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Abstract

A set of vertices W locally resolves a graph G if every two adjacent
vertices is uniquely determined by its coordinate of distances to the
vertices in W. The minimum cardinality of a local resolving set of
G is called the local metric dimension of G. A graph G is called
k-regular graph if every vertex of G is adjacent to k other vertices
of G. In this paper, we determine the local metric dimension of
(n — 8)-regular graph G of order n where n > 5.
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1 Introduction

Throughout this paper, all graphs are finite, simple, and connected. The
vertez set and the edge set of graph G are denoted by V (G) and E(G),
respectively.

For any two distinct vertices u,v € V (G), the distance between u
and v in G, denoted by d(u,v), is the length of a shortest (u,v)-path
inG. Let W = {wy,wa,...,wx} C V(G). For a vertex v € V(G), a
representation of v with respect to W is defined as k-tuple r (v | W) =
(d(v,w1),d(v,ws),...,d(v,wx)). W resolves a graph G if every two dis-
tinct vertices z,y € V(G) satisfy r(z | W) # r(y | W). A basis of G is the
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minimum resolving set of G. The cardinality of a basis of G is called the
metric dimension of G, denoted by B(G).

Metric dimension problems were first studied by Harary and Melter (7],
and independently by Slater [12, 13]. Slater [12] considered the minimum
resolving set of a graph as the location of the placement of a minimum
number of sonar/loran detecting devices in a network. So, the position of
every vertex in the network can be uniquely described by its distances to
the devices in the set.

Trivially, if G is a graph of order n, then 8(G) < n, by taking all vertices
of G to be a resolving set. However, we may obtain a resolving set whose
cardinality is less than n. All graphs of order n > 2 with metric dimension
1, n — 1, or n — 2 have been characterized by Chartrand et al. [4].

Metric dimension problem is a difficult problem. Garey and Johnson
(6] have showed that determining the metric dimension of any graph is an
NP-problem. However, some results for certain class of graphs have been
obtained, which can be seen in [1, 2, 3, 4, 5, 7, 8, 10, 11, 14].

Now, we consider the local version of metric dimension. In this problem,
two distinct vertices may have the same representation with respect to an
ordered subset W of V(G). If r(z | W) # r(y | W) for every two adjacent
vertices z,y € V(G), then W is called a local resolving set of G. The local
basis of G is a local resolving set of G with minimum number of vertices,
and the local metric dimension of G refers to its cardinality, denoted by
Imd(G). Note that, for a nontrivial connected graph G of order n, since
every resolving set is also a local resolving set, then

1<Imd(G) < B(G)<n-—1.

The local metric dimension problems were first studied by Okamoto
et al. [9]. They provided some bounds of local metric dimension for
a connected graph. They also have obtained some characterizations as
follows.

Theorem 1 [9/Let G be a connected graph of order n > 2. Then
1. Imd (G) =1 if and only if G is bipartite.

2. lmd(G)=n-1if and only if G = K,,.

3. lmd (G) = n — 2 if and only if w(G) = n — 2 where w(G) is the order
of the biggest clique in G.



In this paper, we consider the local metric dimension of a regular graph.
A graph G is called k-regular graph if every vertex of G is adjacent to k other
vertices of G. Since every vertex of G is adjacent to the same number of
vertices of G, every vertex of G has the same probability to be considered
as the member of a resolving set of G. The local metric dimension of
regular graph was firstly studied by Okamoto et al. [9]. They obtained the
local metric dimension of (n — 1)-regular graph and (n — 2)-regular graph
of order n > 3. In this paper, we will determine the local metric dimension
of (n — 3)-regular graph of order n > 5.

2 Main Results

Let G be an (n — 3)-regular graph of order » > 5. In order to find
Imd(G), we must consider that G have a subgraph which is isomorphic
to Kn\E(Crm) where m € {3,4,...,n}. Let G' C G such that G’ =
Kn\E(Cy) wherem € {3,4,...,n}. Note that every two vertices v € V(G’)
and w € V(G)\V(G’) satisfy vw € E(G).

Lemma 1 Let G be an (n — 3)-regular graph of order n>5. LetG' C G
such that G' = K,,\E(Cy,) wherem € {4,...,n}. If W is a local resolving
set of G, then W includes a local basis of G'.

Proof. Let B be a local basis of G’. Suppose that there exists a vertex
z € B such that z ¢ W. Let B’ C B\{z} such that B’ C W. Since every
vertices u € V(G') and v € V(G)\V(G') satisfy uv € E(G), all vertices
w € W\B’ do not locally resolve two distinct vertices in G’. Therefore, we
obtain two possibilities of representation with respect to B’ below.

1. There exist two adjacent vertices z,y € V(G’) such that r(z | B') =
r(y | B') which implies r(z | W) = r(y | W).

2. There exists a vertex £ € V(G') which is adjacent to z such that
r(z | B') = r(z | B') which implies r(z | W) = r(z | W).

From both possibilities above, we have a contradiction. m

By Lemma 1, every two distinct vertices in G’ must be locally resolved
by a vertex in G’. So, firstly we need to find the local resolving set of
G’. In the other hand, we will determine the local metric dimension of G'.
Note that G’ is a graph which is isomorphic to a complete graph minus a
Hamiltonian cycle.
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2.1 Complete Graph minus a Hamiltonian Cycle

Let G be an (n — 3)-regular graph of order n > 5. Let G’ C G such that
G' = Ku\E(Cp,) where m € {3,4,...,n}. By Lemma 1, a local basis of
G’ must be contributed to a local basis of G. Therefore, we will determine
the local metric dimension of G’ for each m € {3,4,...,n}.

In Lemma 2 and Remark 1, we provide the local metric dimension of
G’ for m € {3,4,5}.

Lemma 2 Let G be an (n — 3)-regular graph of ordern > 5. Let G'C G
such that G' = K, \E(Cp) where m € {3,4,5}.

1. For m = 3, there exists a local resolving set W of G such that W N
V(G')=0.

2. For m € {4,5}, G’ contributes at least 2 vertices in a local resolving
set W of G.

Proof. Form € {3,4,5},let V(G') = {z1,%2,...,Zm} and Cp, = Z1Z2...TmT1.
We distinguish two cases.

Casel: m=3

We define W = V(G) \ V(G’). Since z;, =2, and =3 are not adjacent
each other in G’, trivially W locally resolves G’.

Case 2: m € {4,5}

First, we show that Imd(G’) < 2 by constructing a local resolving set
W' of G’ with 2 vertices. We define W’ = {z;,z,}. For m € {4,5},
z;ziy1 ¢ E(G') where 1 < i < m —1 and for m = 5, zaz5; € E(G’) but
z1z3 € E(G’) and z125 ¢ E(G’). Since every two adjacent vertices u, v of
G’ satisfy r(u | W) # r(v | W), W is a local resolving set of G'.

Now, suppose that Imd(G’) > 1. Since there exists two adjacent ver-
tices in G’, we assume that Imd(G’) = 1. Let B be a local basis of G’ and
B = {u}. Note that there exists two distinct vertices v,w € V(G’) such
that uv, uw ¢ E(G’) but vw € E(G’). It follows that (v | B) = r(w | B),
a contradiction. ®

Remark 1 Lemma 2 says that the local metric dimension of a subgraph
G’ above is given by

N 0, fOTm=3
zmd(G)—{ 2, form e {4,5}.



To determine the local metric dimension of G = K,,\ E(Cy) for m > 6,
we use the idea of a gap between two vertices.

For m > 6, let S be a set of two or more vertices of G'. Let v,w € §
and P(v,w) be a shortest (v, w)-path in C,,,. Note that all edges of P(v,w)
are not element of E(G’). We define a gap between v and w as the set
of vertices in P(v,w)\ {v,w} such that every vertex z € P(v,w)\ {v,w}
satisfies z ¢ S. Then the vertices v and w are called the end points of
a gap. The two gaps which have at least one common end point, will be
referred to as neighboring gaps. Consequently, if |S| = r, then S has r
gaps, some of gaps may be empty.

Now, let W be a basis of G’. We make the following three observations.
Observation 1 Every gap of W contains at most four vertices.

Proof. Suppose that there exists a gap of W containing at least five vertices
a1,02,a3,a4,a5 of G’ where a;ja;,1 ¢ E(G') with 1 < j < 4. However,
azaq € E(G') and for every u € W, d(u,a2) = d(u,a4) which implies
r(az | W) =1 (aq | W), a contradiction. m

Observation 2 At most one gap of W contains at least three vertices.

Proof. Suppose that there are two different gaps A; and A, such that
a1,a2,a3 € V(A;) and by, b, b3 € V(A3) where aja;41,b;b,41 ¢ E(G’) for
1< 35 <2 Since a and b, are adjacent each other and adjacent to every
vertex in W, we obtain r (ag | W) = 7 (ba | W), a contradiction. m

Observation 3 If a gap A of W contains k vertices where 2 < k < 4, then
any neighboring gaps of A contain at most one vertex.

Proof. Suppose that there are k + 3 vertices a;,as,...,ax;3 of G’ where
ajaj+1 ¢ E(G’) with 1 < j < k+2, and a4, is the only vertex of W. We
obtain that axaixt) € E(G’) but v (ax | W) = r (ag42 | W), a contradiction.
[ ]

Now, we consider any set of vertices S of G’ satisfying Observations 1-3
above, and let u € V (G')\S. There are four possibilities of u with respect
to gaps formed by S.

1. u belongs to a gap of size one in S.

Let a,b be two distinct end points of this gap. Then the vertex u
have a distance 2 to both a and b, and it is the only vertex which has
this distance property. Therefore, for all z € V (G’) and = # u, we
have r(z | S) #r (x| 9).
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2. u belongs to a gap of size two in S.
Let us consider the vertices a;,u, a2, a3 of G’ with a;,a3 € S. Then
d(u,a;) = 2, d(u,a3) = 1, and for every v € S\ {a1,a3}, d(u,v) =1.
By Observation 3, the vertex u is the only one which has all of these
distance properties. Therefore, for all z € V (G’) and = # u, we have

r{(z|S)#r(u|S).
3. u belongs to a gap of size three in S.

Let us consider the vertices a;, a3, a3, a4, a5 of G’ with only a;,a5 € S.
If u = ay, then d(u,a;) = 2, and if u = a3, then d(u,a;) = 1. For
every v € S\ {a;}, we have d(u,v) = 1. By Observations 1-3, the
vertex u is the only one which has all of these distance properties.
Therefore, for all z € V (G’) and z # u, we have r (z | S) # r (u | 5).

4. u belongs to a gap of size four in S.

Let us consider the vertices a1, a2, a3, a4, as, ag of G’ with only a1, a¢ €
S. We distinguish two cases.

(a) u=a2
Then d(u,a;) = 2 and for every v € S\{a;}, d(u,v) = 1. By
Observation 3, the vertex u is the only one which has all of these
distance properties. Therefore, for all z € V (G’) and z # u, we
haver(z|S) #r(u]|S).

(b) u=a3
Note that for every v € S, d(u,v) = 1 = d(a4,v) which implies
(u | §) = r(as | §). However, u and a4 are not adjacent in
G’. By Observation 3, the vertex u and a4 are the only ones
which have all of these distance properties. Therefore, for all
z € V(G')\{v,a4}, we have r(z | S) #£7(u | S).

Consequently, any set S satisfying Observations 1-3 locally resolves
V(G).

Theorem 2 Form > 6, let G’ be a connected graph with G’ = K,\E(Cy,).
Then Imd (G') = [2m~4].

Proof. Let V(G') = {z1,22,...,2} and Cp, = z122...Zz1. We
distinguish two cases.

Case 1: Imd (G') < [28~4]

We show that Imd (G’) < [28~4] by constructing a local resolving set

W with [ 2"‘5'4] vertices. We consider the integer £ > 1. We obtain six

cases as follows.




(a) m=6
Thus, [2%=4] = 2. We define W = {z;,26}. Since W contains
2 vertices and satisfies Observations 1-3, then W is a local resolving
set.

(b) m > 7 and m = 0( mod 5)
Let m = 5k with k > 2. Thus, [28=4] = 2k. We define W =
{z1, %6, Tm—-2,Tm} U{ T5j4+3,Z5j+6 | 1 < j < k—2and k > 3}. Since
W contains 2k vertices and satisfies Observations 1-3, then W is a
local resolving set.

(¢) m>7and m=1( mod 5)
Let m = 5k + 1 with & > 2. Thus, [2%=4] = 2k. We define
W = {z1,%6, Tm-3, Tm-1}U{T5;43, %5546 | 1 < j < k—2 and k > 3}.
Since W contains 2k vertices and satisfies Observations 1-3, then W
is a local resolving set.

(d) m > 7 and m = 2( mod 5)
Let m = 5k + 2 with k > 1. Thus, [2%=4] = 2k. We define
W = {x1,26} U{ 543, %5546 | 1 <j < k—1and k > 2}. Since W
contains 2k vertices and satisfies Observations 1-3, then W is a local
resolving set.

(e) m > 7 and m = 3( mod 5)

Let m = 5k + 3 with k > 1. Thus, [22=4] = 2k + 1. We define
W = {z1,26,Tm} U {543, %5546 | 1 < j < k—1 and k > 2}. Since
W contains 2k + 1 vertices and satisfies Observations 1-3, then W is

a local resolving set.

(f) m > 7 and m = 4( mod 5)

Let m = 5k +4 with k > 1. Thus, [28=4] = 2k + 1. We define
W = {z1,26,Zm-1} U {zsj43 25546 | 1 < j < k—-1landk > 2}.
Since W contains 2k + 1 vertices and satisfies Observations 1-3, then
W is a local resolving set.

Case 2: Imd (G') > [#m4]

Let S be a local basis of G'. We consider two cases as follows.

1. Imd (G’) is even.

Let |S| = 2! for some integer { > 2. By Observation 3, there are at
most [ gaps containing more than one vertex. By Observations 1-3,
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all of them contain 2 vertices, except possibly one gap contains 3 or 4
vertices. Then, the number of vertices belonging to the gaps of S is at
most 3/ +2. Hence m—2l < 31+2, which implies |S| = 2 > [27=4].

2. Imd (G') is odd.

Let |S| = 2l + 1 for some integer ! > 2. By Observation 3, there are
at most ! gaps containing more than one vertex. By Observations
1-3, all of them contain 2 vertices, except possibly one gap contains
3 or 4 vertices. Then, the number of vertices belonging to the gaps
of S is at most 3/ + 3. Hence m — 2l — 1 < 3! 4 3, which implies
S| =21 +12 [2758 +1] 2 [25=2],

2.2 (n — 3)-regular graph

For n > 5, we consider certain cycles contained in a complete graph K,,.
For r > 1, let Ry, Rs,..., R, be r disjoint cycles contained in K|, such that
V(R)UV(R)U...UV(R,) = V(K,). Then K,\(E(R1)UE(R2)U
...UE(R,)) is an (n — 3)-regular graph.

Let G = K,\(E(R1)UE (R2)U...UE(R;)) and m; = |V (R;)|. For
every i € {1,2,...,7}, let Gi = Ky, \E(R;). So, G; = Kn \E(Cp,) and
G=G+G+...+G,.

Let W be a local basis of G. By considering Lemmas 1 and 2, and
Remark 1, we can say that Imd(G) > Imd(G,) + lmd(G3) + ... + Imd(G,).
However, for » > 2, a local basis W of G must satisfy two conditions
deduced from Observations 1 and 2, respectively.

(a) Every gap in W contains at most four vertices.

(b) At most one gap in W contains at least three vertices.

Let G =G +Ga+...+ G, where 3 < |[V(G))| £ |[V(Gy)] £ ... £
|[V(G:)|. Let B; be a local basis of G; where 1 < i < r. If G contains
t > 1 subgraphs G; of G with |V(G;)| = 3, by Lemmas 1 and 2, B,y U
Bi2U...UB, C W. Otherwise, BjUByU...UB, C W. However,
there may be exists some  such that a local resolving set of G; which is
contained in W, is not B;. For example, if there is j € {1,2,...,7} and
j # i with Bj is contained in W such that B; and B; have a gap containing
at least three vertices, then by (b), we cannot use B; as a local resolving
set of G; in G. We must add at least one more vertex on B; such that
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the new local resolving set of G; satisfies (a)-(b). So, we need to know the
gaps property of the local basis of G; = K,,,\E(Cy,) for m; > 4, which
can be seen in Lemmas 3 and 4.

Lemma 3 Let G be an (n — 3)-regular graph of ordern > 5. LetG'C G
such that G' = Kn\E(Cy,) where m € {3,4,..,n}. Ifm € {4,5} or
m = 0( mod 5) for m > 6, then there exists a local basis of G' where every
gap contains at most two vertices.

Proof. Let V(G') = {z1,22,...,Zm} and C;, = T1T3...TmT;. We
distinguish three cases as follows.

1. m=4
We define W = {z,,2,}.
2. m=5

We define W = {z;,z3}.

3. m>6 and m = 0( mod 5)

Let m = 5k with the integer k > 2. Thus, [2%=4] = 2k. We define
W = {25j42,25j+4 |0 < j < k- 1}.

Note that every gap of W from all three cases above contains at most
two vertices. Since |W| = lmd (G’) and every two adjacent vertices u,v €
V(G")\W satisfies r(u | W) # r(v | W), then W is a local basis of &'. m

Lemma 4 Let G be an (n — 3)-regular graph of order n > 5. Let G' C G
such that G' = Kn\E(Cr,) where m € {3,4,...,n}. Ifm > 6 and m # 0(
mod 5), then a local basis of G’ has a gap containing at least three vertices.

Proof. Suppose that every gap of a local basis of G’ contains at most two
vertices. Then we have two following cases.

Case 1: m =1 or 2( mod 5)
Let m = 5k + 1 or m = 5k + 2 with the integer k¥ > 1. By Observation
3, there are at most -lﬂdz-a—l gaps which contain two vertices each and

'l‘ﬂzi'l gaps which contain one vertex each. Then, |V (G')] < $imd (G’).

By Theorem 2, we have |V (G')| < 5k. Since there are 5k + 1 or 5k + 2
vertices, we obtain a contradiction.

Case 2: m =3 or 4( mod 5)
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Let m = 5k + 3 or m = 5k + 4 with the integer ¥ > 1. By Ob-
servation 3, there are at most ﬂ(g_ﬂ gaps which contain two vertices

each and Mg—m gaps which contain one vertex each. Then, |V (G')| <
$imd (G') — 4. By Theorem 2, we have |V (G')| < 5k +2. Since there are
5k + 3 or 5k + 4 vertices, we obtain a contradiction. m

For G; = K, \ E(Cm,) with m; = 3, since by Lemma 2 there exists a
local basis W of G satisfying V(G;) N W =0 and |V(G;)| = 3, we can say
that G; has a gap containing three vertices.

Remark 2 Let G be an (n — 3)-regular graph of ordern>5. Let G' C G
such that G’ = K,,\E(Cy,) where m € {3,4,...,n}. Ifm =3, then we can
say that G’ has a gap containing three vertices.

The following theorem provides the local metric dimension of (n — 3)-
regular graphs.

Theorem 3 Forn > 5 andr > 1, let Ry, Ry, ..., R, be r disjoint cycles
contained in K, such that V(R))UV (R)U...UV (R;) =V (K,). For
i€ {l1,2,...,r}, let G = K,\(E (R1)UE (R2)U...UE (R;)), m; = [V(R;)|,
and G; = K \E(R;). Ifk is the number of disjoint cycles of orderm; > 6
such that m; # 0( mod 5) and t is the number of disjoint cycles of order
m; = 3, then

( 1, ifn=2>5,

Y lmd(Gy), ift=0andn >6 and (k€ {0,1} orr =
i=1

md(G) =1 S imd(G)+k—1, ift=0andn>6andk>?2,

i=1

=
Yimd(G;))+k+t—1, ifl1<t<randn>6andk>0.

\ i=1

Proof. For n = 5, the graph G is isomorphic to the bipartite graph.
Okamoto et al. [9] proved that the local metric dimension of the cycle of
order n is equal to 1. Now, we assume that n > 6.

The second case for Imd(G) is a direct consequence of Theorem 2,
Lemma 3, and conditions (a)-(b) above.

For the two last cases, let G' = K,,\E(R;) be a subgraph of G. We
consider two possibilities of G'.

e V(G') = {a1,a2,0a3};
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By Remark 2, G’ has a gap containing three vertices. We define
W* = {az}. Since a; is not adjacent to as, trivially W* is a local
resolving set of G’. Note that W* only has one gap, that is a gap
containing two vertices.

e |V(G')| > 3 and G’ has a gap containing either three vertices a;, az, a3

where aja;41 ¢ E(G') with 1 < j < 2 or four vertices aj,az,as3,aq4
where aja;;; ¢ E(G') with1 < j <3;
Let W’ be alocal basis of G’. By Observation 2, either gap {a;,a2,a3}
or gap {ai, a2, as, a4} is the only one containing at least three vertices.
Thus W* = W/U {az} is a local resolving set of G’ which all the gaps
contain at most two vertices.

So, by using above property, Theorem 2, Lemma 1 - Lemma 4, Remarks 1
and 2, and also (a)-(b), we prove the two last cases. m
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