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Abstract

The complete directed graph of order n, denoted K7, is the directed
graph on n vertices that contains the arcs (u,v) and (v,u) for every
pair of distinct vertices u and v. For a given directed graph, D,
the set of all » for which K, admits a D-decomposition is called the
spectrum of D. In this paper, we find the spectrum for each bipartite
subgraph of K with 5 or fewer arcs,

1 Introduction

One of the primary questions in the field of graph decompositions is “Given
a graph G, which complete graphs admit a G-decomposition?” Answering
this question for all graphs of small order has been the topic of various
papers. In particular, this question was answered for graphs and uniform
hypergraphs of small order in [3] and [5), respectively. In this paper we
follow this line of inquiry to directed graphs by classifying the spectra of
bipartite directed graphs of order at most 4, with up to 5 arcs.

If a and b are integers, we denote {a,a+1,...,b} by [a,b] (if a > b, then
[a,b] = @). Let N denote the set of nonnegative integers and Z,, the group
of integers modulo m. Throughout this paper, we refer to directed graphs
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as digraphs. For a digraph, D, let V(D) and E(D) denote the vertex set of
D and the arc set of D, respectively. The order and the size of a digraph
D are |V(D)| and |E(D)|, respectively. Throughout this paper we will use
the names for digraphs, displayed in Tables 1 and 2, found in An Atlas of
Graphs [13] by Read and Wilson.

Let H and D be digraphs such that D is a subgraph of H. A D-
decomposition of H is a set A = {D,, D, ..., D,} of pairwise edge-disjoint
subgraphs of H each of which is isomorphic to D and such that E(H) =
Ui—; E(D;). If a D-decomposition of H exists, then we say that D decom-
poses H. The reverse orientation of D is the digraph with vertex set V(D)
and arc set {(v,u): (u,v) € E(D)}. Let D' and H’ denote the reverse
orientations of D and H, respectively. We note that the existence of a D-
decomposition of H necessarily implies the existence of a D’-decomposition
of H'. A D-decomposition of K} is also known as a (K}, D)-design. The
set of all n for which K admits a D-decomposition is called the spectrum
of D. Since K}, is its own reverse orientation, we note that the spectrum
of D is equivalent to the spectrum of D'.

The necessary conditions for a digraph D to decompose K, include

(A) V(D) < m,

(B) |E(D)| divides n(n — 1), and

(C) ged{outdegree(v): v € V(D)} and ged{indegree(v): v € V(D)} both
divide n — 1.

There are 51 bipartite subgraphs of K} with no isolated vertices. It
was shown in [6] that 37 of these decompose K}, cyclically (defined in
Section 2), where m is the number of arcs in the subgraph. Until now, the
spectra, for the majority of these graphs had not been classified. This paper
extends those results by finding the spectra for all 42 bipartite subgraphs
of K} with 5 arcs or fewer. If D is a subgraph of K} with m < 5 arcs, then
by condition (B) the existence of a (K, D)-design necessitates that n =0
or 1 (mod m). Through a series of lemmas, we prove the following.

Theorem 1. The spectra for the 42 bipartite subgraphs of K3 with 5 or
fewer arcs are as displayed in Table 3.

The spectra for certain subgraphs (both bipartite and non-bipartite) of
K have already been studied. When D is a cyclic orientation of K3, then
a (K2, D)-design is known as a Mendelsohn triple system. The spectrum
for Mendelsohn triple systems was found independently by Mendelsohn [11]
and Bermond [2].When D is a transitive orientation of K3, then a (K7, D)-
design is known as a transitive triple system. The spectrum for transitive
triple systems was found by Hung and Mendelsohn [9]. In (8], Hartman
and Mendelsohn found the spectra for all remaining simple connected sub-
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graphs of K3, which include graphs D7, D10, D11, D13, D16, and D25 (see
Table 1).

There are exactly four orientations of a 4-cycle. It was shown in [15]
that if D is a cyclic orientation of a 4-cycle (i.e., D67), then a (K, D)-
design exists if and only if n = 0 or 1 (mod 4) and n # 4. The spectra
for the remaining three orientations of a 4-cycle (i.e., D46, D59, D60) were
found in (7).

A directed path on n vertices, denoted DP,, is the directed graph whose
underlying simple graph is a path on 7 vertices such that every vertex that
is not a leaf in the underlying graph has both indegree and outdegree of
one. In [12], necessary and sufficient conditions for a decomposition of the
complete multi-digraph into directed paths of arbitrarily prescribed lengths
were found. In particular, this characterizes the spectra of D25 and D38.
Here, we state their result only for edge multiplicity one and fixed path
length.

Theorem 2. [12] Necessary and sufficient conditions for the existence of
a (K}, DPyy1)-design are

m<n-—1 and n(n—1)=0 (mod m),
unless (m, n) is either (4,5) or (2,3).

A digraph is called an antidirected path if its underlying graph is a path,
and it does not admit a directed path of length 2 as a subgraph. Let D be
an antidirected path. Necessary and sufficient conditions for the existence
of a (K3, D)-design were obtained in [16]). Notice that D7, D10, and D33
are antidirected paths.

Theorem 3. [16] Let AP,, denote an antidirected path on m vertices.
A (K, APy 1)-design ezists if and only if the following conditions are
satisfied:

(1) m<n-1,
(2) n(n—1) =0 (mod m),
(3) n orm is odd.

Let G be a bipartite subgraph of the 2-fold undirected complete graph
on 4 vertices. In [1) necessary and sufficient conditions were obtained for
the existence of a G-decomposition of the 2-fold undirected complete graph
on n vertices. Several of these decompositions directly translate to digraph
decompositions of interest in this paper. In particular, the spectra of D3,
D4, D16, D27, D37, and D66 are obtained from these results.
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2 Graph labelings

Let V(K}) = [0,n — 1]. The length of an arc (¢,j) is j—<if j > i, and it is
n+ j —1i otherwise. Note that E(K}) consists of n arcs of length 7 for each
i € [1,n—1). Let D be a subgraph of K. By rotating D, we mean applying
the permutation i — i + 1 to V(D) where the addition is done modulo n.
Moreover in this case, if 5 € N, then D + j is the digraph obtained from
D by successively rotating D a total of j times. Note that rotating an arc
does not change its length. Also note that D + j is isomorphic to D for
every j € N. A (K}, D)-design A is cyclic if rotating is an automorphism
of A.

Graph labelings were introduced by Rosa in [14] and provided a means
of obtaining cyclic designs for undirected graphs. In particular, the well- -
known graceful labeling was defined in [14]. In 1985, Bloom and Hsu (4]
extended the concept of a graceful labeling to directed graphs. With the no-
tation adapted to better suit this paper, we present the following definition
from (4).

Let D be a directed graph with m arcs and at most m 4+ 1 vertices.
Let f: V(D) — [0,m] be an injective function, and define a function
f: E(D) — [1,m)] as follows: f((a,b)) = f(b) — f(a), if f(b) > f(a), and
f((a,b)) = m+ 1+ F(b) — f(a), otherwise. We call f a directed p-labeling
of D if {f((a,})): (a,b) € E(D)} = [1,m]. Thus, a directed p-labeling of
D is an embedding of D in K}, ,, such that there is exactly one arc in D
of length i for each i € [1,m)].

It was shown in [10] that for a digraph D with size m and order at
most m + 1, a cyclic (K}, ,;, D)-design exists if and only if D admits a
directed p-labeling. In order to obtain an infinite family of cyclic designs,
it is necessary to extend the notion of a directed p-labeling. In our case this
is accomplished by restricting ourselves to bipartite digraphs and imposing
an order on the labeling.

Let D be a bipartite directed graph with m arcs and at most m +
1 vertices. Let {A, B} be a vertex bipartition of V(D). A directed p-labeling
f of D is ordered if f(a) < f(b) for each arc with end vertices a € A and
b € B. An ordered directed p-labeling is also called a directed p*-labeling.
The connection between directed p*-labelings and cyclic digraph designs is
found in a result from (6].

Theorem 4. If D is a bipartite directed graph with m arcs that admits
a directed p*-labeling, then there ezists a cyclic (K}, 1y, D)-design for all
z € Z*.

Next we consider an analogue of 1-rotational designs for directed graphs.
If we let V(K?2) = [0,n — 2] U {o0}, then the length of an arc (%, j), where
oo & {i,5},is j —4if j > i, and it is n — 1 + j — ¢ otherwise. Furthermore,
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we say that the length of an arc of the form (i, 00) is +00, and the length of
an arc of the form (o0, j) is —co. Let D be a subgraph of K. A (KZ, D)-
design A is called a I-rotational directed design if applying the permutation
(0,1,2,...,n — 2)(0c0) is an automorphism of A.

Let D be a directed graph with m arcs and at most m vertices. Let
f: V(D) — [0,m—1]U {oo} be an injective function and define a function
f: E(D) = [1,m — 2] U {+00, —00} as follows:

f(b) = f(a) if £(b) > f(a),
o me 1450 = f(a) i £0) < F(a),
H@b) =1 if £(b) = oo,

—oo if £(a) = oo.

We call f a I-rotational directed p-labeling of D if {f((a,b)): (a,b) €
E(D)} = [1,m — 2] U {+00, —00}. Thus, a 1-rotational directed p-labeling
of D is an embedding of D in K}, such that there is exactly one arc in
D of length i for each i € [1,m — 2] U {+00, —00}. The following theorem
formalizes this observation.

Theorem 5. Let D be a bipartite directed graph with m arcs. There exists a
I-rotational (K, , D)-design if and only if D admits a I1-rotational directed
p-labeling.

3 Main Results

The 42 non-isomorphic bipartite subgraphs of K} of size at most 5 are
shown in Tables 1 and 2. These tables also give a key that denotes a
labeled copy for each bipartite directed graph. For example, Di1[a, b, ]
refers to the graph with three vertices labeled a, b, and ¢ with two arcs
between a and b and a single arc directed from a to ¢. Our general method
for classifying the spectrum for such a graph of size m is to break into
two cases: complete graphs with mz + 1 vertices and complete graphs with
mz vertices. However, we first note the following negative results for the
sufficiency of the necessary conditions, which can be easily verified.

Lemma 6. There does not exist an (H, D)-design for (H, D) € {(K},D50),

Let G and H be vertex-disjoint directed graphs. The join of G and
H, denoted G V H, is defined to be the directed graph with vertex set
V(G) UV(H) and arc set E(G) U E(H) U {(,v), (v,u): u € V(G),v €
V(H)}. We use the shorthand notation Vf.=1 G; to denote G3 VG3 V- - -VGy,
and when G; 2 G; % G for all 1 < i < j < ¢, we use the notation \/!{_, G.
For example, K}, & f=l K3.
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Table 1: Bipartite subgraphs of K with 3 or fewer arcs.

2-3
vertices

4
vertices

D3[a, 4] Déa, b) D7[a, b,¢] D10[a, b, c]
a a a a
b b b c| b c
D11]e,b,¢] D13|a, b, ¢} D25(a, b, ¢}
| 6“ |
c|b c| b c
D27{a, b, ¢, d] D28|a, b, c, d] D31(e, b, c, d] D32{a,b,¢,d]
a d| a d| a d| a d
b c| b c| b c|b c
D33(a, b, ¢, d) D36{a, b, ¢, d] D37[a, b, c, d} D38[a, b, ¢, d]
N a d| a d| a d
b c| b c | b c
D39(a, b, ¢, d] D40[e, b, ¢, d]
a d

N
b c

2t

<
2]
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Table 2: Bipartite subgraphs of K with 4 or 5 arcs.

D16[a, b, ¢ Ddl[a, b,c,d] D4da, b, c, d] D46[a, b, ¢, d] D50{a, b, c, d]
EN a d N a d| a d
b c | b c| b c| b c| b c
D51fa, b, ¢, d] D52[a, b, ¢, d) D54{a, b, ¢, d] D356[a, b, ¢, d] D59(a, b, ¢, d]
b c| b c| b c| b c| b ¢
D60[a, b, c, d] D62(a, b, c, d] D63(a, b, ¢, d] Dé64|a, b, ¢, d] D66]a, b, c, d]

a,

a

X
£

a

«a

a

«

a

a

o e=g ™0~

b c| & c| b c| b c| b

D67[a, b, ¢, d) D70(a, b, ¢, d) D77{a, b,c,d] D84a, b, ¢, d] D86[a b,c,d]
a d| a d N a d

b c b c| b c| b ¢

D91[a, b, c, d} D92(a, b, c, d] D99{e, b, c, d] D100[a, b,¢,d] | D104[a,b,c,d]
a d| a d}a d| a d

/'
X

<
o

<>
o

o
a

N

381




Table 3: The necessary and sufficient conditions for the given digraphs to
decompose Kj,.

Diraph Conditions References
D3 n>1 f1
D4 n>1 (1
D7 n=1 (mod 2) 8], {16], [6]
D10 n=1 (mod 2) 8], [16], [6]
Di1 n=0or1 (mod 3) (8], [6]
D13 n=0or1 (mod 3) 8], [6]
D16 n=0or1 (mod 4) 18], [6]
D25 n=lorn>4 (8], [12]
D27 n=1lornz>4 1
D28 n=1 (mod 3) 6
D31 n=0orl (mod3),n#3 (6], Lemma 12
D32 n=0or1 (mod3),n#3 Lemmas 8 and 13
D33 n=0or1 (mod3),n#3 {16], [6]
D36 n=0or1 (mod3),n#3 {6}, Lemma 12
D37 n=0orl (mod3),n=1lorn>6 (1]
D38 n=0or1 (mod3),n#3 [12], [6]
D39 n=0or1 (mod3), n#3 Lemmas 8 and 13
D40 n=1 (mod 3) (6]
D41 n=0or1 (mod 4) [6], Lemma 14
D44 n=1 (mod 4) (6]
D46’ n =1 (mod 4) (7], [6]
D50 n=0orl (mod4),n=1orn>8 Lemmas6,9, and 15
D51 n=0or1l (mod4),n#4 (6], Lemmas 6 and 16
D52 n=0or1 (mod 4) Lemmas 10 and 17
D54 n=0or 1 (mod 4) [61, Lemma 18
D56 n=0or1 (mod 4) (6], Lemma 18
D59 n=0orl (mod4),n=1orn>8 {7]
D60 n=0or1l (mod4),n#5 (7]
D62 n=0or1 (mod 4) [6], Lemma 14
D63 n=1 (mod 4) (6]
D64 n=0or1 (mod 4) Lemmas 10 and 17
D66 n=0or1 (mod 4) (6], [1]
D67 n=0or1l (mod4),n#4 [15]
D70 n=0or1 (mod 5) 6], Lemma 19
D77 n=0or1 (mod 5) 6], Lemma 20
D84 n=0or1 (mod 5) 6], Lemma 21
D86 n=0or 1 (mod 5) 6], Lemma 22
D91 n=0or 1 (mod 5) 6], Lemma 19
D92 n=0or 1 (mod 5) [6], Lemma 20
D99 n=0or1 (mod5),n#6 Lemmas 6, 11, and 23
D100 n=0or1 (mod 5) (6], Lemma 24
D104 n=0or 1 (mod 5) (6], Lemma 21
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3.1 Decompositions of K.,

Labeling methods can be used to obtain cyclic (K%, D)-designs for 31
of the 42 directed graphs. This is due to the fact that these graphs admit
directed p*-labelings as shown in [6].

Theorem 7. [6] Let D be a bipartite subgraph of K} of size m, and let
z be a positive integer. If D does not belong to the set {D25, D27, D32,
D37, D39, D50, D52, D59, D60, D64, D99}, then there exists a cyclic
(Kz41, D)-design.

Next, we proceed to the digraphs that do not admit a directed p*-
labeling. Throughout this section we let the vertex set of K, , be [0, mz].
Furthermore, throughout the entirety of the paper let K st have vertex
bipartition {A, B} where A=[0,s—1] and B = [s,s +t — 1].

Lemma 8. For every integer x > 1 there exists a (K3, ,,, D)-design for
D € {D32,D39}.

Proof. Since D39 is the reverse orientation of D32, it suffices to show the
existence of a (Kj,,;,D32)-design. For z = 1, we have the following
(K,D32)-design:

{D32[0,3,2,1},D32[1,2,3,0],D323, 2, 1,0],D32[2, 3,0, 1}}.
For z > 1, we require the following (K3 3, D32)-design:

{D32[0,3,4,2],D32(1,4,5,0], D322, 5,3, 1],
D32[4,1,0,5),D32[5,2, 1, 3], D32[3,0, 2, 4]}.

We write K3.,, & K7V Vi, K3. On each of the z copies of K} V K3,
we place a (K}, D32)-design. The remaining arcs form arc-disjoint copies
of K3 3, on each of which we place a (K3 3,D32)-design. [ ]

Lemma 9. For every integer x > 2 there ezists a (K3z41, D50)-design.

Proof. For z = 2, consider the digraph G = Ds50{o, 3,5, 1] U D500, 6,4, 2.
It is easy to check that we have a directed p-labeling of G, and thus a
(Kg,D50)-design exists. For x = 3, consider the directed graph H =
D50[0, 6,4, 1] U D50[0, 4,5, 2] U D50[0,5,6,3]. It is easy to check that we
have a directed p-labeling of H, and thus a (K}, D50)-design exists. For
T > 3, we require the following (K7 4, D50)-design:

{Ds0(0, 5, 6,4], D50[1, 6,7, 5], D50[2, 7, 4, 6], D50[3, 4, 5, 7),
D50(0, 6,5, 7], D501, 7, 6, 4], D50[2, 4, 7, 5], D50[3, 5, 4, 6]}.
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Case 1: z = 2k for some integer k > 2.

We write Kg,,, & K} V Vi, K. On each of the k copies of K} V K3,
we place a (K§,D50)-design. The remaining arcs form arc-disjoint copies
of K3, each of which can be decomposed into copies of K7 4. On each of
these copies of K} 4, we place a (K] 4, D50)-design.

Case 2: z = 2k + 1 for some integer k > 2.

We write Kg, .5 = Ki VK,V Vf;ll Kj3. On the copy of K{ V K75, we
place a (K75, D50)-design. On each of the k—1 copies of K} V K§, we place
a (K3,D50)-design. The remaining arcs form arc-disjoint copies of K3 ),
and K3 g, both of which can be decomposed into copies of K7 ,. On each
of these copies of K} 4, we place a (K7 4, D50)-design. |

Lemma 10. For every integer x > 1 there exists a (K3, ,, D)-design for
D € {D52,D64}.

Proof. Since D64 is the reverse orientation of D52, it suffices to show the
existence of a (K},,,,D52)-design. For z = 1, we have the following
(K, D52)-design:

{D52[1,0,2, 3}, D52(3, 4, 2,1], D52[3, 1,0, 4], D52[4, 1,0, 2], D52(2, 4,0, 3] }.
For z > 1, we require the following (K3 ,, D52)-design:
{D52[0,3,2,1], D52(1,3,2,0]}.

We write K3, ,, = K7 V Vi.; Ki. On each of the = copies of K} V K,
we place a (K7,D52)-design. The remaining arcs form arc-disjoint copies
of K} 4, each of which can be decomposed into copies of K3,. On each of
these copies of K3 ,, we place a (K3 5, D52)-design. |

Lemma 11. For every integer = > 2 there exists a (Kg,,.,,D99)-design.
Proof. For = 2, we have the following (K7,, D99)-design:

{D99[0, 1, 4, 7], D99[7, 3, 2, 6], D99[3,0, 8, 5], D99[9, 5,2, 4], D99[9, 8, 3, 6},
D99[5, 10, 8, 3}, D99(7, 8, 4, 1), DYI[0, 2, 5, 1], DYY[0, 6, 7, 5], D9Y[1, 3, 5, 2],
D99[2, 10, 1,6}, D99(3, 4,2, 5], D994, 6,2, 8], D99[4, 9, 8, 1], D99[6, 7,2, 9],
D99[6, 9,5, 3), D99[8, 0, 2, 7], D99[8, 10,4, 0], D999, 0, 1, 10],

D99[10, 4, 6, 1], D99(10, 7, 3, 5], D99[10,9, 1, 7]}

For z = 3, consider the digraph G = D99(0,7,2,1] U D99[0,13,8,3] U
D99[0,4,5,6]. It is easy to check that we have a directed p-labeling of
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G, and thus a (K{g, D99)-design exists. For x > 3, we require the following
(K35 10, D99)-design:

{D99]0, 5, 6,2], D99[1, 6,7, 3],D99(2,7,8, 4], D99(3, 8,9, 0],
D99(4,9, 5,1, D99]5, 3, 4, 14], D99(6, 4,0, 10], DS9[7, 0, 1, 11],
D99(8,1,2,12],D99[9, 2,3,13], D99[12, 0, 4, 8], D99[13, 1,0, 9],
D99][14, 2, 1,5}, D99[10, 3, 2, 6], D9I(11, 4, 3, 7], D9Y[0, 14, 11, 1],
D99[1,10,12,2],D99(2, 11,13, 3], D99[3, 12, 14, 4], D994, 13, 10, 0]};

and the argument proceeds similarly as in the proof for Lemma 9. ]

3.2 Decompositions of K}, .

Necessary condition (A) implies that there is no (K3, D)-design for any
digraph D € {D28,D31, D32, D33, D36, D37, D38, D39, D40}. Furthermore,
there is no (K3, D27)-design.

Now, let D € {D7,D10,D28,D40, D44, D63} and suppose D has m arcs.
Then necessary condition (C) implies that there is no (K2 _, D)-design for
any positive integer z.

Throughout this section we let V(K3,) = [0,m — 2] U {o0}.

Lemma 12. For every integer x > 2 there erists a (K35, D)-design for
D € {D31,D36}.

Proof. Since D36 is the reverse orientation of D31, it suffices to show the
existence of a (K3;, D31)-design. Let z > 2 be an integer. The following is
a (K3.,D31)-design:
{D31(0,1, 00,2],D31[0, o0, 1, 3]}
U {D31[0,3 +3(i ~ 3),4+3(i — 3),6 + 3(: — 3)]: 3<i < z}. n
Lemma 13. For every integer x > 2 there exists a (K3, D)-design for
D € {D32,D39}.

Proof. Since D39 is the reverse orientation of D32, it suffices to show the
existence of a (K3,, D32)-design. Let > 2 be an integer. The following is
a (K3.,D32)-design:

{D32(0,1,00,2]} U {D32[0,3 4+ 3(: — 2),4+3(i —2),1): 2< i<z} W

Lemma 14. For every integer z > 1 there erists a (K}, D)-design for
D € {D41,D62}.
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Proof. Since D62 is the reverse orientation of D41, it suffices to show the
existence of a (K}, D41)-design. Let z > 1 be an integer. The following is
a (K3, D41)-design:

{D41[0, 1,2, 0o]}U{D41[0, 1+ 4(i—1),2+4(i—1),4(—1)]: 2<i<z}. W
Lemma 15. For every integer x > 2 there exists a (K},, D50)-design.

Proof. Let = > 2 be an integer.
Case 1: z = 2k for some integer k > 1. The following is a (K3, D50)-
design:

{D50[0, 1, 2, 00|, D500, 6, 5, 4] }
U {D50[0,1 + 8(i — 1),2 +8(: — 1),8(:i — 1)]: 2<i <z}
U {D50[0,6 + 8(i — 1),5 +8(: — 1),4+8(i —1)]: 2< i<z}

Case 2: = = 2k + 1 for some positive integer k¥ > 1. For k = 1, consider
the digraph G = D50[0, 7, 3, 00] U D50[0, 3, 5, 1] U D50[0,5,7,2]. It is easy
to check that we have a 1-rotational directed p-labeling of G, and thus a
(K?}p, D50)-design exists. For k > 1, we write Kg,, 4 = KV V:.:ll Kg. On
the copy of K},, we place a (K1, D50)-design. On each of the k — 1 copies
of K3, we place a (K3, D50)-design, which is shown to exist in the proof
of Case 1. The remaining arcs form arc-disjoint copies of K3 ;, and Kgg,
both of which can be decomposed into copies of K7 ,. On each of these
copies of K} 4, we place a (K 4, D50)-design, which is shown to exist in the
proof for Lemma 9. ]

Lemma 16. For every integer > 2 there exists a (K3, D51)-design.
Proof. Let £ > 2 be an integer. The following is a (K., D51)-design:

{D51[0, 00, 1,4}, D51[0, 3,2, 00} }
U {D51[0,6 + 4(i — 3),7+ 4(: — 3),2]: 3<i <z} ]

Lemma 17. For every integer z > 1 there erists a (K}, D)-design for
D € {D52,D64}.

Proof. Since D64 is the reverse orientation of D52, it suffices to show
the existence of a (K}, D52)-design. For z = 1, consider the digraph
D52[0,1,00,2]. It is easy to check that we have a 1-rotational directed p-
labeling of D52, and thus a (K},D52)-design exists. For z > 1, we write
K}, = \/i_, K;. On each of the z copies of K, we place a (K}, D52)-
design. The remaining arcs form arc-disjoint copies of K7 4, each of which
can be decomposed into copies of K3,. On each of these copies of K3 ,,
we place a (K3 ,,D52)-design, which is shown to exist in the proof for
Lemma 10. [ ]
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Lemma 18. For every integer z > 1 there ezists a (K},, D)-design for
D € {D54,D56}.

Proof. Since D56 is the reverse orientation of D54, it suffices to show the
existence of a (K3,,D54)-design. Let z > 1 be an integer. The following is
a (K3, D54)-design:

{D54[0,00,2,1]} U {D54[0,4 + 4(; — 2),6 +4(i — 2),1}: 2<i<z}. W

Lemma 19. For every integer x > 1 there exists a (K2, D)-design for
D € {D70,D91}.

Proof. Since D91 is the reverse orientation of D70, it suffices to show the
existence of a (K3,, D70)-design. Let z > 1 be an integer. The following is
a (K3,,D70)-design:

{D70[0, 0,2, 1]}U{ D700, 5(i — 1), 2+5(i 1), 1 +5(i—1)]: 2<i<z}. B

Lemma 20. For every integer x > 1 there ezists a (K, D)-design for
D € {D77,D92}.

Proof. Since D92 is the reverse orientation of D77, it suffices to show the
existence of a (Kg,, D77)-design. Let z > 1 be an integer. The following is
a (Kg,, D77)-design:

{D77[0,00,3,1]} U {D77(0,5(: — 1),3+5(i —1),1]: 2<i<z}. MW

Lemma 21. For every integer x > 1 there erists a (K, D)-design for
D € {D84,D104}.

Proof. Since D104 is the reverse orientation of D84, it suffices to show the
existence of a (K3;,D84)-design. Let x > 1 be an integer. The following is
a (K§,,D84)-design:

{D84[0, 00,2, 1]} U {D84[4 + 5(: — 2),0,2,5+ 5(i — 2)]: 2<i < z}. A
Lemma 22. For every integer = > 1 there exists a (K2, D86)-design.
Proof. For z = 1, we have the following (KX, D86)-design:

{D86[0,1,2, 3], D86[0, 3, 00, 2|, D86(o0, 1,0, 2], D86[00, 3,2, 1]}.
For z > 1, we require the following (K35 5, D86)-design:

{D86[0,5,7, 4], D86[1, 6, 8, 0], D86(2, 7,9, 1], D86(3, 8, 5, 2], D86[4, 9, 6, 3],
D866, 2, 4, 5], D86[7, 3, 0, 6], D86[8, 4, 1, 7), D869, 0, 2, 8], D86[5, 1, 3, 9]};

and the argument proceeds similarly as in the proof for Lemma 17. ]
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Lemma 23. For every integer x > 1 there ezists o (Kg,,D99)-design.

Proof. For z = 1, consider the digraph D99[0, 2, o0, 1]. It is easy to check
that we have the 1-rotational directed p-labeling of D99, and thus a (K7,
D99)-design exists. For z = 2, We have the following (K7j,, D99)-design:

{D99[1,0, 4, 5], D99[2, 0, 5, 6], D99[3, 0, 6, 4], DII(0, 7, 4, 1], DIY[0, 8, 5, 2],
D99[0, 9, 6, 3], D99[7, 4, 1, 5], D998, 5,2, 6], D999, 6, 3, 4], D94, 8, 2,7,
D99[5,9, 3,8}, D99[6, 7,1,9], D99(8, 1,7, 5], D99(9, 2, 8, 6], D99(7, 3,9, 4],
D99(2, 1, 4,9}, D99[3,2,5,7],D99(1,3,6,8]}.

For z > 2, we require a (K3 ), D99)-design, which is shown to exist in the
proof for Lemma 11.

Case 1: x = 2k + 1 for some integer £ > 2.

We write Kjo; 5 = Kg'VV:-;l K3o. On the copy of K, we place a (Kg, D9)-
design. On each of the k copies of K7y, we place a (K7, D99)-design. The
remaining arcs form arc-disjoint copies of K3 ;o and K7 19, which can be
decomposed into copies of K3 1. On each of these copies of K3 o, we place
a (K3 10, D99)-design.

Case 2: = = 2k for some integer k > 2.

We write Kj,, = V:;l K?$,. On each of the k copies of K}, we place a
(K79, D99)-design. The remaining arcs form arc-disjoint copies of K7j 10,
each of which can be decomposed into copies of K ;. On each of these
copies of K3 19, we place a (K3 o, D99)-design. [ |

Lemma 24. For every integer x > 1 there ezists a (K3,,D100)-design.
Proof. Let z > 1 be an integer. The following is a (K., D100)-design:
{D100[0, 1,2, 00]} U {D100[0,1 + 5(: = 1),2+5(: —1),2]: 2<i<z}. B

Thus, we have shown that Theorem 1 holds.
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