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Abstract

The spectrum problem for decomposition for trees with up to
eight edges was introduced and solved in 1978 by Huang and Rosa.
Also, the packing problem was settled for all trees with up to six
edges by Roditty. For the first time, we consider obtaining all possible
leaves in a maximum tree-packing of K,, which we refer to as the
spectrum problem for packings for complete graphs. In particular, we
completely solve this problem for trees with at most five edges. The
packing designs are used in developing optimal error correcting codes,
which have applications in biology, for instance, in DNA sequencing.

JCMCC 98 (2016), pp. 65-88



1 Introduction

For graph theoretic terminology, we follow West [17]. We consider our
graphs to have no loops nor multiple edges. For graphs G and H, a G-
decomposition of H is a partition of the edge set of H with graphs all
isomorphic to G. The spectrum problem for decomposition for a graph G
is to determine the necessary and sufficient conditions for n such that the
complete graph K,, has a G-decomposition. Graph decompositions were
first used by Kirkman in order to attack Kirkman’s schoolgirl problem [7].
In 1972, Hell and Rosa considered graph decompositions for graphs which
were not cliques for the first time, in their attempt to solve the spectrum
problem for decomposition for paths of length three [5].

The spectrum problem for decomposition has been completely solved
for paths [16] and stars [18], which are two infinite classes of trees, and
also for trees on nine or fewer vertices [6]. Furthermore, Kovar et. al. [8]
gave a complete classification of brooms of order 2n as a class of trees, that
decompose the complete graph Ka,.

In cases where a decomposition does not exist, we may instead consider
a packing. For graphs G and H, a G-packing of the graph H is a collection
of subgraphs of H, each isomorphic to G, such that every edge of H is con-
tained in at most one subgraph. Those edges of H which are not included
in any of the subgraphs form the leave graph. A mazimum G-packing of H
is a packing with the smallest number of edges in the leave graph.

The packing designs are important for finding the optimal numbers
in designing experiments where the necessary conditions for the existence
of a decomposition do not hold. These designs also have applications in
developing optimal error correcting codes that are capable of correcting
combinations of deletions and insertions occurring in transmissions [9],(15].
Moreover, the error correcting codes have applications in biology, such as
in DNA sequencing [1].

The number of subgraphs in a maximum G-packing of H is called the
G-packing number of H and the packing problem of a graph G is to find
the G-packing number of K,, for any positive integer n. The packing and
covering problems were solved for trees with up to six edges by Roditty
[11, 12, 13, 14].

Since different packings might lead to different leave graphs, we consider
if it is feasible to achieve all possible leave graphs, the problem Roditty did
not solve. The problem of obtaining all possible leave graphs for G-packings
of a complete graph K, is called the spectrum problem for packing for G.

Here, we consider the spectrum problem for trees that have up to five
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edges. If T is any tree with less than four edges and n any positive integer,
the leave graph in a maximum T-packing of K,, has at most one edge and
the only possible leave graph will be K3 [11]. The spectrum problem for
packing has been solved by the authors for 4-stars [2] and 5-stars [3]. This
was the first time that this natural extension of the packing problem was
considered. In this paper, we solve the problem for all trees with up to five
edges. We introduce some known results and preliminary lemmas in section
2, then prove our main results in sections 3 and 4 through some recursive
constructions.

2 Preliminaries

In 1978 Huang and Rosa [6] solved the spectrum problem for trees with up
to eight edges. In particular, they proved the following theorem.

Theorem 1 ([6]). If n is any positive integer and T is any tree with i
edges, where i = 4 or 5, then the complete graph K,, has a T-decomposition
if and only if 221 =0 (mod i).

In 1986, Roditty solved the packing problem for all trees with four edges.
Theorem 2 ((13]). If T is a tree with four edges and n > 7 is any integer,
then the T-packing number of K,,, is l-’l("s—_ll_l and the number of edges in

the leave graph of a mazimum T-packing of K, is "("2"1) —4 I."("s'l) J

One of our main theorems states that for any tree T with four edges
and any integer n > 7, all possible leave graphs in T-packings of K, are
achievable.

The complete bipartite graph Ki is called a k-star and is denoted by
Sk. Using this terminology, we can say The non-isomorphic trees with four
edges are Sy, Ps, and A, where A is a 3-star with an edge attached to one
of its leave graphs. The spectrum problem for packing for the graph S;
was solved in 2013 by the authors [2]. In the next section, we solve the
spectrum problem for packing for the graphs A and P;.

Notation.
1. Let A be the tree with the vertex set V(4) = {z1,z3, %3, %4, 75}

and the edge set E(A) = {{z1, %2}, {z1, 23}, {z1,24}, {z4,75}}. We
denote A by (x1; z2,z3, 74 — T5).

2. Let 1,72, 3,74, and 5 be vertices of a path P;. We denote this
path with (z1,z2, 3,24, x5).
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The following lemma will be used to prove that all possible leave graphs in
T-packings of K, where T is any tree with four edges, are achievable.

Lemma 3. For positive integers m and n, n > 2, the graph K4man has a
P;-decomposition and an A-decomposition.

Proof. We first consider A. It suffices to show that Ko and K43 have
A-decompositions. For Kj 2, label the four vertices of one part with the
elements of Z4 having subscript 1 and the two vertices of the other part
with the elements of Z, having subscript 2. Then, the following trees form
an A-decomposition of the graph Ky 2. (See Figure 1.)

(02;01,11,2 — 13)

(12;01,11,31 — 02)

For K4 3, label the four vertices of one part with the elements of Z, having

0, 1, 2 3
ya
/
02 12
Figure 1: A-decomposition of Ky 2

subscript 1 and the three vertices of the other part with the elements of Z3
having subscript 2. Then, the following trees form an A-decomposition of
the graph K, 3 (See Figure 2).

(04;02,12,22 — 1)

(21;02,22,12 — 11)

(31512,29,0 — 13)

Now consider Ps.

For K2, label the four vertices of one part with the elements of Z4
having subscript 1 and the two vertices of the other part with the elements
of Zy having subscript 2. The following paths form a Ps-decomposition for

the graph Ky 2.
(01,02,11,12,2;)
(011 12) 31’ 02’ 21)
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Figure 2: A-decomposition of K, 3

For K43, label the four vertices of one part with the elements of Z4 having
subscript 1 and the three elements of the other part with the elements of Z3
having subscript 2. The following paths form a Ps-decomposition of Kj 3.

(01’ 02’ lla 121 21)
(01,22,24,0,3;)
(011 121 317 22! 11)

a

Corollary 4. If n > 2 is an integer, T any tree with four edges, and K,
has a T-packing with the leave graph H, then K, g has a T-packing with
the leave graph H.

Proof. Let n > 1, T be any tree with four edges, and R be a T-packing
of K, with the leave graph H. Write K,,;.3 = K, V Ks. By Theorem 1,
the complete graph K3 has a T-decomposition, S. Moreover, the complete
bipartite graph K, s has a T-decomposition, U, by Lemma 3. Therefore,
RUSUVU forms a T-packing of K,4s with the leave graph H. O

All non-isomorphic trees with five edges are shown in Figure 3.

Theorem 5 ([12]). If T is a tree with five edges and n > 9 is any integer,
then the T-packing number of K, is lﬂ';o—;llj and the number of edges in

the leave graph of a mazimum T-packing of K,, is "("2"1) -5 l"(';g I)J.

We will prove that for any tree T’ with four edges and any integer n > 7,
all possible leave graphs in T-packings of K, are achievable.

All non-isomorphic trees with five edges are S5, B, C, D, E, and Py (see
Figure 3). The spectrum problem for packing for the graph S5 was solved
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Figure 3: All non-isomorphic trees with five edges

in 2013 by the authors [3]. In this section, we solve the spectrum problem
for packing for the remaining trees.

Notation. Consider the vertex labels in Figure 3. We denote the trees
B! C’ Da E1 and P6 with (ml;1:21 T3,T4,T5 — -'176), (x1;$2vx3s T4 — Tg — xﬁ),
(z3; 6, T2, T4 — 1, Z5), (Z1 — T2, T3; T4 — T5,T6), and (1, T2, T3, Z4, T5, T6)
respectively.

Lemmas 6 and 7 will be used to prove that all possible leave graphs in
T-packings of K,, are achievable, where T is any tree with five edges.

Lemma 6. For positive integers m and n, the graph Ksmn has a B-
decomposition and a C-decomposition if n > 2, a D-decomposition and
an E-decomposition if n > 3, and a Ps-decomposition if n > 4.

Proof. Let m and n be positive integers, n > 2. We first consider B. It
suffices to show that K 2 and Ks 3 have B-decompositions. For K 2, label
the five vertices of one part with the elements of Zs having subscript 1 and
the two vertices of the other part with the elements of Z; having subscript
2. The following trees form a B-decomposition of K52 (see Figure 4).

(02;01y 11:21’31 - 12)
(12) 01: 11)21141 - 02)

For K3 3, label the five vertices of one part with the elements of Zs having
subscript 1 and the three vertices of the other part with the elements of
Z3 having subscript 2. The following trees form a B-decomposition of Ks 3
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Figure 4: B-decomposition of K5 2

(see Figure 5).

(02;04,141,2,3; — 13)
(12;01,11,41,21 — 2,)
(22;01,11,31,4; — 02)

Figure 5: B-decomposition of K5 3

Now we consider C. It suffices to show that the graphs K52 and K53
have C-decompositions.

For Ks,2, label the five vertices of one part with the elements of Zs
having subscript 1 and the two vertices of the other part with the elements

of Z, having subscript 2. The following trees form a C-decomposition of
K.

(02;01,11,2) — 15— 3,)
(12;01,15,41 — 02 — 3;)
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For K5 3, label the five vertices of one part with the elements of Zs having
subscript 1 and the three vertices of the other part with the elements of Z3
having subscript 2. The following trees form a C-decomposition of Kp 3.

(02;01,11,2) — 12 — 34)

(12;01,11,41 = 22 — 24)

(22;01,15,3; — 02 — 4)
Now let n > 3. First we consider D. It suffices to prove that the graphs
K53, Ks,4, and K55 have D-decompositions.

For Ks 3, label the five vertices of one part with the elements of Zs
having subscript 1 and the three vertices of the other part with the elements
of Z3 having subscript 2. The following graphs form a D-decomposition of
Ks 3.

(01;22,02,12 — 14, 2,)
(81502,12,22 — 11,2)
(41; 12102a 22 - 21) 11)
For Kj 4, label the five vertices of one part with the elements of Zs having

subscript 1 and the four vertices of the other part with the elements of Z,4
having subscript 2. The following graphs form a D-decomposition of Ks 4.

(02;01,11,21 — 22,15)
(12;01,31,41 — 22, 32)
(22501,21,41 — 32,02)
(32;01,11,3; — 12,07)
For Ks 5, label the five vertices of one part with the elements of Zs having

subscript 1 and the five vertices of the other part with the elements of Zs
having subscript 2. The following graphs form a D-decomposition of Ks 5.

(31322,02,12 — 04, 2;)

(41;02,12,22 — 04, 2;)

(01;22,32,42 — 31,41)

(115 22,02,32 — 21,41)

(42;31,11,21 — 12,32)
Now consider E. It suffices to prove the existence of an E-decomposition
of the graphs K5 3, K54, and Ks5.

For Kj 3, label the three vertices of one part with the elements of Z3
having subscript 1 and the five vertices of the other part with the elements
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of Zs having subscript 2. The following trees form an E-decomposition of
the graph K5 3.

(01 —02,12;22 — 1,,2)
(11 —02912;32 '—01721)
(21 —02,12;42 — 04, 1)

For K3 4, label the four vertices of one part with the elements of Z4 having
subscript 1 and the five vertices of the other part with the elements of Zs
having subscript 2. The following trees form an E-decomposition of the

graph Kjs 4.

(01 —12,42;22 — 14, 2y)
(11 = 12,32;42 — 21,3y)
(21 —02,12;32 — 04,3;)
(31 — 12,22;02 — 01,1,)

For K5 s, label the five vertices of one part with the elements of Zs having
subscript 1 and the five vertices of the other part with the elements of Zs
having subscript 2. The following trees form an E-decomposition of the
graph Ks 5. Note that the addition is taken modulo 5.

(1= (E+ 1)y, (1 4+ 2)p582 — (6 +1), (6 +2),),i € Zs

Finally, let n > 4. Parker proved that there exist Ps-decompositions of
Ks,4, K55, K56, and K; 7 [10]. Therefore, for any n > 4, the graph Kns
has a Ps-decomposition. O

Let m and n be positive integers. The disjoint union of graphs G and
H, denoted G+ H, is the union of graphs G and H with disjoint vertex sets.
The join of simple graphs G and H, denoted G V H is the graph obtained
from the disjoint union G + H by adding the edges {{z,y}|z € V(G),y €
V(H)}. Also for any graph G, mG is the graph consisting of m pairwise
disjoint copies of G.

Lemma 7. Ifn > 7 is an integer, T any tree with five edges, and K, has
a T-packing with the leave graph H, then K, .5 has a T-packing with the
leave graph H. Furthermore, this statement is true if n = 6 and T is any
of B,C, D, and E, orifn=25 and T is either of B or C.

Proof. Case 1. n>5,T =B

Let R be a B-packing of K, with the leave graph H. Write K, .5 =
K,V Ks. Label the vertices of K, with the elements of Z,, having subscript
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1 and the vertices of Ky with the elements of Zg having subscript 2. The
set of vertices {0;,11,2;:}, the set of vertices {02, 12,22, 32,42}, the edges
between these two sets, and the edges within the second set form a graph
Ks v 3K;. The following trees form a B-decomposition, S, of K5 V 3K;.

(12;01,11, (F + 1)2, (i +2)2 — 21), 1 € Zs

Now, the set of vertices {31,41, 51, - .., (n—1)1}, the set of vertices {02, 12, 22,
32,42}, and the edges between these two sets form a complete bipartite
graph K5 .3, which has a B-decomposition, T', by Lemma 6. Therefore,
RUSUT forms a B-packing of K5 with the leave graph H.

Case2. n25,T=C

Let R be a C-packing of K,, with the leave graph H. Write Kp45 =
K, vV K5. Label the vertices of K, with the elements of Z,, having subscript
1 and the vertices of K5 with the elements of Zs having subscript 2. The
set of vertices {0y, 11,2;}, the set of vertices {02, 12,22,32,42}, the edges
between these two sets, and the edges within the second set form a graph
Ky Vv 3K;. The following trees form a C-decomposition, S, of the graph
Ks Vv 3K;.

(02;12,22,01 — 32 — 13)

(12522,32,11 — 42 — 2)

(22;32,42,21 — 02 — 13)

(32;42,02,2; — 12 — 01)

(42;02,12,00 — 22 — 1,)
Moreover, the set of vertices {3;,4;,51,...,(n — 1)1}, the set of vertices
{02,12,22, 32,42}, and the edges between these two sets form a complete
bipartite graph K »—3, which has a C-decomposition, T, by Lemma 6.
Therefore, RU S UT forms a C-packing with the leave graph H for K, s.

Case3. n>6,T=D

Let R be a D-packing of K, with the leave graph H. Write K, 45 =
K, v K. Label the vertices of K,, with the elements of Z,, having subscript
1 and the vertices of K5 with the elements of Zs having subscript 2. The
set of vertices {01,11,2;}, the set of vertices {02, 12, 22, 32,42}, the edges
between these two sets, and the edges within the second set form a graph
K5 v 3K;. The following graphs form a D-decomposition, S, of K5 vV 3K;.

(32;01, (i + 1)2, (i + 2)2 — 13,24),i € Zs

The complete bipartite graph K n_3 with partite sets {31,4;,51,...,(n —
1), } and {02, 12, 2, 33,42}, has a D-decomposition, T, by Lemma 6. There-
fore, RUSUT forms a D-packing of K,4+s with the leave graph H.
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Cased. n>6,T=F

Let R be an E-packing of K, with the leave graph H. Write K45 =
K,VKj;. Label the vertices of K, with the elements of Z,, having subscript 1
and the vertices of K5 with the elements of Zs having subscript 2. The set of
vertices {01, 11,2, }, the set of vertices {02, 12,22, 32,42}, the edges between
these sets, and the edges within the second set, form a graph Kg V 3K;.
The following trees form an E decomposition of the graph K5 Vv 3K;.

(12 =01, (i +2)5; (i + 1)y — 11,21),i € Zs

Since n > 6, the complete bipartite graph with partite sets {3;,41,51,.. -,

(n—1),} and {02, 12,22, 32,42} has an E-decomposition, S, by Lemma 6.

Therefore, R U S forms an E-packing of K,,5 with the leave graph H.
Case 5. n>7,T =Py

Let R be a Pg-packing of K, with the leave graph H. Write K45 =
K,V Ks. Label the vertices of K,, with the elements of Z, having subscript
1 and the vertices of K5 with the elements of K5 having subscript 2. The
set of vertices {01,11,21}, the set of vertices {02, 12, 22, 32,42}, the edges
between these sets, and the edges within the second set, form a graph
Ks v 3K;. The following paths form a Ps-decomposition, S, of K5 V 3K].

(11,12,01,02,22,33)
(01,22,21,12,35,47)
(21,32,11,22,45,0,)
(21,02,14,42,13,27)
(21,42,01,32,04,15)

By Lemma 6, the complete bipartite graph with partite sets {31,41,51,...,
(r — 1)1} and {02, 12,22, 32,42} has a Ps-decomposition, T. Consequently,
RUSUT forms a Ps-packing of Kp15 with the leave graph H. O

3 Spectrum of packing for trees with four
edges
In this section, we will show how to achieve all possible leave graphs in T-

packings of K,,, where T is a tree with four edges, using the lemmas stated
in the preliminaries section.

Theorem 8. Let n > 7 be an integer, T be any tree with four edges, and
the leave graph in a mazimum T-packing of the complete graph K, have i
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edges. For any graph H with i edges there erists a mazimum T-packing of
K, such that the leave graph is isomorphic to H.

Proof. Let n > 7 be an integer and T be any tree with four edges. For n =
0,1 (mod 8), the complete graph K,, has a T-decomposition by Theorem
1. For n = 2,7 (mod 8), the leave graph is a single edge by Theorem 2.
In that case, the only possible leave graph is K; and that was obtained by
Roditty [13]. We show that for n = 3,4,5,6 (mod 8), we can achieve every
possible leave graph. As we stated, the only trees we need to prove the
result for are A and Ps. For both cases, we prove the theorem considering
congruency classes modulo 8.

Case . n=3 (mod 8), T = A

The leave graph has three edges by Theorem 2. Therefore, the possible
leave graphs are K3, S3, P;, 3K3, and Ps + K5. By Corollary 4, it suffices
to achieve all possible leave graphs for K;;.

The leave graph P, was obtained by Roditty [13]. In order to obtain the
leave graph K3, write K13 = K35V K3. Label the vertices of Kg with the
elements of Zg having subscript 1 and the vertices of K3 with the elements
of Z3 having subscript 2. By Theorem 1, K3 has an A-decomposition, R.
By Lemma 3, K3 g has an A-decomposition, S. Let S be formed by the
following trees.

(02;01,14,2) — 13)
(12;01,31,11 — 2,)
(22;01,21,3; — 02)
(02;41,51,6;1 — 12)
(12541,71,51 — 22)
(22;41,61,71 — 02)

Therefore, RU S forms a maximum A-packing of K;; with the leave graph
K.

In order to obtain the leave graphs P; + K5 and 3K3, we replace some
of the trees in this packing with others. Table 1 shows the required substi-
tutions.

In order to obtain S3 as the leave graph, label the vertices as before.
Let R be the A-decomposition of Kg. The set of vertices {01,11,2:}, the
set of vertices {02, 12,22}, the edges between these two sets, and the edges
within the second set, form a graph K3V 3K);. The following trees form an
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New tree(s) Previous tree(s) leave graph
(02;22,11,21 —12)  (02;01,11,2; — 12)
(12;01,02,11 —22)  (12;01,31,1; — 23) P3+ K2
(02;22,1;,21 —12)  (02;01,11,2; — 12)
(12;01,02,1; —22)  (12;01,31,1; — 29)
(22:01,12,31 —02) (22;01,21,3; —03) 3K,

Table 1: Substitutions in the packing RU S to obtain different leave graphs
for n =11

A-decomposition, S, of the graph K3 V 3K;.

(02;01,13,15 — 2;)
(12;01,11,29 — 24)
(22;01,15,02 — 24)

The complete bipartite graph with one partite set {3;,41,51,61} and an-
other partite set {02,12,22} has an A-decomposition, T, by Lemma 3.
Therefore, RU S UT forms a maximum A-packing of K1; with the leave
graph S3.

Case2. n=3 (mod 8), T = F;

By Corollary 4, it suffices to achieve all possible leave graphs for n = 11.
The leave graph has three edges by Theorem 2. Hence, the possible leave
graphs are K3, Ss, Py, P3+ K3, and 3K,. The leave graph P; was achieved
by Roditty [13]. In order to obtain the leave graph K, write K;; = KsVK3.
Label the vertices of K3 with the elements of Zg having subscript 1 and -
the vertices of K3 with the elements of Z3 having subscript 2. Let R be
a Ps-decomposition of K. The graph Kg 3 has a Ps-decomposition, S, by
Lemma 3. Therefore, RU S forms a maximum Ps-packing with the leave
graph Kj.

In order to obtain the leave graph S, partition and label the vertices
as above and let R be a Ps-decomposition of Kg. Consider the complete
bipartite graph with one partite set {31,4,,51,61} and the other partite
set {02,12,22}. This graph has a Ps-decomposition, S’, by Lemma 3. The
set of vertices {0;,11,2;}, the set of vertices {0, 12, 22}, the edges between
these two sets, and the edges within the second set form a graph K3V 3Kj.
The following paths form a Ps-decomposition, T, for K3 V 3Kj.

(127 02) 01, 221 11)
(22’ 12’ 111 02: 21)
(02y 22, 217 121 01)

Therefore, RU S’ UT forms a maximum Ps-packing of K; with the leave
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graph Ss.

The other leave graphs can be achieved by substituting some paths with
other ones in the packing RU S’ UT. (See Table 2.)

New path(s) Previous path(s) leave graph
021221711 12101) (02)22)21|12,01) P3+K2
71,12,21,22,02)  (01,12,21,22,02)

(71’22r01102l 12) (11r22’01:02y12)
(71,02,11,12,22)  (21,02,11,12,27) 3K,

Table 2: Substitutions in the packing RUS to obtain different leave graphs
forn =11

Case 3. n=4 (mod 8), T = A

By Theorem 2, the leave graph has 2 edges in this case. So, the only
possible leave graphs are P3 and 2K5. By Corollary 4, it suffices to achieve
all possible leave graphs for K;2. Roditty showed how to obtain the leave
graph P3 [13].

In order to achieve the leave graph 2K, write K32 = KV Ky. Label the
vertices of Kg with the elements of Zg having subscript 1 and the vertices
of K4 with the elements of Z, having subscript 2. By Theorem 1, Kg has
an A-decomposition, R. Consider the set of vertices {0y,1;,2;}, the set
of vertices {0z, 12, 22, 32}, the edges between these two sets, and the edges
within the latter. These vertices and edges form a graph K4 V 3K;. The
following trees construct a maximum A-packing, S, of the graph K4 Vv 3K,
with the leave graph 2K,. (See Figure 6.)

(02512,01,1; — 2;)
(12;22,01,1) — 32)
(22532,01,2; - 03)
(32;02,01,2 — 13)

Now, consider the complete bipartite graph with partite sets {3,,41, 51,
61,71} and {0y, 12,22,32}. By Lemma 3, this bipartite graph has an A-
decomposition, T. Therefore, RU SUT forms a maximum A-packing of
K5 with the leave graph 2K,.

Case 4. n=4 (mod 8), T =P

By Corollary 4, it suffices to achieve all leave graphs for n = 12. The
leave graph has two edges in this case. Hence, the possible leave graphs are
P; and 2K5. The leave graph 2K, was obtained by Roditty [13]. In order
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0: 1z 25 3

Figure 6: A-packing of K, V 3K with the leave graph 2K,

to achieve the leave graph Pj, write K12 = K3 V K4. Label the vertices
of Kg with the elements of Zg having subscript 1 and the vertices of K,
with the elements of Z4 having subscript 2. Let R be a Ps-decomposition
of Kg. The set of vertices {01,1;,2;}, the set of vertices {0z, 12, 22, 32}, the
edges between these two sets, and the edges within the second set form a
graph K4 V 3K;. The following paths form a maximum Ps-packing, S, of
K, v 3K, with the leave graph 2K5.

(12,02,01,25,1,)
(22,12,11,32,2;)
(32,22,21,04,1;)
(02,32,01,15,2,)

The complete bipartite graph with the partite sets {3,4;, 5;, 61} and {0,,
12,22,33} has a Ps-decomposition, T, by Lemma 3. Let U be the set
consisting of the single path (23,02, 71,32,15). Therefore, RUSUTUU
forms a maximum Ps-packing of K2 with the leave graph P;.

Case 5. n=5 (mod 8), T = A

By Theorem 2, the leave graph has 2 edges in this case. The possi-
ble leave graphs are P; and 2K;. By Corollary 4 it suffices to obtain all
leave graphs for n = 13. Roditty showed how to achieve the leave graph
P;. In order to gain the leave graph 2K,, write K13 = Ky; V Kp. Label
the vertices of K;; with the elements of Z;; having subscript 1 and the
vertices of K with the elements of Z; having subscript 2. In case 1, we
showed that there is a maximum A-packing of K;; with the leave graph
3K,. Let R be that packing and the edges of the leave graph be {561,61},
{71,81}, and {9,,10,}. Consider the complete bipartite graph with one
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partite set {01,1;,2;,...,7;} and another partite set {02,12}. This graph
has an A-decomposition, S, by Lemma 3. Let T be formed by the trees
(02;81,91,10; —15) and (13;02,8;,9; — 10;). Therefore, RUSUT forms a
maximum A-packing of K;3 with the leave graph 2K,.

Case 6. n=5(mod 8), T =F;

By Corollary 4, it suffices to achieve all leave graphs for n = 13. The
leave graph has two edges in this case. Hence, the possible leave graphs
are P; and 2K,. Roditty obtained the leave graph P; [13]. In order to
achieve the leave graph 2K,, write K13 = Ky V K. Label the vertices of
Ky with the elements of Zg having subscript 1 and the vertices of Ky with
the elements of Z4 having subscript 2. Let R be a Ps-decomposition of
Kjy. The set of vertices {01,11,2:}, the set of vertices {0z,12,22, 32}, the
edges between these two sets, and the edges within the second set form a
graph K4 v 3K;. The following paths form a maximum Ps-packing, S, of
K, V 3K with the leave graph 2K,.

(12; 02: Ol, 22) 11)

(22! 12! lla 321 21)

(32» 22’ 21: 021 11)

(02,32,01,12,2,)
The complete bipartite graph with one partite set {3;,4;, 51,61,71,81} and
the other partite set {02, 12,22, 32}, has a Ps-decomposition, T', by Lemma
3. Therefore, RUSUT forms a maximum Ps-packing of K;3 with the leave
graph 2K,.

Case 7. n=6 (mod 8), T=4
By Theorem 2, the leave graph has three edges in this case. The possible

leave graphs are those mentioned in case 2. By Corollary 4, it suffices to
obtain all possible leave graphs for n = 14. Write K14 = K13 V K3. Label
the vertices of K;; with the elements of Z,; having subscript 1 and the
vertices of K3 with the elements of Z3 having subscript 2. Let H be any
simple graph with three edges. By case 3, there is a maximum A-packing
of Kj1, R, with the leave graph H. The set of vertices {01,1;,2,}, the
set of vertices {02, 13,22}, the edges between these two sets, and the edges
within the second set, forms a graph K3 V 3K;. The following trees form
an A-decomposition, S, of the graph K3 Vv 3K;.

(02;04,11,12 — 21)

(12;01,14,22 — 21)

(22;04,1;,02 — 24)

The complete bipartite graph with one partite set {31, 41,51, 61,71,81,91,
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101} and the other partite set {02, 12,22}, has an A-decomposition, T, by
Lemma 3. Therefore, RU S UT forms a maximum A-packing of K14 with
the leave graph H. This completes the proof in this case.

Case 8. n=6 (mod 8), T = P;

The leave graph has three edges in this case by Theorem 2. Hence,
the possible leave graphs are those mentioned in case 1. By Corollary 4,
it suffices to achieve all possible leave graphs for n = 14. Let H be any
possible leave graph with three edges. Write K14 = K;; V K3. Label the
vertices of K1; with the elements of Z1; having subscript 1 and the vertices
of K3 with the elements of Z3 having subscript 2. By case 1, there exists
a maximum Ps-packing, R, of K;; with the leave graph H. The set of
vertices {01, 11,21}, the set of vertices {02, 12,22}, the edges between these
two sets, and the edges within the second set, form a graph K3V 3K);. The
following paths form a Ps-decomposition, S, of the graph K3 V 3K;.

(12,02,01,29,1;)
(22, 12, 111 02; 21)
(02: 221 21a 121 01)

The complete bipartite graph with partite sets {3,,41,51,...,10;} and
{02’ 121

2}, has a Ps-decomposition, T', by Lemma 3. Therefore, RU S U T forms
a maximum Ps-packing of K4 with the leave graph H. O

4 Spectrum of packing for trees with five edges

In this section, we will illustrate how to achieve all possible leave graphs
in T-packings of K,,, where T is a tree with five edges, using the lemmas
given in the preliminaries section.

Theorem 9. Let n > 9 be an integer, T be any tree with five edges, and
the leave graph in a T-packing of the complete graph K, have i edges. For
any graph H with i edges there erists a mazimum T-packing of K, such
that the leave graph is isomorphic to H.

Proof. Let n > 9 be an integer and T be any tree with five edges. As
we stated, all non-isomorphic trees with five edges are Ss, B, C, D, E,
and Ps, as shown in Figure 3, and for the tree S5 the result is already
established [3]. By Lemma 7, for each tree, it suffices to show the result
for n =9,10,11,12,13. For n =10 and 11 and T any tree with five edges,
there is a T-decomposition of K, by Theorem 1. For n = 9,12, the leave
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graph has a single edge by Theorem 5. Hence, the only possible leave graph
will be K3, which was given by Roditty [12]. Therefore, we only need to
achieve all possible leave graphs for n = 13. By Theorem 5, the leave graph
in 2 maximum T-packing of K3 has three edges. Hence, the possible leave
graphs are K3, S3, P;, P3+ K>, and 3K,. Now, for each tree T', we construct
maximum T-packings with each of these leave graphs.

Case1. T =B

In order to obtain the leave graph K3, write K33 = K0V K3. Label the
vertices of Ko with the elements of Z;¢ having subscript 1 and the vertices
of K3 with the elements of Z3 having subscript 2. By Theorem 1, Ko has
a B-decomposition, R. Moreover, the complete bipartite graph with one
partite set {0;,1;,21,...,9:} and the other partite set {02,12,22} has a
B-decomposition, S, by Lemma 6. Let S consist of the following trees:

(02;01,11,21,3; — 12)
(12501,13,4,21 — 22)
(22;01,14,31,41 — 02)
(025 51,61,71,81 — 12)
(12;51,61,91,71 — 22)
(22;51,61,81,91 ~ 02)

Therefore, RU S forms a maximum B-packing of K3 with the leave graph
K3. We can obtain all the other possible leave graphs (except S3) by making
small changes to this construction. (See Table 3.)

New tree(s) Previous tree(s) leave graph
(02;22,11,21,31 —13) (02;05,11,21,31 — 12) Py
(02;22,12,21,31 —12)  (02;01,11,21,31 — 12)
(22;12,01,11,41 = 02)  (22;01,11,31,41 — 02) P3 + K2
(02;22' 12; 21131 - 1;) (02;01y11721|31 - 12)
(22;12,01,11,41 — 02)  (22;01,11,31,41 — 02)
(12;02,01,41,21 — 22)  (12;01,11,41,21 — 22) 3K>

Table 3: Substitutions in the packing RU S to obtain different leave graphs
forn=13

In order to obtain the leave graph Ss, consider the same partition and
labeling of the vertices of K13 and let R be the same B-decomposition of
K1o. The complete bipartite graph with partite sets {41,51,61,71,81} and
{02,13,25}, has a B-decomposition, S’, by Lemma 6. The set of vertices
{04,11,21, 31}, the set of vertices {0z,12,22}, the edges between these two
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sets, and the edges within the second set, form a graph K3 vV 4K;. The
following trees form a B-decomposition, T', of K3 V 4Kj.

(i2;01,11,21, (i +1)2 — 31), 1 € Z3

Therefore, RU S’ UT forms a maximum B-packing of K3 with the leave
graph S3.

Case2. T=C

In order to obtain the leave graph K3, write K33 = Ko V K3. Label
the vertices of Ko with the elements of Z;y having subscript 1 and the
vertices of K3 with the elements of Z3 having subscript 2. Let R be the
C-decomposition of Kjo. The following trees form a C-decomposition, S,
of the bipartite graph with one partite set {0y,1;,2;,...,9;} and the other
partite set {02,12,2,}.

(02;01,13,29 — 15— 3)

(12;01,11,4; — 2, — 2;)

(22;01,11,31 — 02 — 4y)

(02;51,61,71 — 12 — 8;)

(12;51,61,91 — 22 — 7)

(22;51,61,8, — 02 — 9y)
Therefore, RU S forms a maximum C-packing of K3 with the leave graph
K.

In order to obtain the leave graphs Py, P; + K>, and 3K, we substitute
some trees in the packing R U S with new ones as shown in Table 4.

New tree(s) Previous tree(s) leave graph
(02;22,11,21 — 12 —31) _ (02;01,13,21 — 12 — 37) Py
(02;22,11,2) =12 = 3y) (02;01,11,27 — 12 — 31)
(12;01,02,41 —22 — 2;)  (12;01,11,4; =22 —21)  Ps+ K>
(02;22,11,2y — 13 — 3;)  (02;01,11,21 — 12 — 37)

(12;01,02,41 =22 —2;)  (12;01,19,41 — 22 — 2;)
(22;12,61,81 —02 —91)  (22;51,61,81 — 02 — 9;) 3K,

Table 4: Substitutions in the packing RU S to obtain different leave graphs
forn =13

In order to achieve the leave graph S3, partition and label the vertices
of K3 as above. Let R be the C-decomposition of K. The set of vertices
{01,14,2;,3;}, the set of vertices {02, 12,2,}, the edges between these two
sets, and the edges within the second set, form a graph K3 Vv 4K;. The
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following trees form a C-decomposition, S, of K3 V 4K).

(02;12,04,1; — 23 — 2;)
(12;22,01,2y — 02 — 3y)
(22;02,0,,3; — 12 — 13)

The complete bipartite graph with partite sets {4;,51, 61, 71,81} and {0z, 13,
2,}, have a C-decomposition, T', by Lemma 6. Therefore, RUS'UT forms
a maximum C-packing of K13 with the leave graph S3.

Case3. T'=D

In order to achieve the leave graph K3, write K13 = Ko V K3. Label
the vertices of K¢ with the elements of Z)o having subscript 1 and the
vertices of K3 with the elements of Z3 having subscript 2. Let R be a
D-decomposition of K19. The graph Kjo3 has a D-decomposition, S, by
Lemma 6. Therefore, RU S forms a maximum D-packing of K3 with the
leave graph Kj.

In order to obtain the leave graph S3, partition and label the vertices
of K3 as above. The set of vertices {04,11,21,3:}, the set of vertices
{02,12,22}, the edges between these two sets, and the edges within the
second set, form a graph K3 V 4K,. The following graphs form a D-
decomposition, S’, of the graph K3 Vv 4K].

(02;11,01,12 — 22,21), (125 01,22, 31 — 21,02), (225 31,02, 13 — 21,12)

The complete bipartite graph with partite sets {4, 51, 61,71, 81} and {03, 12,
2,} has a D-decomposition, T, by Lemma 6. Therefore, RU S’ UT forms
a maximum D-packing of K3 with the leave graph S3.

Substitution of some graphs D with some others in the packing RUS'UT
leads to the leave graphs Py, P; + K3, and 3K (See Table 5).

New graph(s) Previous graph(s) leave graph
(91;02,12,22 — 01,21)  (12;01,22,31 — 21,02) Py
(12;91,22,31 —21,02)  (12;01,22,31 = 21,02) Pa+ K>
(12;91,22,31 — 21,02)  (12;01,22,31 — 2, 02)

(02;91,12,01 — 21,22)  (02;11,12,01 — 25, 22) 3K,

Table 5: Substitutions in the packing RU S to obtain different leave graphs
forn =13

Cased. T=F

In order to obtain the leave graph K3, write K13 = Kjo V K3. Label
nine of the vertices of Ko with the elements of Zg having subscript 1, the
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remaining vertex of Kjo with oo, and the vertices of K3 with the elements
of Z3 having subscript 2. The graph Ko has an E-decomposition, R. Let
R contain the following trees. Note that the addition is taken modulo 9.

(i1 — 00, (i +1),; (1 +2), — (6 +5),,(i +6),),i € Zo

By Lemma 7, the graph Kig 3 has an E-decomposition, S. Therefore, RUS
forms a maximum FE-packing of K13 with the leave graph Kj.

In order to obtain the leave graph S3, divide and label the vertices of K;3
as above. The set of vertices {0;,14,21, 3;}, the set of vertices {0z, 1,25},
the edges between these two sets, and the edges within the second set, form
a graph K3V 4K,;. The following trees form an F-decomposition, T, of the
graph K3 V4Kj;.

(02 —01,11;12 — 21,31), (12 — 01,115 25 — 24, 31),
(22 —01,11;02 — 21, 3;)

The vertices 4,,5;,6;, 7,81, the vertices 03,15, 25, and the edges between
them, form a graph K3 5, which has an E-decomposition, U, by Lemma 6.
Therefore, RUT U U forms a maximum E-packing of K3 with the leave
graph Ss.

In order to obtain the remaining leave graphs, we substitute some trees
for others in the packing RUT UU. Table 6 illustrates these substitutions.

New tree(s) Previous tree(s) leave graph
02 —11,00;12 —21,31) (02-01,11;12-2,31) P+ K2
02 —11,00;12 —21,31) (02 —01,15;12 — 2;,34)

{12 —01,00;22 — 21,31) (12 —01,13;29 ~ 24,3;) 3K,
(02 —01,11;00 —12,22) (02 —01,13;12 — 21,31)
(21 —o00,12;41 — 71,81) (21 —00,31;41 — 71,8;) Py

Table 6: Substitutions in the packing RUT U U to obtain different leave
graphs for n =13

Case 5. T = Py

In order to obtain the leave graph K3, write K13 = KoV K4. Label the
vertices of Ko with the elements of Zs having subscript 1 and the vertices
of K4 with the elements of Z, having subscript 2. The graph Ky has a
maximum Pgs-packing, R, with a single edge as the leave graph. Let the
leave graph be the edge {7,,8,}. By Parker’s theorem [10], the complete
bipartite graph with partite sets {01, 11,21, 31,4;} and {02,12,22,32} has a
Pg-decomposition, S. The set of vertices {51,641, 71,8;}, the set of vertices
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{02,12,22, 3,2}, the edges between them, and the edges within the second
set, form a graph K4 V 4K;. The following paths form a maximum Ps-
packing, T, of the graph K, Vv 4K; U {7}, 8} with the leave graph Kj.

(61,02,64,12,71,81),(51,12,02,22,71,32)
(711 02, 32’ 619 221 12): (02a 811 12,32: 51, 22)

Therefore, RU S U T forms a maximum Ps-packing of K;3 with the leave
graph K3. Table 7 demonstrates the substitutions needed in the packing
RUSUT in order to obtain the other leave graphs.

New path(s) Previous path(s) leave graph
(51,02,61,12,71,22)  (51,02,61,12,71,81)
(51,12,02,22,32,71)  (51,12,02,22,71,32) S3
(51,12,02,22,32,81) (51,12,02,22,71,32) Py
(12,02,22,32,81,71)  (51,12,02,22,71,32)
(51,02,61,12,71,22)  (51,02,61,12,71,81) 3K>
(02,61,12,71,81,32)  (51,02,61,12,71,81) P3 + K>

Table 7: Substitutions in the packing RU S U T to obtain different leave
graphs for n =13

5 Conclusion and Further Research

In this paper, we constructed the spectrum of packing for the complete
graph with trees that have five edges or less. In the future, we are going to
construct the spectrum of covering for the complete graph with trees that
have up to five edges. We are also interested in the spectrum problem for
packings of the complete graph with trees that have a higher number of
edges.

Another direction that could be pursued is to consider decomposition (or
packing) of the complete graph with different types of trees. For instance,
consider the complete graph K¢ and write K16 = Kyp V Kg. Since the
graphs Kjo, Ks, and Kjo6 have a D-decomposition, S3-decomposition,
and E-decomposition respectively, The graph K can be decomposed with
the trees Sa, D, and E. This idea might lead to a proof of the conjecture
made in 1978 by Gyarfas and Lehel [4]. They conjectured that the complete
graph K, can be decomposed into any collection of trees T1,T3,...,Tn-1,
where each T; is a tree with i vertices.
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A mazimal G-packing of H is a G-packing of H in which the leave
graph contains no subgraph G. The difference between the maximal and
maximum packing is that in a maximum packing the leave graph has the
smallest possible number of edges, while in a maximal packing the leave
graph can have any number of edges as long as it does not contain any
subgraphs G. For example, Figure 7 demonstrates a maximal K3-packing
of Kg which is not maximum. Another subject to consider is the maximal
packing of the complete graph with small trees.

Figure 7: A maximal K3-packing of K¢
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