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Abstract

Let G be a graph with vertex set V(G) and edge set E(G). A
(»,q)-graph G = (V, E) is said to be AL(k)-traversal if there exist a
sequence of vertices {v;,v2,...,vp} such that foreachi = 1,2,...,p—
1, the distance for v; and vi41 is equal to k. We call a graph G
a k-steps Hamiltonian graph if it has a AL(k)-traversal in G and
the distance between v, and v; is k. In this paper, we completely
classify whether a subdivision graph of a cycle with a chord is 2-steps
Hamiltonian.

1 Introduction

The Hamiltonicity of a graph is the problem of determining for a given graph
whether it contains a path or a cycle that visits every vertex exactly once.
Hamiltonian graphs are related to the traveling salesman problem. Thus,
it has been a well-studied topic in graph theory. However, we know very
little about Hamiltonian graphs. A good reference for recent development
and open problems is [3].

Inspired by W.D. Wallis’s Magic Graph [11], A.N.T. Lee in 8] initiated
the study of AL(k)-traversal graphs and 2-steps Hamiltonian graphs defined
as follows:

Definition 1. For k > 2, a (p, ¢)-graph G = (V, E) is said to have k-steps
traversal if there exist a sequence of vertices, v;,vs, ..., vp, such that, for
each i =1,2,...,p— 1, the distance between v; and v;4, is equal to k. A
graph admits a k-steps traversal is called the AL(k)-traversal graph.
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Example 1. The graph showed in the figure 1 is AL(2)-traversal, but not
AL(k)-traversal for all £ > 3.

Figure 1: An AL(2)-traversal Graph

Definition 2. We call a graph G a k-steps Hamiltonian graph if it has a
AL(k)-traversal in G and the distance between vertices v, and v is k.

Note here that in Figure 1 the distance between the vertices labeled 1
and 7 is not 2. Moreover, there is no labeling to make this graph 2-steps
Hamiltonian.

Example 2. Figure 2 demonstrates a 2-steps Hamiltonian cubic graph.

Figure 2: A 2-steps Hamiltonian cubic graph

Definition 3. For integer k > 2, and a graph G, we construct a new graph
Di(G) as follows: V (Di(G)) = V(G) and (u,v) € E (Dx(G)) if and only
if d(u,v) = k in G. We call Di(G) as the distance k graph of G.

The following observation which would be useful in this paper was
recorded in [7].

Proposition 1.1. The cycle C, is k-steps Hamiltonian if and only if
ged(n, k) = 1.
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Proposition 1.2. The graph G is k-steps Hamiltonian if and only if its
distance k-graph is Hamiltonian.

Proposition 1.3. A bipartite graph is not AL(2)-traversal, thus, not 2-
steps Hamiltonian.

A Hamiltonian graph need not be k-steps Hamiltonian. One example
is a cycle Cp, with n = 0 (mod k) is Hamiltonian but not AL(k)-traversal,
hence cannot be k-steps Hamiltonian.

In this paper, we need the following lemma to determine whether a
distance 2-graph is Hamiltonian.

Lemma 1.4. If a distance 2-graph contains a subgraph H consisted with
all order 2 vertices and two order 3 vertices where the distance the two
order 3 vertices is greater than 1, then it is not Hamiltonian. Moreover, if
H consists with 3 or more order 3 vertices and those order 3 vertices are
adjacent to each other in two paths, then it is not Hamiltonian as well.

Proof. For a labeling cycle, it must enter the subgraph H through one of
the two order 3 vertices. But, since the distance between two order 3 ver-
tices is greater than 1, it is obvious that this cycle cannot be Hamiltonian.

Similarly, a path of adjacent order 3 vertices can be considered as one
order 3 vertex in the purpose of our proof. O

Definition 4. For a graph G, let S be a subset of E(G) and f: S — N.
The subdivision graph Sub(G, S, f) is the graph obtained by for any e in
S, if f(e) = m, then we insert m new m vertices along in e.

For a cycle of order n, we denote its vertices by vy, vs,...,vn. If it has
a chord between vertices v; and vk, then we denote this graph by Cp (k).

For a Sub (Cn(k), {v1, v}, f(v1,vk) = h) graph, we denote the added
vertices on the chord by wy, ws, ..., ws. Note that the vertex w, is adjacent
to the vertex v; and the vertex wy, is adjacent to the vertex vg.

Due to symmetry, Sub (C,(k), {v1, vk}, f(v1,vk) = k) is isomorphic to
Sub (Cn(n — k + 1), {v1,vn_k41}, f(¥1,Un—k+1) = k). Thus, we can assume
that 3<k < |2)+1.

Note that in a Sub(C,(k), {v1,vk}, f(v1,vx) = k) graph, the vertices
vy and vk are the two end vertices of three paths of length k, h + 2 and
n — k + 2. Thus, it is easy to see that

Lemma 1.5. The graph Sub (C,.(k), {v1, vk}, f(v1,vx) = h) is isomorphic
to the graph Sub (Cr4n(k), {v1, vk}, f(v1,vk) = n — k) as well as the graph
Sub (Cn—k+2+n(h), {v1,vn}, f(v1,v8) =k ~2).

Since, in general, a subdivision graph of a cycle with a chord is not
Hamiltonian, it would be interesting to see whether it is 2-steps Hamilto-
nian. Thus, in this paper, we investigate under what conditions the subdi-
vision graph Sub (Cn(k), {vi, vk}, f({v1, vk}) = h) is 2-steps Hamiltonian.
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2 Cycles C, when n <8

Let us start with small cycles. Note that for a cycle Cy,, n must be at least
4 to insert a chord.

Theorem 2.1. Sub (C4(3), {v1,v3}, f(v1,v3) = h) is 2-steps Hamiltonian
if and only if h is even.

Proof. When h is even, for a Sub (C4(3), {v1,vs}, f(v1,v3s) = h) graph, let
us label the vertices from 1 to 4 + h by the order

V1, V3, Wh—1, Wh=~3, ..., W1, V2, V4, Wh, Wh—-2y...,W2.

Since the distance between any two vertices in the order and between the
last vertex wq and the first vertex v; are all 2, by definition, it is a 2-steps
Hamiltonian graph.

When h is odd, we can group the vertices v;, ws, wy,...,wa—1,v3 in a
set and the other vertices in another set. It is easy to see that it becomes a
bipartite graph. By Proposition 1.3, it is not a 2-steps Hamiltonian graph.

This completes the proof. m]

Theorem 2.2. Sub (Cs(3), {v1,vs}, f(v1,v3) = h) is 2-steps Hamiltonian
forallh>1.

Proof. When h is odd, for a Sub (Cs(3), {v1,v3}, f(v1,v3s) = h) graph, let
us label the vertices from 1 to 5 + h by the order

vy, We, Wy, ..., Wh-1, V3, V5, W1, W3, ..., Wh, V2, V4.

Since the distance between any two vertices in the order and between the
last vertex v4 and the first vertex v; are all 2, by definition, it is a 2-steps
Hamiltonian graph.

When h is even, for a Sub (Cs(3), {v1,v3}, f(vi,v3) = h) graph, let us
label the vertices from 1 to 5 + h by the order

V1, V3, Wh—1, Wh-3,...,W1, V5, V2, V4, Wh, Wh-2, ..., W2.

Since the distance between any two vertices in the order and between the
last vertex wy and the first vertex v, are all 2, by definition, it is a 2-steps
Hamiltonian graph.

This completes the proof. O

Theorem 2.3. Sub (Cg(3), {v1,v3}, f(v1,v3) = h) is 2-steps Hamiltonian
if and only if h is even.
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Proof. When h is even, for a Sub (Cs(3), {v1,v3}, f(v1,v3) = h) graph, let
us label the vertices from 1 to 6 + h by the order

v, W2, Wy, ..., Wh, V2, V4, Vs, W1, W3, ..., Wh—1, V3, Us.

Since the distance between any two vertices in the order and between the
last vertex vs and the first vertex v, are all 2, by definition, it is a 2-steps
Hamiltonian graph.
When h is odd, we can group the vertices vy, v3, vs, wo, Wy, ..., wp—1 in
a set and the other vertices in another set. It is easy to see that it becomes a
bipartite graph. By Proposition 1.3, it is not a 2-steps Hamiltonian graph.
This completes the proof. o

Theorem 2.4. Sub (Cg(4), {v1,v4}, f(v1,v4) = h) is 2-steps Hamiltonian
if and only if h is odd.

Proof. When k is odd, for a Sub (Ce(4), {v1,v4}, f(v1,v4) = h) graph, let
us label the vertices from 1 to 6 + h by the order

U1, V3, Us, Wh, Wh=2, . . ., W1, V2, Vg, V4, Wh—1, Wh-3, ..., Wa.

Since the distance between any two vertices in the order and between the
last vertex wo and the first vertex v; are all 2, by definition, it is a 2-steps
Hamiltonian graph.

Note that when h = 1, the last vertex to label is v4. Since the distance
between v4 and the first vertex v, is 2, it is still 2-steps Hamiltonian.

When h is even, we can group the vertices vy, v3, vs, wo, wq, ..., ws, in a
set and the other vertices in another set. It is easy to see that it becomes a
bipartite graph. By Proposition 1.3, it is not a 2-steps Hamiltonian graph.

This completes the proof. ]

Theorem 2.5. Sub(C7(3), {v1,vs}, f(v1,v3) = h) is 2-steps Hamiltonian
if and only if h is odd or 2.

Proof. When £ is odd, for a Sub (C7(3), {v1,v3}, f(v1,v3) = h) graph, let
us label the vertices from 1 to 7 4 h by the order

V1, W2, Wy, ..., Wh-1, V3, Vs, V7, W1, W3, . .., Wh, U2, V4, Vg.

Since the distance between any two vertices in the order and between the
last vertex vg and the first vertex v; are all 2, by definition, it is a 2-steps
Hamiltonian graph.

When h = 2, for a Sub (C7(3), {v1,vs}, f(v1,v3) = 2) graph, let us label
the vertices from 1 to 9 by the order

W, Vs, Vs, U7, W1, V2, W2, V4, V.
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Since the distance between any two vertices in the order and between the
last vertex vg and the first vertex v; are all 2, by definition, it is a 2-steps
Hamiltonian graph.

When h = 4, for a Sub(C7(3), {v1,vs}, f(v1,vs) =4) graph, the sub-
graph with vertices, A, C, E, G, I, in the figure 3 demonstrates its distance
2-graph is not Hamiltonian by the Lemma 1.4. By Proposition 1.2, it is
not 2-steps Hamiltonian.

O—O—B8—0C
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Figure 3: A Sub(C7(3), {v1,v3}, f(v1,v3) =4) graph and its distance 2-
graph

Similarly, when % is even and greater than or equal to 6, the Dy graph
only gets a larger cycle and the same reason applies to show that it is not
a 2-steps Hamiltonian.

This completes the proof. ]

Theorem 2.6. Sub (C+(4),{v1,v4}, f(v1,v4) = h) is 2-steps Hamiltonian
if and only if h is even or 1.

Proof. When h is even, for a Sub (C7(4), {v1,v4}, f(v1,v4) = h) graph, let
us label the vertices from 1 to 7 + h by the order

v, W2, Wy, . . ., Wh, V3, Vs, V7, V2, W1, W3, ..., Wsh—1, V4, V6.

Since the distance between any two vertices in the order and between the
last vertex vg and the first vertex v; are all 2, by definition, it is a 2-steps

Hamiltonian graph.
When h = 1, for a Sub (C(4), {v1,v4}, f(v1,v4) = 1) graph, let us label
the vertices from 1 to 8 by the order

1, Ve, V4, V2, W), V7, Vs, V3.

Since the distance between any two vertices in the order and between the
last vertex vz and the first vertex v, are all 2, by definition, it is a 2-steps

Hamiltonian graph.
When h = 3, for a Sub(C7(4), {v1,v4}, f(v1,v4) = 3) graph, the sub-
graph with vertices, A, C, E, G, in the figure 4 demonstrates its distance
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Figure 4: A Sub(C7(4), {v1,vs}, f(v1,v4) = 3) graph and its distance 2-
graph

2-graph is not Hamiltonian by Lemma 1.4. By Proposition 1.2, it is not
2-steps Hamiltonian.

Similarly, when h is odd and greater than or equal to 5, the Do graph
only gets a larger cycle and the same reason applies to show that it is not
a 2-steps Hamiltonian.

This completes the proof. @]

Theorem 2.7. Sub (Cs(3), {v1,v3}, f(v1,v3) = h) is 2-steps Hamiltonian
if and only if h is even.

Proof. When h is even, for a Sub (Cs(3), {v1,vs}, f(v1,vs) = h) graph, let
us label the vertices from 1 to 8 + h by the order

V1, W2, Wy, ..., Wh, V4, Vg, Vg, V2, W1, W3, ..., Wh—1, V3, U5, V7.

Since the distance between any two vertices in the order and between the
last vertex v; and the first vertex v; are all 2, by definition, it is a 2-steps
Hamiltonian graph.

When b is odd, we can group the vertices vy, v3, vs, v7, Wo, Wy, . .., Wa_1
in a set and the other vertices in another set. It is easy to see that it becomes
a bipartite graph. By Proposition 1.3, it is not a 2-steps Hamiltonian graph.

This completes the proof. a

Theorem 2.8. Sub (Cs(4), {v1,vs}, f(v1,v4) = h) is 2-steps Hamiltonian
if and only if h is odd.

Proof. When 4 is odd, for a Sub (Cs(4), {v1,v4}, f(v1,v4) = k) graph, let
us label the vertices from 1 to 8 + h by the order

V1, W2, Wy, ..., Wh-1, V4, Vs, U8, V2, W1, W3, ..., Wh, U3, Vs, V7.

Since the distance between any two vertices in the order and between the
last vertex vy and the first vertex v; are all 2, by definition, it is a 2-steps
Hamiltonian graph.
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When h is even, we can group the vertices vq, v3, vs, V7, wo, Wy, . . ., Wh in
a set and the other vertices in another set. It is easy to see that it becomes a
bipartite graph. By Proposition 1.3, it is not a 2-steps Hamiltonian graph.
This completes the proof. m]

Theorem 2.9. Sub (Cs(5), {v1,vs}, f(v1,vs) = h) is not 2-steps Hamilto-
nian for all h.

Proof. When h is even, for a Sub(Cs(5), {v1,vs}, f(v1,vs) = h) graph,
the subgraph with vertices, A, C, E, G, in the figure 5 demonstrates its
distance 2-graph is not Hamiltonian by Lemma 1.4. Note that the dotted
line in the graph represents a path of even number order 2 vertices and the
dotted line in its distance 2 graph represents a path of order 2 vertices. By
Proposition 1.2, it is not 2-steps Hamiltonian.

® ©) ® B8
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Figure 5: A Sub(Cs(5), {v1,vs}, f(v1,v5) = h) graph when A is even and
its distance 2-graph

When h is odd, we can group the vertices vy, vs, vs, v7, W2, W4, ..., Wh—1
in a set and the other vertices in another set. It is easy to see that it becomes
a bipartite graph. By Proposition 1.3, it is not a 2-steps Hamiltonian graph.

This completes the proof. m]

3 General Results

In this paper, when we say a subgraph of a graph G is a path, we mean
every vertex in the path except two end vertices is order 2 in G.

Lemma 3.1. A graph G with a subgraph P which is a path of length 8 or
more is 2-steps Hamiltonian if and only if the induced graph H from G by
removing two non-end vertices from the path P is 2-steps Hamiltonian.

Proof. For convenience, we name the vertices of the path P by p1,p2,...,p:
where t > 8. Now, consider a 2-steps Hamiltonian is to travel from vertex to
vertex following its labeling from smallest number 1 to the largest number.

For a 2-steps Hamiltonian labeling, when it “enter” the path as deep as
the third vertex, it has to “travel through” the path and "leave” the path
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through the other end. If not, then to label the middle vertices, it has to
“enter” the path from the other side. After it labels all the middle vertices,
it still has to “leave” the path. It is impossible because the first few vertices
have been labeled. Since ¢t > 8, I_%_] > 3. Thus, it has to label at least one
more vertex before reaching the end of the path. Therefore, by removing
two vertices from the middle of the path, it remains 2-steps Hamiltonian.

Since ¢ > 8, even if you remove two middle vertices from the path, after
labeling by the first “travel through”, there are more than 3 vertices left to
label. Thus, similarly, when it “enters” the path the second time, it has to
“travel through” and label all vertices.

This completes the proof. m]

Corollary 3.2. Ifh <5, n 2> 14 and5 < k < |}]| + 1, then the graph
Sub (Cn(k), {v1, vk}, f(vi,vk) = h) is 2-steps Hamiltonian if the smaller
graph Sub (Cn_2(k), {v1, vk}, f(v1,vk) = h) is 2-steps Hamiltonian. Sim-
ilarly, the graph Sub (Cn(k), {v1, vk}, f(v1,vk) = h) is 2-steps Hamiltonian
if Sub (Cpn-2(k — 2), {v1, vk—2}, f(v1,vk—2) = k) under the same conditions.

For Sub (Cy(k), {v1, vk}, f(v1,v&) = h), there are k — 2 vertices in one
side of the cycle part and n — k vertices in another side. By Lemma 3.1, we
only need to consider whether Sub (Cy(k), {v1, vk}, f(v1,vx) = h) is 2-steps
Hamiltonian when k — 2, n — k and h are all less than 6. Since section 2
has clarified all cases when n < 8, we only need to check when 8 < n < 14
and3<k < [-’zlj + 1. At the same time, n — k < 6. Thus, we have

1. whenn=9,n—-k>6if k = 3;

2. whenn=10,n—-k>6if3 <k < 4;

3. whenn=11,n-k>6if3 <k <5

4. whenn=12,n-k>6if3<k <6;

5. whenn=13,n-k>6if3<k <7
Thus, we only need to check the following graphs:

1. Sub(Co(4), {v1,v4}, f(vi,vs) = k) where h < 5;
Sub (Co(5), {v1,vs}, f(v1,vs) = h) where h < 5;
Sub (C10(5), {v1,vs}, f(v1,vs) = h) where h < 5;
Sub (C10(6), {v1,v6}, f(v1,ve) = h) where h < 5;
Sub (C11(6), {v1,v6}, f(v1,v6) = h) where h < 5;

A
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6. Sub (C12(7), {v1,v7}, f(v1,v7) = h) where h < 5.

Theorem 3.3. Sub(Cy(4), {v1,v4}, f(v1,v4) = h) is 2-steps Hamiltonian
if and only if h is even or 1.

Proof. By Lemma 1.5, the graph Sub (Co(4), {v1, v4}, f(v1,vs) = h) is iso-
morphic to the graph Sub (Chy4(4), {v1,v4}, f(v1,v4) = 5). By Lemma 3.1,
we only need to consider h < 5. Thus, we need to check
1. when h = 1, since Sub (C5(4), {v1,v4}, f(v1,v4) = ) is isomorphic to
Sub (Cs(3), {v1,va}, f(v1,v3) = 5), it is 2-steps Hamiltonian by The-
orem 2.2;
2. when h = 2, since Sub (Cs(4), {v1,v4}, f(v1,v4) = 5) is 2-steps Hamil-
tonian by Theorem 2.4;
3. when h = 3, since Sub (C7(4), {v1,v4}, f(v1,v4) = 5) is not 2-steps
Hamiltonian by Theorem 2.6;
4. when h = 4, since Sub (Cs(4), {v1,vs}, f(v1,v4) = 5) is 2-steps Hamil-
tonian by Theorem 2.8;
5. when h = 5, the subgraph with vertices, A, H, F, D, M, K, in

the figure 6 demonstrates its distance 2-graph is not Hamiltonian
by Lemma 1.4. By Proposition 1.2, it is not 2-steps Hamiltonian.
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Figure 6: A Sub(Cy(4), {v1,v4}, f(v1,v4) =5) graph and its distance 2-
graph

This completes the proof. o

Theorem 3.4. Sub (Cy(5), {v1,vs}, f(v1,v5) = k) is 2-steps Hamiltonian
if and only if h =1 or 2.

Proof. By Lemma 1.5, the graph Sub (Co(5), {v1, vs}, f(v1,vs) = h) is iso-
morphic to the graph Sub (Cpr45(5), {v1,vs}, f(v1,vs) = 4). By Lemma 3.1,
we only need to consider h < 5. Thus, we need to check
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1. when h = 1, since Sub (Cg(5), {v1, vs}, f(v1,vs) = 4) is isomorphic to
Sub (Ce(3), {v1,vs}, f(v1,v3) = 4). Thus, it is 2-steps Hamiltonian by
Theorem 2.3;

2. when h = 2, since Sub (C7(5), {v1,vs}, f(v1,vs) = 4) is isomorphic to
Sub (C~(4), {v1,v4a}, f(v1,v4) = 4). Thus, it is 2-steps Hamiltonian by
Theorem 2.6;

3. when h = 3, since Sub (Cs(5), {v1,vs5}, f(v1,vs) = 4) is not 2-steps
Hamiltonian by Theorem 2.9;

4. when h = 4, the subgraph with vertices, E, G, I, J, L, in the figure 7
demonstrates its distance 2-graph is not Hamiltonian by Lemma 1.4.
By Proposition 1.2, it is not 2-steps Hamiltonian.
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Figure 7: A Sub(Cy(5), {v1,vs}, f(v1,v5) = 4) graph and its distance 2-
graph

5. when h = 5, the subgraph with vertices, A, C, E, M, K, in the figure 8
demonstrates its distance 2-graph is not Hamiltonian by Lemma 1.4.
By Proposition 1.2, it is not 2-steps Hamiltonian.
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Figure 8: A Sub(Cy(5), {v1,vs}, f(v1,vs) = 5) graph and its distance 2-
graph

This completes the proof. m]

Theorem 3.5. Sub (C10(5), {v1,vs}, f(v1,vs) = h) is not 2-steps Hamilto-
nian for all h.
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Proof. By Lemma 1.5, the graph Sub (C10(5), {v1,vs}, f(v1,v5) = h) is iso-
morphic to the graph Sub (Ch+5(5), {v1,vs}, f(v1,vs) = 5). By Lemma 3.1,
we only need to consider h < 5. Thus, we need to check

1. when h = 1, since Sub (Cs(5), {v1,vs}, f(v1,vs) = 5) is isomorphic to
Sub (Ce(3), {v1, v3}, f(v1,v3) = 5). Thus, it is not 2-steps Hamilto-
nian by Theorem 2.3;

2. when h = 2, since Sub (C+(5), {v1,vs}, f(v1,vs) = 5) is isomorphic to
Sub (C7(4), {v1,va}, f(v1,v4) = 5). Thus, it is not 2-steps Hamilto-
nian by Theorem 2.6;

3. when h = 3, since Sub (Cs(5), {v1,vs}, f(v1,v5) = 5) is not 2-steps
Hamiltonian by Theorem 2.9;

4. when h = 4, since Sub (Co(5), {v1,vs5}, f(v1,vs) = 5) is not 2-steps
Hamiltonian by Theorem 3.4;

5. when h = 5, we can group the vertices v;, vz, vs, v7, Vo, W2, w4 in a set
and the other vertices in another set. It is easy to see that it becomes
a bipartite graph. By Proposition 1.3, it is not a 2-steps Hamiltonian

graph.
This completes the proof. o

Theorem 3.6. Sub (Ci0(6), {v1, v}, f(v1,v6) = h) is not 2-steps Hamilto-
nian for all h.

Proof. By Lemma 1.5, the graph Sub (Cio(6), {v1,ve}, f(v1,v6) = 1) is
isomorphic to the graph Sub(C%(3), {v1,va}, f(v1,v3) = 4). Thus, Theo-
rem 2.5 tells us that when h = 1, it is not 2-steps Hamiltonian.

When h is odd, for a Sub (C;(6), {v1,v6}, f(v1,ve) = h) graph, the sub-
graph with vertices, A, C, E, M, G, I, in the figure 9 demonstrates its
distance 2-graph is not Hamiltonian by Lemma 1.4. Note that the dotted

J @ H @ B D
B © ) E J

Figure 9: A Sub (C10(6), {v1,ve}, f(v1,v6) = h) graph when h is odd and
its distance 2-graph
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line in the graph represents a path of even number order 2 vertices and the
dotted line in its distance 2 graph represents a path of order 2 vertices. By
Proposition 1.2, it is not 2-steps Hamiltonian.

When h is even, we can group the vertices vy, vs, vs, v7, vo, W, W4, . - ., Wh
in a set and the other vertices in another set. It is easy to see that it becomes
a bipartite graph. By Proposition 1.3, it is not a 2-steps Hamiltonian graph.

This completes the proof. 0o

Theorem 3.7. Sub(C11(6), {v1,vs}, f(v1,v6) = h) is 2-steps Hamiltonian
if and only if h =1 or 2.

Proof. By Lemma 1.5, the graph Sub (C1,(6), {v1, ve}, f(v1,v6) = h) is iso-
morphic to the graph Sub (Ch4.6(6), {v1,ve}, f(v1,v6) = 5). By Lemma 3.1,
we only need to consider h < 5. Thus, we need to check

1. when h = 1, since Sub (C7(6), {v1,ve}, f(v1,v6) = 5) is isomorphic to
Sub (C7(3), {v1, vs}, f(v1,v3) = 5). Thus, it is 2-steps Hamiltonian by
Theorem 2.5;

2. when h = 2, since Sub (Cg(6), {v1,ve}, f(v1,v6) = 5) is isomorphic to
Sub (Cs(4), {v1,v4}, f(v1,v4) = 5). Thus, it is 2-steps Hamiltonian by
Theorem 2.8;

3. when h = 3, since Sub (Co(6), {v1, ve}, f(v1,v6) = 5) is isomorphic to
Sub (Cy(5), {v1,vs}, f(v1,v5) = 5). Thus, it is not 2-steps Hamilto-
nian by Theorem 3.4;

4. when h = 4, since Sub (C10(6), {v1,ve}, f(v1,v6) = 5) is not 2-steps
Hamiltonian by Theorem 3.6;

5. when h = 5, the subgraph with vertices, A, M, O, F, H, J, in the
figure 10 demonstrates its distance 2-graph is not Hamiltonian by
Lemma 1.4. By Proposition 1.2, it is not 2-steps Hamiltonian.
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Figure 10: A Sub (C11(6), {v1,vs}, f(v1,v6) = 5) graph and its distance 2-
graph
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This completes the proof. o

Theorem 3.8. Sub (C12(7), {v1,v7}, f(v1,v7) = h) is not 2-steps Hamilto-
nian for all h.

Proof. When h is odd, we can group the vertices v, v3, us, vz, Vg, V11, W2,
Wy, ..., Wxr—1 in a set and the other vertices in another set. It is easy to see
that it becomes a bipartite graph. By Proposition 1.3, it is not a 2-steps
Hamiltonian graph.

When h = 2, since Sub (C12(7), {v1, v7}, f(v1,v7) = 2) is isomorphic to
Sub (Ce(4), {v1,v4}, f(v1,v4) = 5). Thus, it is not 2-steps Hamiltonian by
Theorem 3.3.

When h = 4, since Sub (Cy2(7), {v1,v7}, f(v1,v7) = 4) is isomorphic to
Sub (C11(6), {v1,ve}, f(v1,v6) = 5). Thus, it is not 2-steps Hamiltonian by
Theorem 3.7.

This completes the proof. o

Finally, by Corollary 3.2, since we cover all the basic cases needed
to classify whether a graph Sub(Cp(k), {vi,vx}, f(vi,vk) = k) is 2-steps
Hamiltonian, we can summarize the results here:

Theorem 3.9. The graph Sub (C,(k), {vi, vk}, f(v1,vk) = h) is 2-steps
Hamiltonian if and only if n, k and h satisfy one of the following con-
ditions:

1. k=3, n =2t wheret > 2 and h is even.
. k=3, n=5and h > 1.
k=3, n=2t+1 wheret >3 and h is odd or 2.

2

3.

4. k=4, n =2t wheret > 3 and h is odd.

5. k=4, n=2t+1 wheret > 3 and h is even or 1.
6.

k=t+1,n=2t+1 wheret>4 and h=1,2.
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