New Proof of Adjacency Lemmas of Edge Critical Graphs

Xuechao Li¹ Shuchao Li² Wei Bing³

¹The University of Georgia, GA, USA 30602

² The Central China Normal University, P.R.China

³ The University of Mississippi, MS, USA

Email: xcli@uga.edu

Abstract

A graph G with maximum degree Δ and edge chromatic number $\chi'(G) > \Delta$ is $edge-\Delta$ -critical if $\chi'(G-e) = \Delta$ for each $e \in E(G)$. In this article we provide new proof of adjacency Lemmas on edge critical graphs such that Vizing's adjacency lemma becomes a corollary of our results.

1 Introduction

In this paper, we consider a finite simple graph G with maximum degree $\Delta(\geq 2)$, edge set E and edge chromatic number $\chi'(G)$. Vizing's Theorem [8] states that the edge chromatic number of a simple graph G is either Δ or $\Delta+1$. A graph G is class one if $\chi_e(G)=\Delta$ and is class two otherwise. A class two graph G is critical if $\chi_e(G-e)<\chi_e(G)$ for each edge e of G. A critical graph G is edge- Δ -critical if it has maximum degree Δ .

Vizing [8] conjectured that if G is an edge- Δ -critical graph of edge set E, then $|E| \ge \frac{1}{2}(|V|(\Delta - 1) + 3)$.

The conjecture has been verified for $\Delta \leq 6$ (see [4],[3],[5],[7]). For $\Delta > 6$, the conjecture is still open. D. Woodall [10] gave a good result on average degree, denote it by q, of edge- Δ -critical graph G where $q \geq \frac{2}{3}(\Delta+1)$. However any nontrivial improvement to his result will require a new adjacency lemma. We introduce a vertex-rotation method for studying adjacency properties for edge-coloring problems, with it we conclude a generalized version of Vizing's Adjacency Lemma which is stronger than those known to the author.

2 Adjacency Lemmas

Let ϕ be the Δ -edge coloring of G-xw, $\phi(v)$ be the set of colors of the edges adjacent to the vertex v under edge coloring ϕ . A vertex v sees color j if v is adjacent to an edge colored by j. Denote by $P_{j,k}(v)_{\phi}$ the (j,k)-bicolored path starting at v under edge coloring ϕ , or by $P_{j,k}(v)$ if there is no confusion.

Through this paper, without loss of generality, under coloring ϕ , edges incident with x in G - xw are colored by 1, 2, ...d - 1, while those incident with w are colored by $\Delta - k + 2, ...\Delta$ where d = d(x), k = d(w).

Let C_1 be the set of colors present at only one of x, w and C_2 be the set of colors present at both. Further let C_{11} be the set of colors present only at x, and C_{12} be the set of colors present only at w. We may assume that $C_1 = C_{11} \cup C_{12} = \{1, \dots, \Delta - k + 1\} \cup \{d, d + 1, \dots, \Delta\}$ and $C_2 = \{\Delta - k + 2, \dots, d - 1\}$, where $C_2 = \emptyset$ if $d + k = \Delta + 2$, $|C_1| = 2\Delta - d - k + 2$, $|C_2| = d + k - \Delta - 2$.

Figure 1: Δ -edge coloring ϕ of G-xw exhibited at $N(x) \cup N(w)$

In order to give improved adjacency properties on the *i*-vertex, we provide some Facts which are given in [7] and [6].

Fact 1. For each neighbor w_j of w in G - xw where $\phi(ww_j) = j$ present only at w, then w_j must see each color in C_1 .

Fact 1 will be often used in the discussion through this paper without notifying.

Fact 2. For each neighbor x^i of x where $\phi(xx^i) = i$ present only at x, then x^i must see each color in C_1 . Note that x has at least $\Delta - k + 1$ such x^i .

Fact 3. For $w_b \in N(w)$ where $b \in C_2$, if one of such $w_b \in N(w)$ misses a color in C_1 , then we could assume that it misses color 1. Note that we can only assure there is one such vertex w_b .

Fact 4 Let x and w be adjacent in Δ -critical graph G with d(x) = d, d(w) = k. G - xw has a Δ -edge coloring ϕ . Let xx^ay be a path in G - xw where $\phi(xx^a) = a \in C_{11}$ and $y \neq w$ such that $\phi(x^ay) \in C_1$. Then y must see each color in C_1 , that is, $d(y) \geq 2\Delta - d - k + 2$. Note that there are $2\Delta - d - k + 1$ such y's, and some of them may be adjacent to vertices in N(x).

Fact $5 |\phi(x) \cap \phi(w)| = d + k - \Delta - 2$ where ϕ is a Δ -coloring of G - xw defined as above.

Denote $d+k-\Delta-2$ by L. As d(w)=k, we have $d-1\geq |\phi(x)\cap\phi(w)|\geq L$. Suppose that $|\phi(x)\cap\phi(w)|>L$. Then $|\phi(x)\cup\phi(w)|=|\phi(x)|+|\phi(w)|-|\phi(x)\cap\phi(w)|< d-1+k-1-L=\Delta$, therefore, $C\setminus\{\phi(x)\cup\phi(w)\}\neq\emptyset$ since $|C|=\Delta$. Let $\alpha\in C\setminus\{\phi(x)\cup\phi(w)\}$. Now ϕ could be extended to a Δ -coloring of G by coloring xw with α . A contradiction. Hence $|\phi(x)\cap\phi(w)|=L$.

For $w \in V(G)$, we let $C_w = \{\alpha \in C | \alpha \text{ is missing at } w\}$

The following lemma (proved in Andersen[1]) provides a foundational construction on property of edge coloring of edge critical graph.

Lemma 2.1. [1] Let xw be an edge of G, and let ϕ be a coloring of G-xw. Then $C_w \cap C_x = \emptyset$. Furthermore, for any pair of distinct vertices (w, y) at N(x), $C_w \cap C_y = \emptyset$.

Proof. If $C_w \cap C_x \neq \emptyset$, let $\alpha \in C_w \cap C_x$. We color edge xw by α which gives a Δ -coloring of G, a contradiction. Suppose now that $C_w \cap C_y \neq \emptyset$ for two distinct vertices $w, y \in N(x)$. Let $\beta \in C_w \cap C_y$. Note that $C_x \neq \emptyset$ by the assumption that G is critical, let α be any color missed by x. $\alpha \neq \beta$ by beginning part of the proof. Consider the subgraph $G(\alpha, \beta)$ of G induced by the edges of G colored by α or β . Notice that x has degree one in $G(\alpha, \beta)$ since it is missing α , and the same holds for w and y since they are missing β . Notice that, all x, w, y cannot be in the same component of $G(\alpha, \beta)$. We assume that x and w are on two different component of $G(\alpha, \beta)$. Then, swapping colors (α, β) in one component containing x, and under current coloring, x and x are both missing color x, which contradicts the fact that $x \in C_x \cap C_x = x$. This proves that $x \in C_x \cap C_y = x$ for any pair x of distinct vertices in x.

Corollary 2.2. For a Δ -edge coloring ϕ of G-xw with d(x) = d, d(w) = k (see Figure 1), then $C_{w_i} \cap C_{w_j} = \emptyset$ where $i, j \in C_{12}$.

Proof. It suffices to notice that the $C_{w_i} \cap C_1 = \emptyset$, $C_{w_j} \cap C_1 = \emptyset$ $i, j \in C_{12}$, and if there is $\alpha \in C_{w_i} \cap C_{w_j} \neq \emptyset (\alpha \in C_2)$, then not all w_i, w_j, w_α are in the same component of $G(1, \alpha)$. By argument in previous lemma, we have the desired result.

Lemma 2.3. For a Δ -edge coloring ϕ of G-xw with d(x) = d, d(w) = k (see Figure 1), If there is a vertex $w_{\beta} \in N(w)(\beta \in C_{12})$ misses a color $r_1 \in C_2$), then (i) $C_{w_{r_1}} \cap C_1 = \emptyset$, and (ii) there is a vertex $w_{r_1^*} \in N(w)(r_1^* \in C_2)$ with $C_{w_{r_1}^*} \cap \{C_1 \cup C_2\} = \emptyset$, that is $d(w_{r_1^*}) = \Delta$.

Proof. (i) (1) We claim that $C_{w_{r_1}} \cap C_{11} = \emptyset$.

Suppose that $C_{w_{r_1}} \cap C_{11} \neq \emptyset$. Let $\alpha \in C_{w_{r_1}} \cap C_{11}$. Vertices w_r and w_β must be in the same component of $G(\alpha, r_1)$. Otherwise exchange α and r_1 in the component containing w_β , under current coloring, vertices w and w_β are both missing color α which contradicts to the fact that $C_w \cap C_\beta = \emptyset$. So w_{r_1} and w are in one component of $G(\alpha, r_1)$ which means that w_{r_1} sees α , a contradiction.

(2) We claim that $w_{r_1} \cap C_{12} = \emptyset$.

Otherwise let $j \in C_{w_{r_1}} \cap C_{12}$. Notice that x has degree one in $G(\alpha, j)$ since it misses j and same hold for w_{r_1} since it is missing j. vertex w_j has degree 2 in $G(\alpha, j)$ since it sees both α and j. Suppose that x and w_{r_1} are in same component of $G(\alpha, j)$, we exchange colors (α, j) in a component containing x and w_{r_1} , under current coloring, x and x are both missing x, which contradicts the fact that x colors x by x and x are in different component of x by x and x by x are in different component of x by x by x and x by x are in different component of x by x by x by x by x by x and x by x by x and x by x by x by x by x and x by x are in different component of x by x

From previous two claims, we have that $C_{w_{r_1}} \cap C_1 = \emptyset$.

(ii) If $C_{w_{r_1}} \cap C_2 = \emptyset$, then $d(w_{r_1}) = \Delta$, we have desired result. So we assume that $C_{w_{r_1}} \cap C_2 \neq \emptyset$. Let $r_2 \in C_{w_{r_1}} \cap C_2$. We consider vertex $w_{r_2} \in N(w)$ where $\phi(ww_{r_2}) = r_2$.

(3) We claim that $C_{w_{r_2}} \cap C_1 = C_{w_{r_2}} \cap \{C_{11} \cup C_{12}\} = \emptyset$.

First suppose that $C_{w_{r_2}} \cap C_{11} \neq \emptyset$, let $\alpha \in C_{w_{r_2}} \cap C_{11}$. We re-color edge ww_{r_1} and ww_{r_2} by r_2 and α respectively. Now color r_1 present only at x, so by Claim D, vertex w_{β} sees r_1 which contradicts our assumption that w_{β} is missing r_1 . So vertex w_{r_2} sees each color present at x only. Now suppose that $C_{w_{r_2}} \cap C_{12} \neq \emptyset$, let $\eta \in C_{w_{r_2}} \cap C_{12}$. By Fact 1, vertices x and w_{r_2} are not in one component of $G(\eta, 1)$. We exchange colors $(\eta, 1)$ in a component containing w_{r_2} which doesn't effect colors of edges incident with x and w. Under current coloring, w_{r_2} misses color 1 which contradicts the fact that $C_{w_{r_2}} \cap C_{11} = \emptyset$.

(4) If $C_{w_{r_2}} \cap C_2 = \emptyset$, then $d(w_{r_2}) = \Delta$, we have desired result. Hence we assume that $C_{w_{r_2}} \cap C_2 \neq \emptyset$, let $r_3 \in C_{w_{r_2}} \cap C_2$. Consider vertex w_{r_3}

where $\phi(ww_{r_3})=r_3$. By using the same argument as that for vertex w_{r_2} , we have $C_{w_{r_3}}\cap C_1=\emptyset$. If $C_{w_{r_3}}\cap C_2=\emptyset$, then $d(w_{r_3})=\Delta$, our result holds. So we assume that w_{r_3} misses a color r_4 . By repeating above discussion up to $|C_2|$ steps, we obtain a vertex sequence $[w_{r_1},w_{r_2},\cdots,w_{r_s}]$ such that either (a) $d(w_{r_s})=\Delta$ or (b) ww_{r_i} misses color $r_{i+1}(i=1,\cdots,s)$ and ww_{r_s} misses r_1 (Note that, by the same argument used in Lemma 2.1, $C_{w_{r_i}}\cap C_{w_{r_j}}=\emptyset$, hence, vertex w_{r_s} must miss color r_1 , not any color $r_i(i>1)$. Since otherwise, $C_{w_{r_s}}\cap C_{w_{r_{i-1}}}=r_i\neq\emptyset$).

Now we claim that (a) must be true. Otherwise (b) holds. Notice that path $P_{\Delta,r_1}(w_{\beta})$ must pass through w and ends at x. Otherwise, we swap colors (r_1,Δ) along a path starts at x which causes vertex w_{β} seeing r_1 (since under current coloring, $r_1 \in C_{12}$ and $C_{w_{\beta}} \cap C_{12} = \emptyset$), a contradiction.

We re-color ww_{r_i} by $r_{i+1}(i=1,\dots,s)$ and ww_{r_s} by r_1 respectively, and denote current coloring by ϕ^* . Under ϕ^* , exchange colors β, r_1 along path starting at x and denote updated coloring by ϕ^{**} , under ϕ^{**} , color r_1 present at x only, so by (i), w_{β} must see r_1 , a contradiction.

Hence $d(w_{r_s}) = \Delta$. This terminates the proof.

Lemma 2.4. For a Δ -coloring ϕ of G-xw defined earlier, let $Q = \{w_n; n \in C_{12}(n \geq d), C_{w_n} \cap C_2 \neq \emptyset\}$ and $S = \{w_s; s \in C_2 \text{ and } d(w_s) = \Delta\}$. Then we have following: $|Q| \leq |S|$.

Proof. Let $w_n \in Q$ miss a color $r \in C_2$, by Lemma 2.3 (i), each $w_j \in N(w) \setminus \{w_n\}$ where $(j \geq d)$ must see color r. For each such $w_n \in Q$, through previous lemma, there exists a Δ -vertex $w_{s_n} \in S$.

Next, we claim that $|Q| \leq |S|$.

It suffices to show that if there are two different vertices $w_n, w_{n'} \in Q$, w_n and $w_{n'}$ miss color r and r' in C_2 respectively, then there must exist two different Δ -vertices w_{s_r} and $w_{s_{r'}}$ in S. By Lemma 2.1, we have that $r \neq r'$. By previous lemma, for each of $w_n, w_{n'}$, there exists a corresponding vertex-sequence V_1 and V_2 for $w_n, w_{n'}$ respectively. Let V_1 be w_{r_1}, \cdots, w_{r_s} with $r_1 = r$; and V_2 be $w_{r'_1}, \cdots, w_{r'_{s'}}$ with $r'_1 = r'$, where $d(w_{r_s}) = d(w_{r'_{s'}}) = \Delta$. Each vertex in $V_i(i=1,2)$ sees each color in C_1 . We claim that $w_{r_s} \neq w_{r'_{s'}}$. Otherwise, suppose that $w_{r_s} = w_{r'_{s'}}$, Through our assumption, $V_1 \cap V_2 \neq \emptyset$. We choose a vertex $w_{r_{i+1}} (= w_{r'_{j'+1}}) \in V_1 \cap V_2$ such that $w_{r_t} \neq w_{r'_{t'}}$ for all $t \leq i, t' \leq j'$, but $w_{r_{i+1}} = w_{r'_{j'+1}}$. For the sake of convenience, denote $w_{r_i}, w_{r'_{j'}}$ by w_p, w_q respectively. Each of w_p, w_q sees colors in C_1 , and misses same color r^* where $r^* = r_{i+1} = r'_{j'+1}$ due to the fact that $w_{r_{i+1}} = w_{r'_{i'+1}}$.

We consider two paths $P_{1,r^*}(w_p), P_{1,r^*}(w_q)$ where $r^* \in C_2$. Note that at least one of those two paths will not pass through w, without loss of generality, let $P_{1,r^*}(w_p)$ doesn't pass through w. Thus we swap colors $(1,r^*)$ along $P_{1,r^*}(w_p)$ which doesn't affect colors incident with x and w. Under current coloring, w_p misses color 1, a contradiction. This contradiction leads us to that $|Q| \leq |S|$.

Note that $|C_x| = |C_{12}| = |w_j, w_j \in N(w), j \ge d| = \Delta - d(x) + 1$, and $|C_{11}| + |C_{12}| \ge 2$, through previous two lemmas and Fact 5, Vizing's Lemma becomes our corollary.

Corollary 2.5 (Vizing [9]). If xw is an edge of a Δ -critical graph G, then w has at least $(\Delta - d(x) + 1)$ Δ -neighbors. Any vertex of G has at least two Δ -neighbors.

By using this vertex-rotation method, with more sophistically discussion, we also generalized adjacency lemma obtained by R. Luo and Y. Zhao [7].

Lemma 2.6. [6] For a Δ -edge coloring ϕ of G-xw (see Figure 1), d(x) = d, d(w) = k and $|C_2| = d + k - \Delta - 2$. If the number of $(\leq \Delta - \frac{|C_2|}{2})$ -neighbors of w is $|C_2| - 1$ or $|C_2|$ (a $u \in N(w)$ is called a $(\leq s)$ -neighbor of w if $d(u) \leq s$), then there are $\Delta - k + 1 + \lfloor \frac{1}{2} |C_2| \rfloor$ neighbors x^{α} of x satisfying: $x^{\alpha} \neq w$; x^{α} is adjacent to at least $2\Delta - d - k + 1 + \lfloor \frac{1}{2} |C_2| \rfloor$ vertices y different from x with degree at least $2\Delta - d - k + 2 + \lfloor \frac{1}{2} |C_2| \rfloor$.

References

- [1] L.D. Andersen, On edge-colorings of graphs, Math Scand. 40 (1977), 161-175.
- [2] L.W. Beineke, S. Fiorini, On small graphs critical with respect to edgecolourings, *Discrete Math.*, 16(1976), 109-121.
- [3] S. Fiorini and R.J.Wilson, Edge colorings of graphs, Pitman, San Francisco, 1977.
- [4] I. T. Jacobsen, On critical graphs with chromatic index 4, Discrete Math., 9(1974), 265-276.
- [5] K. Kayathri, On the size of edge-chromatic critical graphs, Graphs and Combinatorics, 10(1994), 139-144.

- [6] X. Li and B. Wei Lower bounds on the number of edge-chromatic-critical graphs with fixed maximum degrees *Discrete Math.*, 334 (2014),1-12.
- [7] R. Luo, L. Miao and Y. Zhao, The size of edge chromatic critical graphs with maximum degree 6, J. Graph Theory, ,60(2009),149-171.
- [8] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analiz, 3(1964), 25-30.
- [9] V. G. Vizing, Critical graphs with given chromatic class (in Russian), Metody Diskret. Analiz., 5(1965), 9-17.
- [10] D. Woodall, The average degree of an edge-chromatic critical graph.
 II. J. Graph Theory 56 (2007), no. 3, 194-218.
 - Graphs and Combinatorics, 16(4)(2000), 467-495.