THE STRONG ADMISSIBILITY OF FINITE GROUPS: AN
UPDATE

ANTHONY B. EVANS

ABSTRACT. For a finite group G, a bijection 8: G — G is a strong
complete mapping if the mappings g — g6(g) and g — g~ 16(g) are
both bijections. A group is strongly admissible if it admits strong
complete mappings. Strong complete mappings have several combi-
natorial applications. There exists a latin square orthogonal to both
the multiplication table of a finite group G and its normal multipli-
cation table if and only if G is strongly admissible. The problem of
characterizing strongly admissible groups is far from settled. In this
paper we will update progress towards its resolution. In particular,
we will present several infinite classes of strongly admissible dihedral
and quaternion groups and determine all strongly admissible groups
of order at most 31.

1. INTRODUCTION

For a group G, a bijection §: G — G is a complete mapping of G if the
mapping z — z8(z) is a bijection, an orthomorphism of G if the mapping
x — z716(z) is a bijection, and a strong complete mapping of G if it
is both a complete mapping and an orthomorphism of G. Note that a
bijection §: G — G is a complete mapping of G if and only if the mapping
T +— 26(z) is an orthomorphism of G, and an orthomorphism of G if and
only if the mapping z — z~16(z) is a complete mapping of G. We say
that a group is admissible if it admits complete mappings (equivalently
if it admits orthomorphisms), and strongly admissible if it admits strong
complete mappings. A strong complete mapping is normalized if it fixes the
identity. If § is a strong complete mapping of G, then the mapping &': £ —
£6(z)8(1)~! is a normalized strong complete mapping of G. Thus a group
is strongly admissible if and only if it admits normalized strong complete
mappings. Here are two simple examples of strong complete mappings. If
ged(]G|,6) = 1, then 6: z — 22 is a strong complete mapping as = —
z7'6(z) = z, z — 8(z) = 22, and = — z6(z) = z* are all bijections. If ¢ >
4 and a # 0,1, then 6: z — az is a strong complete mapping of GF(g)*
sz f(z)—z=(a-1)z, 2~ 0(z) =az,and 2 (z) + z = (a + 1)z
are all bijections.

JCMCC 98 (2016), pp. 391-403



Admissible, finite groups have been characterized. In 1955 Hall and
Paige [8] proved that finite groups with nontrivial, cyclic Sylow 2-subgroups
are not admissible. They conjectured the converse. In 2009 Wilcox [15]
proved that any minimal counterexample to the Hall-Paige conjecture must
be the Tits group or a sporadic simple group and in 2009 Evans [5] proved
that the only possible minimal counterexample is J4. Bray (3] showed that
Jy is not a minimal counterexample, thus completing the proof of the Hall-
Paige conjecture.

In this paper we will update the 2013 survey by Evans [7] of work done
on the strong admissibility of finite groups. As strongly admissible groups
are also admissible, Hall and Paige’s theorem establishes that some finite
groups cannot be strongly admissible.

Theorem 1. If the Sylow 2 subgroup of a finite group G is nontrivial and
cyclic, then G is not strongly admissible.

In 1990 Evans [4] showed that the structure of the Sylow 3-subgroup
also plays a role in determining the strong admissibility of finite groups.

Theorem 2. If a finite group G has a nontrivial, cyclic Sylow 3-subgroup
that is a homomorphic image of G, then G is not strongly admissible.

For finite abelian groups strong admissibility is completely determined
by the structure of the Sylow 2-subgroups and the Sylow 3-subgroups: this
was proved by Evans [6] in 2012.

Theorem 3. A finite abelian group with a trivial or noncyclic Sylow 2-
subgroup and a trivial or noncyclic Sylow 3-subgroup, is strongly admissible.

Very little is known about the strong admissibility of nonabelian groups.
If the order of the group is relatively prime to 6, then the group is strongly
admissible, and a strong complete mapping of the dihedral group of order
12 was found by Shieh, Hsiang, and Hsu [14]. We will add to the list
of known strongly admissible groups by proving that, if ged(m,6) = 1,
then the dihedral groups of orders 4m, 12m, 16m, and 24m are strongly
admissible, and the quaternion groups of orders 16m and 24m are strongly
admissible.

It should be noted that, for nonabelian groups, there is no proof in
the literature that if H is a normal subgroup of G and H and G/H are
both strongly admissible, then G is strongly admissible: this result was
erroneously cited by Evans [6, 7].

In 2013 Evans [7] conjectured that a finite group is strongly admissible if
its Sylow 2-subgroup is trivial or noncyclic and its Sylow 3-subgroup is also
trivial or noncyclic. In the same paper he also made the stronger conjecture
that a finite group is strongly admissible if its Sylow 2-subgroup is trivial
or noncyclic and its Sylow 3-subgroup is trivial, noncyclic, or nontrivial,
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cyclic, and not a homomorphic image. We will prove both conjectures false.
Embarassingly, our counterexamples are the smallest possible counterexam-
ples: the dihedral group of order 8 and the quaternion group of order 8.
We will also determine the strong admissibility of all groups of order at
most 31: this yields no further counterexamples to these conjectures.

Strong complete mappings have been used in constructing group se-
quencings [1], Knut Vic designs [9, 10], strong starters [11], solutions to the
toroidal n-queens problem [12], and check digit systems [13)].

2. STRONG COMPLETE MAPPINGS AND LATIN SQUARES

A latin square of order n is an n x n array in which each symbol from
a symbol set of order n appears exactly once in each row and once in each
column. Throughout this section G will denote a group of order n, all latin
squares will be of order n, and the rows and columns of latin squares will
be indexed by the elements of G. There are two latin squares of particular
interest: the Cayley table of G, which we will denote by M, which has
(9, h)th entry equal to gh; and the normal multiplication table of G, which
we will denote by N, which has (g, h)th entry equal to gh~!.

Two latin squares of the same order are orthogonal if, when superim-
posed, each ordered pair of symbols appears exactly once. Orthomorphisms
can be used to construct latin squares orthogonal to M. If 8: G — G is
a bijection and Mp is the latin square with (g, h)th entry g8(h), then M,
is orthogonal to M if and only if 8 is an orthomorphism of G. In fact,
there exists a latin square orthogonal to M if and only if G is admissi-
ble. The strong admissibility of G determines the existence of latin squares
orthogonal to both M and N?

Theorem 4. There ezists o latin square orthogonal to both M and N if
and only if G is strongly admissible.

Proof. Let L be a latin square orthogonal to both M and N , pick a, an
entry of L, and define §: G — G by 0(h) = g~ if the (g, h)th entry of
Lis a. Let (gi,h;), i = 1,...,n be the cells of L with entry a. As L is
orthogonal to M, the corresponding cells of M form a transversal of M.
Thus 8(h;)~ h; = (h;18(h:))~1,i=1,...,n are all distinct and so 8 is an
orthomorphism of G. As L is orthogonal to N, the corresponding cells of
N form a transversal of N. Thus 8(h:)~'h;! = (Ri8(h:))"1,i=1,...,n
are all distinct and so 8 is a complete mapping of G. It follows that @ is a
strong complete mapping of G.

Let 6 be a strong complete mapping of G and let Mj be the latin square
with (g, h)th entry g8(h). My is a latin square orthogonal to both M and
N. ]
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For a latin square L a transversal of L is a set of cells, one from each
row, one from each column, each symbol of L appearing exactly once. For
a latin square L the kth generalized left diagonal of L with respect to G
consists of the (kg, g) cells of L as g runs through the elements of G, and
the kth generalized right diagonal of L with respect to G consists of the
(9,97 1k) cells of L as g runs through the elements of G. A latin square with
rows and columns indexed by the elements of a group G is a generalized
Knut Vic design over G if each of its generalized left and right diagonals
with respect to G is a transversal. A generalized Knut Vic design over Z,
is called a Knut Vic design.

Theorem 5. There ezists a generalized Knut Vic design over G if and
only if G is strongly admissible.

Proof. Let 8 be a strong complete mapping of G and define My to be the
latin square with (g, h)th entry g8(h). The entries on the kth generalized
left diagonal are k(gf(g)), g € G. It follows that each generalized left
diagonal of My is a transversal of Mp. The entries on the kth generalized
right diagonal are g8(g—1k) = k((g~'k)~16(g~1k))), g € G. It follows that
each generalized right diagonal of Mp is also a transversal of My. Hence
M, is a generalized Knut Vic design over G.

Next, suppose that L is a generalized Knut Vic design over G. As every
cell in the kth generalized right diagonal of M has entry k, L is orthogonal
to M, and as every cell in the kth generalized left diagonal of N has entry k,
L is orthogonal to N. Hence, by Theorem 4, G is strongly admissible. O

Theorems 4 and 5 both characterize generalized Knut Vic designs.

Corollary 1. A latin square L is a generalized Knut Vic design over G if
and only if L is orthogonal to both M and N.

3. QUOTIENT GROUP CONSTRUCTIONS

In the literature there is no general quotient group construction, that
is no proof that, if H is normal in G and H and G/H are both strongly
admissible, then G is strongly admissible. Such a result was incorrectly
cited in 2012 and 2013 by Evans [6, 7]. We will give some quotient group
constructions in this section. The first of these, for abelian groups, was
proved by Horton {11] and Evans [4], independently in 1990.

Theorem 6 (Evans and Horton, 1990). If G is an abelian group, and H
is a subgroup of G, and H and G/H are both strongly admissible, then G

is strongly admissible.

The characterization of strongly admissible abelian groups renders The-
orem 6 moot. For general groups, it is easy to establish the strong admis-
sibility of direct products of strongly admissible groups.
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Theorem 7. If G and H are both strongly admissible, then G x H is
strongly admissible.

Proof. Let 6 be a strong complete mapping of G and ¢ a strong complete
mapping of H. Then 8 x ¢: (g,h) — (8(g), (k) is a strong complete
mapping of G x H. O

Let H be a normal subgroup of G and D a system of distinct coset
representatives for H in G. We will say that D is strongly admissible if there
exist bijections 6,4,7: D — D for which df(d)H = n(d)H for all d € D and
d='0(d)H = 6(d)H for all d € D. We will call 8 a strong complete mapping
of D. Note that D being strongly admissible is equivalent to G/H being
strongly admissible.

Theorem 8. Let H be a normal subgroup of G and D a system of distinct
coset representatives for H in G. If D is strongly admissible and there exists
a strong complete mapping ¢ of H for which the mapping h — h='d~1¢(h)d
is a bijection for all d € D, then G is strongly admissible.

Proof. Let 8 be a strong complete mapping of D and set 8'(dh) = ¢(h)8(d).
¢’ is a bijection G — G as are the mappings

dh + (dh)6'(dh) = (dhé(h)d~1)(dO(d))
and
dh > (dh)~'0'(dh) = (A~ (d"¢(h)d))(d~18(d)).
It follows that ¢’ is a strong complete mapping of G. 0

Note that, in the statement of Theorem 8, as ¢ is a bijection, the map-
ping h = h~'d~1¢(h)d is a bijection for d € D if and only if the mapping
h — d=1¢(h)d is an orthomorphism of H. An immediate corollary to
Theorem 8.

Corollary 2. If Z(G) and G/Z(G) are both strongly admissible, then G is
strongly admissible.

There are many variants of Theorem 8 including variants in which H is
not a normal subgroup of G and D is a dual system of coset representatives
for H in G. Alas, there is, as yet, no general result.

4. DIHEDRAL AND QUATERNION GROUPS

We will use Dyy. = (a,b | a%* = b? = 1,ab = ba~1) to denote the dihedral
group of order 4k and Q4x = (a,b | a®* = 1,b% = a*,bab~1 = a~1) to denote
the quaternion group of order 4k. Note that Dy is often denoted Da. In
this section we will prove that Dg and Qg are not strongly admissible and
that, if ged(m, 6) = 1, then Dym, D12m, Diem, D24m, Q16m, and Qa4m are
strongly admissible.
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Let us begin by noting that, as a direct consequence of Theorem 8, we
obtain the following quotient group construction for dihedral and quater-
nion groups.

Lemma 1. Let G = Dy or Qox, H = Z,, a subgroup of (a), where
m|k and ged(m,6) = 1. If G/H is strongly admissible, then G is strongly
admissible.

Proof. Let D be a system of distinct coset representatives for H in G and
define ¢: H — H by ¢(h) = h%. ¢ is a strong complete mapping of H and
for d € D, either d-'¢(h)d = h? for all h € H or d~*¢(h)d = h~2 for all
h € H. In either case the mapping h — d~1¢(h)d is an orthomorphism of
H. O

Any mapping 9: Dy — Dyx or 8: Qi — Qax can be expressed as
a®)  ifz=a' i€ A,

baP® ifz=afic A,

a"®  if x =ba',i € B,

ba®®  if z = bat,i € B,

b(z) =

for some partitions {A, A} and {B, B} of Zy; and some mappings a: A —
Zok, B: A = Zok, v: B = Zak, and 6: B = Zy. We will call o the
aa-mapping for 0, B the ab-mapping for 6, v the ba-mapping for 6, and
d the bb-mapping for §. We will call A the aa-set for 6, A the ab-set for
6, B the ba-set for 8, and B the bb-set for 8. A characterization of the
aa-sets, ab-sets, ba-sets, bb-sets, aa-mappings, ab-mappings, ba-mappings,
and bb-mappings that correspond to strong complete mappings of dihedral
groups or strong complete mappings of quaternion groups is given next.

Theorem 9. Let A be the aa-set, A the ab-set, B the ba-set, B the bb-
set, a the aa-mapping, B the ab-mapping, v the ba-mapping, and & the
bb-mapping for 6: Dy — Dyi or 8: Qax — Q4.

(1) @ is a strong complete mapping of Dax if and only if |A| = |A] =
|B| = |B| = k; o, B, 7, and § are 1-1 mappings; and the following
hold.

(a) {a(d) +i|ie A} ={a(i) —i|i€ A}.

(b) {BGi)+i]|ie A} ={B(i)—i|i€ A}.

(¢) {af(d) | i € A} and {v(3) | i € B} partition Zay.

(d) {B(:)|i € A} and {6(3) | i € B} partition Zok.

(e) {a(i)£i|ie€ A} and {4(i) —i|i € B} partition Zok.

(f) {B(i) £i|ie€ A} and {y(i) +i|i € B} partition Zok. _

(2) 6 is a strong complete mapping of Quak if and only if |Al = |A| =
|B| = |B| = k; a, B, v, and § are 1-1 mappings; and the following
hold.
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(@) {e(t)+ilie A} ={a()) —i+k|ic A}

(b) {8(i)+i]i € A} = {B(0) —i+Fk|i< A).

(c) {a(i) | i € A} and {y(i) | i € B} partition Zoy.

(d) {B()|iec A} and {6(3) |i € B} partition Za.

() {a(i) —i|i€ A} and {d(i) —i | i € B} partition Zy.
(f) {B(:) —i|ie A} and {v(i) +1i|i € B} partition Zy.

Proof.
(1) Let us assume that 8 is a strong complete mapping of Dy. As 8 is
a bijection, each of the mappings «, 8, v, and 6 is 1-1. As
a®+ ifr=1giic A,
baf-t ifx=gqi i€ A,

0(z) = N )
26(z) baYM*  if x = bat,i € B,
a1t ifz =baii€ B,
and o .
a*)-i ifr=gqiic A,
B+ ifr—giicA
218(z) = ba ifr=ai€ A,

bY@+t if x = bat i € B,
oSO~ if g = bat,i € B,
each mapping i = a(i) +1,4 € A; i = a(i) — 4,1 € A; i = (i) +1,
i € 4; z'—)ﬁ(z)—z,zeA zr—>7(1)+z i€ B; and i — 6(z) - 4,
i € B is 1-1. Tt is easy to see that (1a) through (1f) hold. From
|A| + |A| = 2k, |B] + |B| = 2k, |A| + |B| = 2k, |A| + |B| = 2k,
|A| +|B| = 2k and |4| + |B| = 2k, we deduce that |[4| = |A] =
|B|=|B| =
The converse is routine.
(2) Similar to the proof of (1).

O

Theorem 9 yields a simple proof that Dg and Qs are not strongly ad-
missible.
Theorem 10.
(1) Ds is not strongly admissible.
(2) Qs is not strongly admissible.

Proof.

(1) Let 6 be a strong complete mapping of Dg. Let A be the aa-set,
A the ab-set, B the ba-set, B the bb-set, a the aa-mapping, 8 the
ab-mapping, v the ba-mapping, and § the bb-mapping for 6.

We may assume, without loss of generality, that 8 is normalized
and, hence, that 0 € A and «(0) = 0. Thus 4 = {0, h} for some
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h € A\ {0} and by Theorem 9(1a) a(h) + h = a(h) — h. It follows
that h = 2 and so B = {1, 3}. But, if (1) = c and 8(3) = d, then
{c-1,d-3}={c+1,d+3}and,asc—1#c+1l,c+1=d-3
from which it follows that ¢ = d, a contradiction from which the
result follows.

(2) Let 8 be a strong complete mapping of Qg. Let A be the aa-set,
A the ab-set, B the ba-set, B the bb-set, a the aa-mapping, B the
ab-mapping, v the ba-mapping, and § the bb-mapping for 6.

We may assume, without loss of generality, that 8 is normalized
and, hence, that 0 € A and a(0) = 0. Thus A = {0, h} for some
h € A\ {0} and by Theorem 9(2a) {0, (k) +h} = {2,a(h) —h+2}.
As 0 # 2, a(h) + h = a(h) — h = 2. It follows that 2 = 2 and
a(h) =0, or h = 0 and a(h) = 2; a contradiction from which the
result follows.

O

Let us illustrate how Theorem 9 can be used by constructing a strong
complete mapping of Dj;. We begin by choosing A = {0,1,2}, and thus
A = {3,4,5}. Next we choose a and 3 as follows.

g Io 1 2 g |3 4 5
afg) |0 2 5 g Bl 025
a(g)+g|0 3 1 ¢ B(g)+g|3 0 4
a(g)—g{0 1 3 Blg)—g|3 4 0

Hence
{v(9) g€ A} ={1,3,4} and {v(g)+glge€A}={1,25}
and
{6(9) | g€ A} ={1,3,4} eand {8(9)—gl|gecA}={245}

Next form a bordered partial latin square as follows.

v(9) o(g)—g
1 3 4 2 4 5
v(g)+¢g 1| 0 4 3
21 1 5 4
5| 4 2 1
8g) 1 5 3 2
3 1 5 4
4 2 0 5

Here the entries are obtained by subtracting column headings from row
headings. A transversal of this partial latin square is shown in bold. From
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this transversal we can determine B, B, v, and §. We find that B =
{0,2,4}, B ={1,3,5},

g 0 2 4 g 1 35
¥(g) |1 3 4 and 5g) [3 1 4.
Yg)+g |1 5 2 5g)—g[2 4 5

The corresponding strong complete mapping of D5 is shown in Figure 1.

T 1 a a*la® a' a® [ b baZ ba¥] ba ba® ba®
6(z) |1 a® a5| b ba® ba®|a a3 a* |ba® ba bat
z0(z) [1 a° a [ba® ba® b [ba ba® ba?| a2 aF a°
z7l0(zx) [1 a a®|ba® b ba'|ba ba® ba?| a® at aF

FIGURE 1. A strong complete mapping of D;s.

Theorem 11. If gcd(m,6) = 1, then Dy, Diom, Di6m, and Doy, are
strongly admissible.

Proof. As Dy is the elementary abelian group of order four, it is strongly
admissible by Theorem 3. Hence, by Lemma 1, if ged(m,6) = 1, then Dy,
is strongly admissible.

As we have already shown D;; to be strongly admissible, it follows from
Lemma 1 that, if ged(m, 6) = 1, then Dy,,, is strongly admissible.

For Dyg, let A = {0,1,2,5}, A = {3,4,6,7}, B = {0,2,3, 7}, and B =
{1,4,5,6}, and let o, B,7,8: Zg — Zg be given by

T 01 2 5 T 3 4 6 7
a(z) |0 6 3 4 B(z) l 4 0 3 6
a(z)+z [0 7 5 1° Blz)+z |7 4 1 5
alz)—z|0 5 1 7 Blz)-z|1 4 5 7
z 0 2 37 z 1 456
~¥(x) 2 1 5 7, and d(x) I 5 2 7 1.,
Yz)+z[2 3 0 6 é(z)-z|4 6 2 3

It is routine to show that A4, 4, B, B, a, 8, v, § satisfy the conditions of The-
orem 9. Thus D, is strongly admissible and, by Lemma 1, if ged(m, 6) = 1,
then Djgm, is strongly admissible.
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For Dy, let A= {0,1,3,7,8,11}, A = {2,4,5,6,9,10}, B = {2,3,4,6,10,11},
and B = {0,1,5,7,8,9}, and let o, B,7,8: Z12 — Z;2 be given by

z 01 3 7 8 11
afz) |0 6 10 11 9 5
a@) +z|0 7 1 6 5 4
a(z)-z|0 5 7 4 1 6
T 2 3 4 6 10 11
wz) |2 7 41 8 3,

yiz)+z{4 10 8 7 6 2

z 2 45 6 9 10

Blz) |1 586 2 7
Bz)+z|3 9 1 0 11 5
B(z)-=z|11 1 3 0 5 9

x 0 1 5 7 89

and d(z) 11 10 3 9 4 0.
3z) -z |11 9 10 2 8 3

1t is routine to show that A4, A4, B, B, o, B, 7, ¢ satisfy the conditions of The-
orem 9. Thus Dyy4 is strongly admissible and, by Lemma 1, if ged(m, 6) = 1,
(]

then Dag,y, is strongly admissible.

Theorem 12. Ifged(m,6) = 1, then Qi6m, and Q24m are strongly admis-

sible.

Proof. For Que, let A = {0,1,5,6}, A = {2,3,4,7}, B = {2,5,6,7}, and
B =1{0,1,3,4}, and let «, B,7,8: Zg — Zg be given by

z
o(z)
a(z)+z
a(r) —z

5
7
4
2

[ =] K]

3
1
5

o OoO|lo o

2
4
6

5
2
7

T
¥(z)
¥(z) +z

6
6
4

1,
0

and

T 2
B(z)

B(z)+«z
B(z) -z

W=l W

4
6
2

0
3

z 1

8(z)

-J

oo s
R | =]

3

4
2 5.

3 6

(z) — =z
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It is routine to show that A, A, B, B, a, B, 7, § satisfy the conditions of The-
orem 9. Thus Q¢ is strongly admissible and, by Lemma 1, if gcd(m, 6) = 1,

then Q16m is strongly admissible.

For Qpq, let A = {0,2,5,8,10,11}, A = {1,3,4,6,7,9}, B = {3,4,6,8,10,11},
and B = {0,1,2,5,7,9}, and let e, 8,7, 6: Z12 — Z)2 be given by

z 0 2 5 8 10 11 T | 13 4 6 79
o(z) l 0519 4 10 Blz) |3 0 2 6 1 5
a(zy+z|[0 7 6 5 2 9 Bz)+z|4 3 6 0 8 2
afz)—xz|0 3 8 1 6 11 B(z)—z|2 9 10 0 6 8
T 3 4 6 8 10 11 z | 01 2 5 7 9
~(x) | 8 3 11 7 6 2, and 6(z) |4 8 11 10 9 7 .
yz)+z |11 7 5 3 4 1 o(z)-xz|4 7 9 5 2 10




It is routine to show that A, 4, B, B, a, B, 7, § satisfy the conditions of The-
orem 9. Thus Q24 is strongly admissible and, by Lemma 1, if ged(m,6) = 1,
then Q24 is strongly admissible. O

5. DATA FOR SMALL GROUPS

The admissibility of a finite group G is completely determined by the
structure of its Sylow 2-subgroup S. If S is nontrivial and cyclic, then G
is not admissible. If S is trivial or noncyclic, then G is admissible. For
strong admissibilty we also need to take into account the structure of the
Sylow 3-subgroup. The strong admissibility of a finite abelian group G is
completely determined by the structures of its Sylow 2-subgroup S and its
Sylow 3-subgroup T. By Theorems 1 and 2, if either of S or T is nontrivial
and cyclic, then G is not strongly admissible: otherwise, by Theorem 3, G is
strongly admissible. The situation is not as straightforward for nonabelian
groups. We have seen strongly admissible groups, the smallest D,5, with
nontrivial, cyclic Sylow 3-subgroups, and two groups, Dg and Qg, that are
not strongly admissible despite having noncyclic Sylow 2-subgroups and
trivial Sylow 3-subgroups. In this section we will determine all strongly
admissible groups of order 31 or less. As the strongly admissible, finite,
abelian groups have been characterized, we will only consider nonabelian
groups.

The smallest nonabelian group, Dg & S3, of order 6, has a cylic Sylow
2-subgroup and so is not strongly admissible by Theorem 1. The two
nonabelian groups of order 8, Dg and Qs, are not strongly admissible by
Theorem 10. The nonabelian group of order 10, Dy, has a cyclic Sylow
2-subgroup and so is not strongly admissible by Theorem 1.

There are three nonabelian groups of order 12, Dy3, Q12, and A4. By
Theorem 11, D, is strongly admissible. Q3 has a cyclic Sylow 2-subgroup
and so is not strongly admissible by Theorem 1, and A4 has Z3 as a ho-
momorphic image and so is not strongly admissible by Theorem 2. The
nonabelian group of order 14, D4, has a cyclic Sylow 2-subgroup and so
is not strongly admissible by Theorem 1.

There are nine nonabelian groups of order 16. Dy and Q;¢ were shown
to be strongly admissible in Theorems 11 and 12. For the remaining seven
groups a search using magma (2] found strong complete mappings for all
seven groups.

There are three nonabelian groups of order 20. Dy is strongly admissible
by Theorem 11. Q30 and HOL(Zs) have cyclic Sylow 2-subgroups and so
are not strongly admissible by Theorem 1. The nonabelian group of order
22, D2, has a cyclic Sylow 2-subgroup and so is not strongly admissible
by Theorem 1.



There are twelve nonabelian groups of order 24. Dj; and Qo4 are
strongly admissible by Theorems 11 and 12. Of the other ten groups,
one has a cyclic Sylow 2-subgroup and so is not strongly admissible by
Theorem 1, and four have Z3 as a homomorphic image and hence are not
strongly admissible by Theorem 2. For the remaining five groups a search
using magma [2] found strong complete mappings for all five groups.

The nonabelian group of order 26, Dgg, has a cyclic Sylow 2-subgroup
and so is not strongly admissible by Theorem 1. There are two nonabelian
groups of order 27. For these two groups a search using magma (2] found
strong complete mappings for both groups.

There are two nonabelian groups of order 28. Dog is strongly admissi-
ble by Theorem 11, and Q25 has a cyclic Sylow 2-subgroup and so is not
strongly admissible by Theorem 1. There are three nonabelian groups of
order 30, but, as each of these groups has a cyclic Sylow 2-subgroup, all
three are not strongly admissible by Theorem 1.

Data for small groups along with the constructions of Theorems 7 and 8
yield a number of infinite classes of strongly admissible groups.

There is much work to do to characterize strongly admissible, finite
groups. We have shown that the conjectures made in 2013 by Evans (7]
are false, Dg and Qs being counterexamples. But, we have also shown
that these are the only counterexamples of order at most 31. The question
presents itself: are these the only counterexamples to these conjectures?
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