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Abstract

Let G be the set of all simple loopless undirected graphs on n
vertices. Let T be a linear mapping, T' : G, — G, for which the dot
product dimension of T(G) is the same as the dot product dimension
for G for any G € G,.. We show that T is necessarily a vertex
permutation. Similar results are obtained for mappings preserving
sets of graphs with specified dot product dimension.

1 Infroduction

Let G, denote the set of all simple loopless undirected graphs on n ver-
tices. In this paper we will investigate transformations of G, which preserve
the dot product dimension of graphs, both sets of graphs of dot product
dimension =1 and graphs of dot product dimension = 2, and those that
strongly preserve the set of graphs of dot product dimension = 1.

In section 2 we give necessary definitions and notation; in section 3 we

will investigate preservers of dot product dimension, etc.
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2 Preliminaries

We will assume that the reader is familiar with the basic concepts of
graph theory and matrix theory. See (3, 4, 5, 11] for basic definitions. Let
G be a graph. We use the notation V(G), or just V, to denote the set of
all vertices, and £(G), or just £, to denote the set of all edges of G, and
we write G = (V,€). We call a graph on n vertices an edge graph if the
cardinality of the edge set is one, that is if the edge set of a graph is {ab}
where a and b are vertices of G and ab is the edge joining vertex a to vertex
b, then the graph is an edge graph and is denoted E, ;. A star graph, or
simply a star, is a graph all of whose edges are incident with a single vertex.
If this vertex is the vertex a and there are n — 1 edges in the graph we call
it a full star graph, or simply a full star, and is denoted S,. If the vertex set
of Gis V = {v1,v2,- - ,vn} we shorten the notation to V = {1,2,--- ,n}
and use the notation §; to be the full star centered at v; and E; ; to denote
the edge {v:,v;}.

Let G and H be graphs with the same vertex set, that is, V(G) = V(H).
We say that G dominates H, written G J H, if the edge set of H is a subset
of the edge set of G. Similarly, if H and K are two m x n matrices we say
H dominates K, written H J K if k; ; # 0 implies that h; ; #0. I HC G
we let G\ H be the graph whose vertex set is the vertex set of G and the
edge set is those edges in G which are not in H.

Let X denote a set. We let |X| denote the cardinality of the set X. Let
G be a graph. For convenience, we let |G| denote the number of edges in
G, ie., |G| = |E(G)].

2.1 The Dot-Product Dimension of a Graph

A dot product representation of G = (V,£) is a function f : V — R* for
some k such that for any x,y € V zy € € if and only if f(z)- f(y) > t. These
representations were introduced independently by Reiterman et al. [10] and
Fiduccia et al. [6]. The definition given by Reiterman et al. allowed ¢ to
be any real number, while Fiduccia et al limited to ¢ > 0. Fiduccia et al.
also showed that for ¢ > O the vectors of the representation can be scaled
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such that ¢ = 1. We will use this latter restriction on t.

To understand dot product representations of graphs, consider the graph,
H (Figure 1). We can turn this into a dot product representation by as-

] U3

v2 Uq

Figure 1: H: An Example of a Dot Product Representation of Graph.

signing each vertex a vector such that the dot product of adjacent vertices
is greater than or equal to 1 and the dot product of non adjacent vertices is
less than 1. A brief examination of the dot products of the following vectors
shows that the following assignment also produces the graph in Figure 1:

s = () f00= (3) 100 = (3) s = (}),

a dot product representation of dimension 2.

It has been proven that such a representation exists for all undirected,
simple graphs. These representations have been used in a variety of ap-
plications. Those applications include work on social networks[12] and
ecology/[1].

Since every graph has a dot product representation, a minimization
problem exists: to determine the minimum k € N such that a representation
exists for a graph G. This minimum is called the dot product dimension of
G, written p(G). The dot product dimension of a graph has been shown
to be N P-hard (8], but there has been some work done on the dot product
dimension for specific classes of graphs. The following are some known
results about dot product dimension (See [9][10}[6][7]):

e p(G) <1 if and only if no induced subgraph of G is either a 3K5, P,
or C,

o p(Cp)=2ifn>4
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o p(Pr)=2ifn>4

¢ If G is an interval graph, then p(G) <2
e If G is a tree, then p(G) < 3

¢ If G = Ky s, then p(G) = min{n,m}.

o Let G = (V,£), A CV, and K4 be the clique on A. Then p(GUK 4) <
p(G) + 1.
o Let G = (V,€), a € V, and s, be the star at a. Then p(GU s,) <
p(G) +1.
These last two results give rise to the question of how does the addition or
removal of an edge affect the dot product dimension of a graph.

The following lemma will be used throughout without reference:
Lemma 1 Let E and F be edge graphs on the same vertez set,

e If E and F are parallel (not adjacent), p(K \ (EU F)) = 2, and
P(K\E)=1;

e IfE and F are adjacent, p(K \ (FUF))=1.

Proof. The proof is straightforward and is left to the reader. n

2.2 Linear Operators on Graphs

A transformation on G, is linear if it is additive and T(0O) = O, that is,
a transformation on G,, is linear if the image of the union of two graphs is
the union of the images of the two graphs and the image of the edgeless
graph is edgeless.

Let W C G,.. A linear transformation T : G, — G, is said to preserve
the set W if G € W implies that T(G) € W. We say that T strongly
preserves the set W if, G € W if and only if T(G) € W. We similarly
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define preservers of sets of matrices. Consider a mapping ¢ : Gn — Z, -
where Z, is the set of nonnegative integers. Let W; = {G € Gn|p(G) = i}.
Then we say that T preserves o if T preserves all the sets W;. Further, we
say that T (strongly) preserves ¢ =1 if T (strongly) preserves W;.

The investigation of preservers of sets and functions has been an active
area of research in the past few years. The study of linear preservers be-
gan with Frébenius in 1896 and for most of a century, all of the problems
considered were preservers of sets and functions of matrices over fields or
rings. In 1984, Beasley and Pullman [2] came out with the first article on
linear preservers of sets of matrices over a semiring, specifically over B, the
binary Boolean semiring. Since the symmetric matrices over the binary
Boolean semiring is equivalent to the set of undirected graphs, this began
the investigation of linear preservers of functions and subsets of graphs.

Let W be any subset of G, and let T’ be any transformation on G, whose
image is a subset of W. Then T preserves the set W. In the investigation
of preservers of sets of G,,, an additional condition has to be added to T
to have any hope of characterizing T. This condition is usually that T is
bijective (or equivalently surjective or injective), that T strongly preserves
the set or that T preserves two or more (usually disjoint) sets. Of these
conditions, the condition that T be bijective is the most restrictive, and
that T preserve two sets is the least. To illustrate the need for additional
conditions, suppose W C G, and W # G,,. Then, if the image of T is a
subset of W, T is not bijective, T does not strongly preserve W and T
cannot preserve two disjoint sets unless they are both in W, however, T
preserves W. If T preserves a function, like the dot product dimension
of graphs, then clearly T preserves two disjoint sets and also T strongly
preserves the set of matrices of dot product dimension = & for any fixed k.

3 Preservers of Dot Product Dimension
When talking about edges in a graph, the term edge will mean an edge,

but, when talking about a graph, an edge will refer to an edge graph. No
confusion should arise. Let £(G,) denote the set of all edge graphs in G,,.
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Lemma 2 Letn > 4 and Z C £(G,). If Z contains no pair of non adjacent
edges, then |Z| <n —1.

Proof. Suppose that |Z| > 2. Then, since any two elements of Z are
adjacent, we can assume that E) o, F) 3 € Z. Now suppose that E,.; € Z
for some 1 < r < s < n. Then, we must have that r = 2 and s = 3, for
otherwise E, s would be non adjacent to one of Ey2 or Ey3. But then,
|Z| =3 < n — 1 since E 4 is not adjacent to E3 if b > 4.

The other possibility is that all elements of Z are of the form E,; and
hence |Z| < n—1. u

Lemma 3 Letn >4, and T : G, = G, be a linear operator that preserves
the dot product dimension of graphs, or preserves dot product dimensions
1 and 2, or strongly preserves dot product dimension 1. If X € G, and
T(K\ X)=T(K), then |X|<n-1.

Proof. Suppose that X dominates two non adjacent edges F and F. Then
T(K\(E+F)) 2T(K\ X) =T(K) so that T(K \ (E+ F)) =T(K). But
K\ (E + F) has dot product dimension 2, so that T(K \ (E + F)) does not
have dot product dimension 1. But T(K) has dot product dimension 1, a
contradiction. Thus, X does not dominate a pair of non adjacent edges.
By Lemma 2, |X| <n-1. [ ]

Lemma 4 Let T : G, — G, be a linear operator. If |T(E)| 2 n for
some edge graph E, then there ezists a graph Z with |Z| > n such that
T(K\Z)=T(K).

Proof. Suppose with out loss of generality that |[T(E;2)| > n. Then
T(K) = T(E12) + 219“'395” T(E,s). Let 7y = 1,57 = 2 and for
k > 2, when possible, choose E,, s, so that |Zf=’11 T(Er s:) +T(Er, s.)| >
| S5} T(E..s,)|- This can be possible for k at most |T(K)| — n, say for
k=€ LetY =%% E, ,. and Z=K\Y. Then T(Y) = T(K) and hence
T(K\ Z) = T(K). Further |Z| = |K| - £ > |K| - (|[K| — n) =n. [ |
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An immediate consequence of Lemmas 3 and 4 is the following.

Corollary 4.1 Let n > 4, and T : G, — G, be a linear operator that
preserves the dot product dimension of graphs, or preserves dot product
dimensions 1 and 2, or strongly preserves dot product dimension 1. Then,
mazic;|T(E; ;)| <n.

3.1 n>6.

Lemma 5 Letn > 6 and T : G, — G, be a linear operator that preserves
the dot product dimension of graphs, or preserves dot product dimensions
1 and 2, or strongly preserves dot product dimension 1. Then T maps edge
graphs to edge graphs.

Proof.  Suppose that T(E) = O. Then, p(E) = 1 while p(O) = 0, a
contradiction. Therefore, T is nonsingular.

Suppose T'(F) dominates more than one edge. Then, T(K) = T(K \ E)
for some edge E. Suppose, without loss of generality, that T(K) = T(K \
E, ). Consider T(K\(Ey 2+E;,)) for3 <r < s < n. Since K\(E)2+E: ;)
has dot product dimension 2, T(K \ (E} 2 + E,;)) cannot have dot product
dimension 1. But, K \ E,, has dot product dimension 1, and hence ,
T(K \ E; ) has dot product dimension 1. Thus, there is some edge graph
Flr,5) such that T(E) ;) dominates Fi,,), T(E,;) dominates F(, g, and
T(E.,,) dominates F{, ;) implies that (u,v) = (1,2) or (u,v) = (r,s). But
then, for each 3 < r < s < n, there is a distinct edge graph dominated by
T(E1,2). Thus, [T(E2)| > Mlz(gﬁz 2> n, since n > 6. We now have a
contradiction by Corollary 4.1. [ ]

Lemma 6 Letn > 6 and T : G, — Gn be a linear operator that preserves
the dot product dimension of graphs, or preserves dot product dimensions 1
and 2, or strongly preserves dot product dimension 1. Then Tis a bijection
on the set of all edge graphs.
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Proof. By Lemma 5 the image of an edge graph is an edge graph. Suppose
that there are two edge graphs, E and F, such that T(E) = T(F). Then,
we can find edge graphs G and H such that EUFUGUH is a Cy4 so
that p(EUF UG U H) = 2, and hence, p(T(EU FUGU H)) # 1, But
p(EUGU H) = 1, so that p(T(EUGU H)) = 1. Since T(E) = T(F),
T(EUFUGUH) =T(EUGU H), a contradiction. Thus, T is bijective
on the set of edge graphs. ‘ [ ]

Lemma 7 Letn > 6 and T : G, = G, be a linear operator that preserves
the dot product dimension of graphs, or preserves dot product dimensions 1
and 2, or strongly preserves dot product dimension 1. Then, T maps star
graphs to star graphs.

Proof. Suppose that the image of a star graph is not a star. Then, some
pair of adjacent edges is mapped to a pair of parallel edges. Say E and F
are adjacent and T(E) and T(F) are parallel. Then, 1 = p((K\(EF+F)) =
p(T(K\ (E + F)), but p(T(K\ (E + F)) = p(K\(T(E)+T(F)) # 1, a
contradiction. Thus T maps stars to stars. a

Theorem 8 Letn > 6 and T : Gn — Gn be a linear operator that preserves
the dot product dimension of graphs, or preserves dot product dimensions 1
and 2, or strongly preserves dot product dimension 1. Then, T is a vertex

permutation.

Proof. Since T maps stars to stars by Lemma 7, Define a mapping o :
{1,2,--- ,n} ={1,2,--- ,n} by o(i) = j if the image of the star centered
at vertex i is mapped to the star centered at j. First, since T is bijective by
Lemma 6, full stars are mapped to full stars and hence, o is well defined,
and since T is bijective, so is 0. That is ¢ is a permutation, and hence, T

is a vertex permutation corresponding to o. [ ]
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3.2 n<b.

If n £ 3, any nonsingular mapping preserves the dot product dimension,
since any non empty graph has dot product dimension equal 1.

Lemma 9 Letn =4 and T : G, = Gn be a linear operator. Then, the

following are equivalent:

o T preserves the dot product dimension of graphs.
o T preserves dot product dimensions 1 and 2.

o T strongly preserves dot product dimension 1.

Proof. The equivalences all follow from the fact that for n = 4, every
graph in G4 has dot product dimension 0, 1 or 2. [ ]

Lemma 10 Letn =4 and T : G, — G, be a linear operator that preserves
the dot product dimension of graphs, or preserves dot product dimensions
1 and 2, or strongly preserves dot product dimension 1. Then T' maps edge
graphs to edge graphs.

Proof.  Suppose that T(E) = O. Then, p(E) = 1 while p(0) = 0, a
contradiction. Therefore, T' is nonsingular.

First observe that for n = 4, every graph with dot product dimension
=2 has either has 3 edges and is a Py, or has 4 edges, and is a Cy. Suppose
that [T'(E)| > 1 for some edge graph E. Then, there are two edge graphs,
F, G, such that EUFUG is a 4-path graph which has dot product dimension
= 2. So p(T(E U FUG)) = 2. But then, there one of F,G, say with out
loss of generality F, such that T(E U F)) is a 4-path or a 4 cycle since
|T(E)| > 1. This is a contradiction since p(T'(E U F)) = 1. Thus, T maps
edge graphs to edge graphs. ]

Lemma 11 Letn =4 and T : G, — Gn be a linear operator that preserves
the dot product dimension of graphs, or preserves dot product dimensions 1
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and 2, or strongly preserves dot product dimension 1. Then T'is a bijection

on the set of all edge graphs.

Proof. The proof is parallel to the proof of Lemma 6. ]

Lemma 12 Letn =4 and T : G, = G be a linear operator that preserves
the dot product dimension of graphs, or preserves dot product dimensions 1
and 2, or strongly preserves dot product dimension 1. Then, T maps star
graphs to star graphs.

Proof. The proof is parallel to the proof of Lemma 7. [ ]

Theorem 13 Letn =4 and T : G, — G, be a linear operator that pre-
serves the dot product dimension of graphs, or preserves dot product dimen-
sions 1 and 2, or strongly preserves dot product dimension 1. Then, T is a

vertex permutation.

Proof. The proof is parallel to the proof of Theorem 8. ]

The case n = 5 is the only remaining case. For n = 5, at this point the
authors can only conjecture that if T preserves dot product dimension of
graphs then T is a vertex permutation (see below).

4 Summary

In the previous section we have shown

Theorem 14 Ifn=4 orn>6 and T : G, = G, be a linear operator that
preserves the dot product dimension of graphs, or preserves dot product
dimensions 1 and 2, or strongly preserves dot product dimension 1. Then,

T is a vertex permutation.



Let S,(,O)(IB) denote the set of all n x n (0, 1)-matrices with all diagonal
entries equal 0. The arithmetic used is Boolean: (1+1=1), other wise as
for real numbers. Further, let the dot product dimension of a (0, 1)-matrix,
A, be the dot product dimension of the graph whose adjacency matrix is
A. The matrix theoretic equivalent of Theorem 14 is :

Theorem 15 Ifn = 4 orn > 6 and TS,(;O)(IB) - S,(lo)(IB) be a linear
operator that preserves the dot product dimension of matrices, or preserves
dot product dimensions 1 and 2, or strongly preserves dot product dimension
1. Then, there is a permutation matriz, P such that T(X) = PXP? for all
X € s (B).

The case for n = 5 is still unresolved, however the authors conjecture:

Conjecture 16 If n = 5 and T : G, — G, be a linear operator that
preserves the dot product dimension of graphs, or preserves dot product
dimensions 1 and 2, or strongly preserves dot product dimension 1. Then,
T is a verter permutation.
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