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Abstract

A graph G with maximum degree A and edge chromatic number
x'(G) > A is edge-A-critical if x'(G —e) = A for each e € E(G). In
this article we provide new proof of adjacency Lemmas on edge crit-
ical graphs such that Vizing's adjacency lemma becomes a corollary
of our results.

1 Introduction

In this paper, we consider a finite simple graph G with maximum degree
A(2 2), edge set E and edge chromatic number x'(G). Vizing’s Theorem
[8] states that the edge chromatic number of a simple graph G is either A
or A +1. A graph G is class one if x.(G) = A and is class two otherwise.
A class two graph G is critical if x.(G — €) < x.(G) for each edge e of G.
A critical graph G is edge- A-critical if it has maximum degree A.

Vizing (8] conjectured that if G is an edge-A-critical graph of edge set
E, then |E| > 1(IV|(A - 1) +3).

The conjecture has been verified for A < 6 (see [4],[3),[5],[7]). For A > 6,
the conjecture is still open. D. Woodall [10] gave a good result on average
degree, denote it by g, of edge-A-critical graph G where q > %(A+ 1). How-
ever any nontrivial improvement to his result will require a new adjacency
lemma. We introduce a vertex-rotation method for studying adjacency
properties for edge-coloring problems, with it we conclude a generalized
version of Vizing’s Adjacency Lemma which is stronger than those known
to the author.
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2 Adjacency Lemmas

Let ¢ be the A-edge coloring of G — zw, ¢(v) be the set of colors of the
edges adjacent to the vertex v under edge coloring ¢. A vertex v sees color
j if v is adjacent to an edge colored by j. Denote by P; x(v)e the (7, k)-bi-
colored path starting at v under edge coloring ¢, or by P;«(v) if there is
no confusion.

Through this paper, without loss of generality, under coloring ¢, edges
incident with z in G — zw are colored by 1,2, ...d — 1, while those incident
with w are colored by A — k + 2, ...A where d = d(z), k = d(w).

Let C) be the set of colors present at only one of z, w and Cs be the set
of colors present at both. Further let C;; be the set of colors present only
at z, and C}o be the set of colors present only at w. We may assume that
C;=CUCip = {1, ,A—k+1}U{d,d+1,"' ,A} and C; = {A—k+
2,---,d—1},where Co =0 ifd+k=A+2,|Ci| =20 -d -k +2,|C| =
d+k—A-2.

Figure 1: A-edge coloring ¢ of G-zw exhibited at N(z) U N(w)

In order to give improved adjacency properties on the i-vertex, we pro-
vide some Facts which are given in [7] and [6].

Fact 1. For each neighbor w; of w in G — xw where ¢(ww;) = j present
only at w, then w; must see each color in C}.

Fact 1 will be often used in the discussion through this paper without
notifying.

Fact 2. For each neighbor z* of z where ¢(xx’) = i present only at z, then
! must see each color in Cy. Note that = has at least A — k + 1 such z*.

Fact 3. For wy, € N(w) where b € Cy, if one of such wy € N(w) misses a
color in Cy, then we could assume that it misses color 1. Note that we can
only assure there is one such verter wy.
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Fact 4 Letz and w be adjacent in A-critical graph G with d(z) = d,d(w) =
k. G — zw has a A-edge coloring ¢. Let zz°y be a path in G — zw where
d(zz®) = a € Cy; and y # w such that ¢(z°y) € Cy. Then y must see each
color in Cy, that is, d(y) > 2A—-d—k+2. Note that there are 2A —d—k+1
such y’s, and some of them may be adjacent to vertices in N(z).

Fact 5 |¢(z) N ¢(w)| = d+ k — A — 2 where ¢ is a A-coloring of G — zw
defined as above.

Denote d+k—A—2 by L. As d(w) = k, we have d—1 > |¢(z)N¢(w)| > L.
Suppose that |¢(z) N ¢(w)| > L. Then |¢(z) U $(w)| = |¢(z)| + |p(w)| —
|¢(z)Nd(w)] < d—1+k—1~L = A, therefore, C\ {¢(z) Ud(w)} # 0 since
ICl = A.Let a € C\{¢(z)U¢p(w)}. Now ¢ could be extended to a A-coloring
of G by coloring zw with o. A contradiction. Hence |¢(z) N ¢(w)| = L.

For w € V(G), we let C,, = {a € C|a is missing at w}

The following lemma (proved in Andersen(1]) provides a foundational
construction on property of edge coloring of edge critical graph.

Lemma 2.1. [1] Let zw be an edge of G, and let ¢ be a coloring of G —zw.
Then Cy N Cy = 0. Purthermore, for any pair of distinct vertices (w,y) at
N{z), C,NCy = 0.

Proof. If C,yNC; # 0, let o € C,, NC,.. We color edge zw by a which gives
a A-coloring of G, a contradiction. Suppose now that C,, N Cy, # @ for two
distinct vertices w,y € N(z). Let 8 € C,, N C,. Note that C, # @ by the
assumption that G is critical, let o be any color missed by z. o # 8 by
beginning part of the proof. Consider the subgraph G(e, 8) of G induced
by the edges of G colored by a or 3. Notice that z has degree one in G(a, B)
since it is missing c, and the same holds for w and y since they are missing
B. Notice that, all x,w,y cannot be in the same component of G(e, 8). We
assume that z and w are on two different component of G(a, 3). Then,
swapping colors (@, 3) in one component containing z, and under current
coloring, z and w are both missing color o, which contradicts the fact that
Cw N C; = 0. This proves that C,, N Cy = 0 for any pair (w,y) of distinct
vertices in N(z). (]

Corollary 2.2. For a A-edge coloring ¢ of G-zw with d(z) =d,d(w) =k
(see Figure 1), then Cy, N Cy, = O where i, j € Cy3.

Proof. It suffices to notice that the C,,, NC; = 0, Cuw; NC1 =01i,j € Cya,
and if there is a € Cy, N C,, # B(a € C3), then not all w;, w;, w, are in
the same component of G(1,a). By argument in previous lemma, we have
the desired result. O
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Lemma 2.3. For a A-edge coloring ¢ of G-zw with d(z) = d,d(w) = k (see
Figure 1), If there is a vertezwg € N(w)(8 € Cy2) misses a color r1(€ Cs),
then (i) Cyw, NC1 = 0, and (i1) there is a vertez wy; € N(w)(r} € Cy)
with eri n {Cl U Cz} =@, that is d('w,-;) =A.

Proof. (i) (1) We claim that C,, NC1;1 =0.

Suppose that Cy,, N C11 # 0. Let o € Cy,, N C1. Vertices wy and wg
must be in the same component of G(a,71). Otherwise exchange o and 71
in the component containing wg, under current coloring, vertices w and wg
are both missing color o which contradicts to the fact that C, N Cp = 0.
So wy, and w are in one component of G(c, ;) which means that w,, sees
a, a contradiction.

(2) We claim that w,., NCi2 = 0.

Otherwise let j € Cy,, N Ciz. Notice that z has degree one in G(ay 7)
since it misses j and same hold for w,, since it is missing j. vertex w; has
degree 2 in G(e, j) since it sees both a and j. Suppose that z and wy, are
in same component of G(a,j), we exchange colors (¢, j) in a component
containing z and wy,, under current coloring, x and w are both missing o,
which contradicts the fact that C,, N C; = 0. So = and wy, are in different
component of G(e, j), swapping colors («, j) in the component containing
wy, which implies w,, missing a which contradicts the result of (1).

From previous two claims, we have that C’w,_1 NneC, =0.

(ii) If Cy,, NC; = O, then d(wr,) = A, we have desired result. So we assume
that Cy,, N C2 # 0. Let 73 € Cy,, N C,. We consider vertex wr, € N(w)
where ¢(wwy,) = ra.

(3) We claim that C,, N Cy = Cy,, N{C1y UC12} = 0.

First suppose that Cy,, NCy #0,leta e Cy,, NC11. We re-color edge
wwy, and ww,, by 2 and « respectively. Now color 7 present only at z,
so by Claim D, vertex wg sees r; which contradicts our assumption that wg
is missing r,. So vertex wy, sees each color present at x only. Now suppose
that Cw,, NCy2 # 0, let n € Cy,, N Ch2. By Fact 1, vertices = and w,, are
not in one component of G(n,1). We exchange colors (7,1) in a component
containing wy,, which doesn’t effect colors of edges incident with z and w.
Under current coloring, w,, misses color 1 which contradicts the fact that
Cy,, NC11 =0.

(4) If Cy,, N Cy = O, then d(wr,) = A, we have desired result. Hence
we assume that Cy,,, N Cy # 0, let r3 € C’,,,,2 N C,. Consider vertex wy,
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where ¢(wwy,) = r3. By using the same argument as that for vertex Wry,
we have Cy, NCy = §. If Cy,, NC2 = , then d(wr,) = A, our result holds.
So we assume that w,, misses a color 4. By repeating above discussion
up to [Cy| steps, we obtain a vertex sequence [wy.,,Wr,, - ,Wy,] such that
either (a) d(w,,) = A or (b) ww,, misses color 7;41(i = 1,---,s) and
ww,, misses r; (Note that, by the same argument used in Lemma 2.1,
Cu,, N C’,,,,j = @, hence, vertex w,, must miss color r;, not any color
ri(i > 1). Since otherwise, Cy,,, N Co,,_, =1: #0).

Now we claim that (a) must be true. Otherwise (b) holds. Notice that
path Pa ., (wg) must pass through w and ends at z. Otherwise, we swap
colors (r1, A) along a path starts at z which causes vertex wg seeing r; (since
under current coloring, r; € Cy2 and Cy, N Cy2 = @), a contradiction.

We re-color ww,; by r41(i = 1,---,s) and ww,, by 7r; respectively,
and denote current coloring by ¢*. Under ¢*, exchange colors 8,7, along
path starting at x and denote updated coloring by ¢**, under ¢**, color r,
present at  only, so by (i), wg must see r;, a contradiction.

Hence d(w;,) = A. This terminates the proof.
(]

Lemma 2.4. For a A-coloring ¢ of G—zw defined earlier, let Q={wyne
Ci2(n 2 d),Cy, NC; # 0} and S = {w,;s € Cz and d(w,) = A}. Then we
have following: |Q| < |S|.

Proof. Let w, € Q miss a color r € Cy, by Lemma 2.3 (i), each w; €
N(w) \ {wn} where (j > d) must see color 7. For each such w, € Q,
through previous lemma, there exists a A-vertex ws, € S.

Next, we claim that |Q| < [S].

It suffices to show that if there are two different vertices W, Wnr € Q,
wy, and wy miss color 7 and 7/ in C, respectively, then there must exist two
different A-vertices w,, and w,_, in S. By Lemma 2.1, we have that r # 7.
By previous lemma, for each of w,, wn', there exists a corresponding vertex-
sequence V) and V; for wn,wy respectively. Let V; be Wry, o, Wy, With
f1=r;and V3 be w,--- W, with 7] = 7/, where d(w,,) = d(w,:l) = A.
Each vertex in Vi(i = 1, 2) sees each color in C;. We claim that wy, # Wy,
Otherwise, suppose that w,, = wy,, Through our assumption, ViNV; # 0.
We choose a vertex w,, (= w,;;l) € Vi NV; such that w,, # Wy, for
all ¢ < 4,t' < j', but wr,,, = Wy, For the sake of convenience, denote
Wy Wy, by wp, w, respectively. Each of Wp, Wy sees colors in C, and misses

same color r* where r* =r;; = %41 due to the fact that wy,,, = Wt -
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We consider two paths Py ,.(wp), Py r-(wy) where 7* € C,. Note that
at least one of those two paths will not pass through w, without loss of
generality, let P; ;- (wp) doesn’t pass through w. Thus we swap colors (1,7)
along P, ,.(wp) which doesn’t affect colors incident with  and w. Under
current coloring, wp, misses color 1, a contradiction. This contradiction
leads us to that |Q] < |S|.

a

Note that |Cz| = |Ci2| = |wj,w; € N(w),j 2 d| = A —d(z) + 1, and
|C11]+|C12] = 2, through previous two lemmas and Fact 5, Vizing’s Lemma
becomes our corollary.

Corollary 2.5 (Vizing [9]). If zw is an edge of a A-critical graph G, then
w has at least (A —d(z) +1) A-neighbors. Any vertex of G has at least two
A-neighbors.

By using this vertex-rotation method, with more sophistically discus-
sion, we also generalized adjacency lemma obtained by R. Luo and Y. Zhao

7).

Lemma 2.6. [6] For a A-edge coloring ¢ of G-zw (see Figure 1), d(z) =
d,d(w) = k and |Cs| = d+ k — A — 2. If the number of (< A — 1£2).
neighbors of w is |Ca| — 1 or |Ca|( a u € N(w) is called a (< s)-neighbor
of w if d(u) < s), then there are A — k + 1+ |3|Ca|} neighbors z* of =
satisfying: = # w; x* is adjacent to at least 2A — d — k + 1 + | 1|Cal]
vertices y different from t with degree at least 2A —~d —k+ 2 + L%|czu
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