cycles of lengths a + 2, b+ 2 and a + b + 2, so the
total number of edges in the cycles is 2a 4+ 2b+ 6 + 22 + 72 = 2(a +b) + 100.
Soa+b=15. But a+2 and b+ 2 must be even (because the XY and YZ
chords are of equal lengths), so @ and b must be even — a contradiction.
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So there is no uniquely bicyclic graph of type BBBii.
Type BBC

d

Figure 18: Chord type BBC

Chord type BBC has 12 cycles, 26 vertices and a total of 180 edges
among the chords.The Hamilton cycle has 26 edges, the six one-chord cycles
have 84 edges in total, and the two XY cycles total 30 edges. The XZ,
YZ and XY Z cycles have ¢+ 2, a + 2 and b + 3 edges respectively, so
a+b+c+T7—180—26—-84—30 = 40. So a+b+c = 33, which is impossible
as there are only 26 vertices. Therefore Chord pattern BBC is impossible.

Type BCC

e

Figure 19: Chord type BCC

A uniquely bipancyclic graph will contain 13 cycles, v = 28 and the
chords total 208 edges. The cycles with 0 and 1 chord and the XY and
Y Z cycles total 182 edges; the X Z cycle has 2 + ¢ and the XY Z cycle has
3+b+e. So54+b+c+e=208—-182=26,b+c+e=21,anda+d=".
Without loss of generality we can assume a < d, so a < 3.

If we use the substitutions (7 —a) for d and (21 —b—c) for e, the lengths
of the non-hamiltonian cycles are

a+b+1 29—-a—b a+b+c+1 29—a-b-c
8 22 94+b—a 23+a—-b
234+a—-b-c 9—a+b+c 2+c 24 —-¢

So a+ b is odd and c is even. Clearly ¢ cannot equal 2,(there would be two

294



cycles of length 22), whence b+ ¢ < 17; a + b+ ¢ cannot equal 21 (two two
22 cycles); and a — b cannot equal 1 (two 8s or two 22s).

How can we achieve a cycle of length 47 The only possibilities are:
a + b = 3, which would imply @ — b = £1; a + b + ¢ = 25 (impossible as
b+c <17); a —b =5 (impossible as a < 3); and b+ ¢ = a + 19 (again,
impossible because b+¢ < 17). Therefore chord pattern BCC is impossible.

Type CCC

In a type CCC graph, there are six cycles with one chord, totalling
3(v + 2) edges, six with two chords, totalling 3(v + 4), two with three
chords, contributing v + 6 edges, and the Hamilton cycle. So the chord
lengths add to

v+3(v+2)+3(v+4)+v+6 =8v+ 24 =280,

as v = 32. But the sum must be 270. So no solution is possible.

6 Summary; Further Results

A bipancyclic graph with four chords will contain at least 15 cycles — two
containing each chord, at least one for each pair of chords, plus the Hamilto-
nian cycle. So a uniquely bipancyclic graph with four chords will contain at
least 32 vertices. Therefore we have found all uniquely bipancyclic graphs
on 30 or fewer vertices.

There are uniquely bipancyclic graphs of orders, 4, 8, 14 and 26 - ex-
amples of all of them are shown in Figure 20 — and no other orders smaller
than 32.

We have examined the case of 32 vertices, and shown that no examples
exist {9). This work was done using a combination of hand work and com-
puter programs. Subsequently, Peterson et al [5] used computers to extend
to 56 vertices, and showed that there are six non-isomorphic uniquely hipan-
cyclic graphs on 44 vertices, and no other cases in the range 32 < v < 56.
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