Decompositions of A\K, into LEO and ELO Graphs

Derek W. Hein and Dinesh G. Sarvate

ABSTRACT. The authors previously defined the Stanton-type graph
S(n,m) and showed how to decompose MK, (for the appropriate
minimal values of \) into Stanton—type graphs S(4, 3) of the LOE-,
OLE-, LEO- and ELO-types. Sarvate and Zhang showed that for
all possible values of A, the necessary conditions are sufficient for
LOE~ and OLE-decompositions. In this paper, we show that for ail
possible values of A, the necessary conditions are sufficient for LEO~
and ELO-decompositions.

1. Introduction

A simple graph G is an ordered pair (V, E) where V is an n—set (of
points), and E is a nonempty subset of the set of (’2‘) pairs of distinct
elements of V' (called edges). This can be generalized to a multigraph
(without loops) by allowing E to be a multiset, where edges can occur
with frequencies greater than or equal to 1. A complete multigraph
AK, (for A > 1) is a graph on n points with A edges between every
pair of distinct points. A complete bipartite multigraph AKp, , (for
A > 1) has A copies of each edge in a complete bipartite graph Kmn
(also denoted K5 when |S|=m and [T| = n.)

Decomposition of graphs into subgraphs is a well-known classical
problem; for an excellent survey on graph decompositions, see [1].
Recently several people including Chan [4], El-Zanati, Lapchinda,
Tangsupphathawat and Wannasit [5], Hein [6, 7], Sarvate, Win-
ter (9, 10] and Zhang [11] have worked on decomposing AK,, into
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multigraphs. In fact, similar decompositions have been attempted
earlier in various papers; see Priesler and Tarsi [8]). Ternary designs
also provide such decompositions; see Billington [2, 3].

The following definitions and examples are from [7]:

DEFINITION 1. Let V = {a,b,c,d}. An LEO graph |a,b,c,d| on
V' is a graph with 6 edges where the frequencies of edges {a,b}, {b,c}
and {c,d} are 1, 8 and 2 respectively.

a b c d
——— e

DEFINITION 2. Let V = {a,b,c,d}. An ELO graph (a,b,c,d) on
V is a graph with 6 edges where the frequencies of edges {a,b}, {a,c}
and {a,d} are 1, 2 and 3 respectively.
b
d I c
DEFINITION 3. For any positive integers n > 4 and A > 3, an
LEO-decomposition of AK, (denoted LEO(n,))) is a collection of
LEO graphs such that the multiunion of their edge sets contains A
copies of all edges in a K,.

DEFINITION 4. For any positive integers n 2> 4 and A > 3, an
ELO-decomposition of AK,, (denoted ELO(n,))) is a collection of
ELO graphs such that the multiunion of their edge sets contains A
copies of all edges in a K,,.

One of the powerful techniques to construct combinatorial de-
signs is based on difference sets and difference families; see Stin-
son [12] for details. This technique is modified to achieve our de-
compositions of AK,; in general, we exhibit the base graphs, which
can be developed (modulo either n or n — 1) to obtain the decompo-
sition.

EXAMPLE 1. Considering the set of points to be V = Zs, the
LEO base graph |0,1,3,2| (when developed modulo 5) constitutes an
LEO(5,3). o 1 3 2

multiunion

— .
decomposition
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EXAMPLE 2. Considering the set of points to be V = Zs, the
ELO base graph (0,1,4,2) (when developed modulo 5) constitutes an
ELO(5,3).

e
decomposition

1
2 I 4
]
2
3 | [}
1
3 maultiunion
4 | 1 _
2
4
0 l 2
3
0
1 | 3
4

We note that special attention is needed with the base graphs
containing the “dummy element” co; the non-oo elements are devel-
oped, while oo is simply rewritten each time.

EXAMPLE 3. Considering the set of points to be V = Z3 U {00},
the LEO base graphs |0,1, 00, 2| and |00,0,2, 1| (when developed mod-
ulo 8) constitute an LEO(4, 6).

multiunion

decomposition

THEOREM 1.1. 7] Let integers A > 3 and n > 4. An LEO(n, )\)
and an ELO(n, ) ezist for the minimum value of A\, which is

a) A=3, whenn=0,1,4,5,8,9 (mod 12),
b) A =4, when n =3,6,7,10 (mod 12) and
c) A =6, when n=2,11 (mod 12)

with the exception of an LEO(4, ), which has a minimum X of 6.

2. The Necessary Conditions

Since there are '\_"S"T-ll edges in a AK,,, and 6 edges in an LEO
or an ELO graph, we must have that An(n—1) = 0 (mod 12) (where
A 2> 3 and n > 4). Specifically, we have
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THEOREM 2.1. [11] For either an LEO(n,A) or an ELO(n, )),
the necessary conditions for n are:
1) n=0,1,4,9 (mod 12) when A =1,5 (mod 6)
2) n=0,1 (mod 3) when A = 2,4 (mod 6)
3) n=0,1 (mod 4) when A =3 (mod 6)
4) There is no condition for n when A =0 (mod 6).

3. LEO-Decompositions
As a special case, we first consider LEO(4, ).
LEMMA 3.1. In an LEO(4, ) we must have that A = 0 (mod 3).

PrOOF. We let V = {v1,...,v4}, e = {v1,v2} and f = {v3,v4}.
Suppose that an LEO(4, A) exists. We note each edge must occur
A times in this decomposition. If e occurs in the decomposition z
times with multiplicity 2, then f occurs z times with multiplicity
1. If e occurs y times with multiplicity 1, then f occurs y times
with multiplicity 2. Suppose that e occurs (without f) 2; times
with multiplicity 3, and that f occurs (without e) zo times with
multiplicity 3. Therefore we must have a solution to 2z +y+32; = A
and z + 2y + 3z; = A for some non-negative integers z,y,2; and
z9. Adding these equations, we have 3z + 3y + 3z; + 322 = 2, or
3(z + y+ z1 + z2) = 2\, This implies that 3 divides A. Hence, we
must have that A =0 (mod 3) when an LEO(4, ) exists. |

NOTE 1. [7] There does not ezist an LEO(4,3).

PROOF. We let V = {v1,...,v4}, e = {v1,v2} and f = {v3,v4}.
Suppose that an LEO(4, 3) exists. We note that we must have 3 LEO
graphs in this decomposition. Let an edge (say €) occur in an LEO
graph (say G;) with frequency 1. Then, f must occur in G; with
frequency 2. Thus, f has to occur in another LEO graph (say G2)
with frequency 1. Then, e will occur in G2 with frequency 2. We see
that graphs must come in pairs in this decomposition; that is, there
must be an even number of graphs in this decomposition. However,
3 is not an even number. Hence, an LEO(4, 3) does not exist. B

We recall that an LEO(4, 6) is given in Example 3.

ExAMPLE 4. The LEO graphs |0,1,2,3|, 10,1,3,2|, 10,3,2,1,
11,3,0,2], 12,0,3, 1], [2,3,1,0], |3,0,1,2|, |3,0,2,1] and |3,2,0,1| con-
stitute an LEO(4,9) with point set V = {0,...,3}. A

THEOREM 3.1. An LEO(4, \)- exists for all necessary A > 6.
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PROOF. Let A > 6. From Lemma 3.1 the necessary condition for
an LEO(4, A) is that A =0 (mod 3). Let A = 3¢ for ¢t > 2.

If ¢t > 2 is even (that is, if ¢ = 2s for s > 1), then A = 6s. By
taking s copies of an LEO(4, 6), we have an LEO(4, 6s) in this case.

Ift > 3 is odd (that is, if t = 25+ 1 for s > 1), then A = 6s+3 =
6(s—1)+9. By taking s — 1 copies of an LEO(4, 6) if necessary, and
adjoining an LEO(4,9), we have an LEO(4, 6s + 3) in this case. W

We now consider LEO(n, A) for n > 5. The following examples
play important roles in the sequel:

EXAMPLE 5. The LEO graphs |0,1,4,7|, |0,5,3,4|, |0,5,8,2]|,
10,7,2,3], 10,7,8,6], |1,0,3,6], [1,0,5,7|, |1,2,4,6], |1,2,5,8], |1,3,6,
0l, 13,1,2,0, [3,1,5,6], |3,4,7,1|, 3,8,2,5|, |3,8,6,7|, |4,3,7,2|,
14,3,8,1], |4,5,6,1], |4,5,7,0], |4,6, 1,5, 6,2,0, 1], |6, 2,3, 7], 6,4, 5,
3|, 16,4,8,0|, 16,7,1,4, |7,0,4,8|, |7,6,0,3|, [7,6,2,4|, |7,8,0,4| and
[7,8,1,3| constitute an LEO(9,5) with point set V = {0,...,8}. A

EXAMPLE 6. The LEO graphs |0,10,4,13|, |0,10,6,2|, |1,11,5,
14|, |1,11,7,3|, |2,12,6,0], |2,12,8,4|, |3,13,7,1], |3,13,9, 5, |4, 14,
8,2|, |4,14,10,6[, [10,0,9,3|, |10,5,1,12|, |10,5,14,8|, |11,1,10,4|,
111,6,0,9], |11,6,2,13|, |12,2,11,5|, |12,7,1,10|, |12,7,3,14], |13,3,
12,6|, |13,8,2,11], |13,8,4,0|, |14,4,13,7|, |14,9,3,12|, |14,9,5,1|,
|00, 0,8,1], |oo, 0,11, 7|, |o0,0,12,9], |oc, 0,13, 11|, |oo, 0, 14, 13|, |oco,
1,0,14, [00,1,9,2], |00, 1,12,8], |oo, 1,13, 10|, |oo, 1, 14,12], |oo, 2,0,
13|, |00,2,1,0], |00,2,10,3|, |00,2,13,9|, |0o,2,14,11{, |co,3,0,12],
oo, 3,1,14], |00, 3,2, 1|, |oo,3,11, 4|, |oo, 3, 14, 10|, |oo, 4,0, 11|, |00, 4,
1,13|, |00, 4,2,0], |00, 4,3,2|, |oo,4,12,5|, |oo,5,0,10|, |oo,5,2, 14|,
|00, 5,3, 1], |00, 5,4,3], |00,5,13,6]|, |00,6,1,11|, |00, 6,3,0|, oo, 6,4,
2|, |oo,6,5,4|, |oc,6,14,7|, |00, 7,0,8|, |oo, 7,2,12|, |00, 7,4,1|, |0o, 7,
5,3], |00,7,6,5], |00,8,1,9], |oo,8,3,13], |00,8,5,2], |00,8,6,4], oo,
8,7,6|, |0,9,2,10|, |oo,9,4,14], |,9,6,3|, |,9,7,5|, |c,9,8, 7|,
oo, 10, 3, 11}, oo, 10, 5,0}, oo, 10, 7,4|, |oo, 10, 8,6|, |00, 10,9, 8, |oo,
11,4,12], |00, 11,86, 1], |00, 11,8, 5], |00, 11,9, 7|, oo, 11,10, 9], |oo, 12,
5,13], [00,12,7,2], |00, 12,9, 6|, |oo,12,10,8], oo, 12, 11,10}, |oo, 13,
6,14], |00, 13,8, 3], |00, 13,10,7|, |oo, 13,11, 9|, |oo, 13,12, 11|, |oo, 14,
7,0|, |00, 14,9,4|, |oo, 14,11, 8|, |00, 14,12, 10| and |co, 14, 13, 12| con-
stitute an LEO(16, 5) with point set V = {0,...,14,00}. A

We note that the multiplicity of the edges is fixed by position,
as per the LEO graph. Also, A > 3 and n > 4. We begin with small

cases of A. Recall from Theorem 1.1 that an LEO(4, 3), an LEO(4, 4)
and an LEO(4, 5) do not exist.
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LEMMA 3.2. There exists an LEO(n,3) for the necessary n > 5.

PRrROOF. From case 3 of Theorem 2.1, the necessary condition is
n=0,1 (mod 4). Such LEO(n, 3) are given in [7, Theorem 2]. W

LeMMA 3.3. There erists an LEO(n,4) for the necessary n > 5.

PrOOF. From case 2 of Theorem 2.1, the necessary condition
is » = 0,1 (mmod 3). We expand this to n = 0,1,3,4,6,7,9,10
(mod 12). Notice that the cases n = 3,6,7,10 (mod 12) have been
done in [7]; the only cases that remain are n =0,1,4,9 (mod 12).

Let n = 12t (for ¢t > 1). We consider the set V as Z;3-.; U {oo}.
The number of graphs required for an LEO(12¢, 4) is a(12e)(12¢—1
4t(12t —1). Thus, we need 4t base graphs (modulo 12¢ —1). The dlf-
ferences we must achieve (modulo 12t —1) are 1,2, ...,6t—1. We use
the base graphs |8¢t—1, 2¢,0, oo|, |[8¢—1,2t+1,0, oo|, |8t—1, 2t+2,0,1|,
|8t —1,2t +3,0,1|, |8t — 1,2t + 4,0,2|, |8¢— 1,2t +5,0,2|,...,|8t —
1,6t —2,0,2¢t — 1] and |8t — 1,6t —1,0,2t — 1|. A

Let n = 12t+1 (for t > 1). We consider the set V as Zjg¢4;1. The
number of graphs required for an LEO(12¢ + 1,4) is 4 12”1'1 12) ~
4t(12¢t+1). Thus, we need 4t base graphs (modulo 12t +1). The dif-
ferences we must achieve (modulo 12t+1) are 1,2, ...,6t. We use the
base graphs |8t+1,2t+1,0, 1|, [8t+1,2t+2,0,1|, |8t+ 1,2t+3,0,2|,
I8t + 1,2t +4,0,2|,...,|8 + 1,6t — 1,0,2¢t| and |8t + 1,6t,0,2t|. A

Let n = 12t+4 (for t > 1). We consider the set V as Zj9;14. The
number of graphs required for an LEO(12¢ +4,4) is 412644)(12t43)
(4t+1)(12t +4). Thus, we need 4t +1 base graphs (modulo 12t + 4).
The differences we must achieve (modulo 12¢+4) are 1,2,...,6t+2.
We use the base graphs |8t + 2,2t + 1,0, 1|, |8t +2,2t +2,0,1|, |8t +
2,2t+3,0,2|, |8t+2,2t+4,0,2|,...,|8t+2,6t—-1,0,2t|, |8t+2, 6¢,0, 2t
and |8t +2,6¢+1,0,6t+2|. A

Let n = 12t + 9 (for t > 0). We consider the set V' as Zjg¢48 U
{oc0}. The number of graphs required for an LEO(12t + 9,4) is
g%wl = (4t + 3)(12t + 8). Thus, we need 4t + 3 base graphs
(modulo 12¢ + 8). The differences we must achieve (modulo 12¢ + 8)
are 1,2,...,6t+4. If t = 0 (so that n = 9), we use the base
graphs |2,0,3,00|, |3,0,2,00| and |2,1,0,4]. If ¢t > 1, we use the
base graphs |8t + 1,6¢,0,1|, |8t + 1,6t —1,0,1], [8¢ + 1,6t —2,0,2],
I8t + 1,6t — 3,0,2|,...,|8t + 1,2t + 2,0,2¢], |8t + 1,2t + 1,0,2¢|,
|6t+2, 0, 6t+3, 00, |6¢+3, 0, 6t+2, 00| and |12¢+2, 6¢+1,0,6t+4|. W
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OBSERVATION 1. We see that the LEO graphs |ag, b1, a1, bs], |b2,
ag, b1, a1, |b2, a1, b3, az|, |b1, az, b2, a1| and |b2, a2, b3, a1| constitute an
LEO-decomposition of 5K {a1,a2},{b1,b2,bs} - ¢

Sarvate, Winter and Zhang [9, 10] have obtained several results
on such multigraph decompositions of bipartite graphs.

LEMMA 3.4. There ezists an LEO(n,5) for the necessary n > 5.

PROOF. From case 1 of Theorem 2.1, the necessary condition is
n=0,1,4,9 (mod 12).

Let n = 12¢ (for ¢t > 1). We consider the set V as Zj;—; U {cc}.
The number of graphs required for an LEO(12t, 5) is 2(1—2"’){%_—11 =
5t(12¢ —1). Thus, we need 5t base graphs (modulo 12¢ —1). The dif-
ferences we must achieve (modulo 12t —1) are 1,2,...,6t —1. When
t = 1 (so that n = 12), we use the base graphs |oo, 0, 1, 6], |oo,0, 2, 6|,
|00, 0,3,6[, |0,0,4,6| and |00,0,5,6|. When ¢t = 2 (so that n =
24), we use the base graphs |00,0,1,11|, |00,0,2,11], |oo,0,3,11|,
|00, 0,4,11], |o0,0,5,11|, |0,11,17,22|, |0,11,18,22], |0,11,19,22],
0,11,20, 22| and |0,11,21,22|. When ¢ > 3, we use the base graphs
|00,0,1,5¢ + 1], |oo,0,2,5¢ + 1|, |00,0,3,5¢ + 1|, oo, 0,4, 5t + 1,
|00, 0,5,5¢+1], |6t~1,0,6, 5t+1|, |6t—1,0,7, 5¢+1|, |6t—1,0, 8, 5¢+1],
|6t —1,0,9,5¢ + 1], |6t — 1,0,10,5¢ + 1|,.. ., |5t + 2,0, 5t — 9, 5¢ + 1],
|5¢+2,0,5t 8, 5¢+1], |5t+2,0,5¢—7,5t+1, |5¢+2,0,5¢—6, 5t +1],
|5t +2,0,5¢t — 5,5t + 1| as well as |0, 5¢ + 1,10t — 3,10t + 2|, |0, 5¢ +
1,10t - 2,10t + 2|, |0, 5¢ + 1,10t — 1,10t + 2|, |0, 5¢ + 1, 10t, 10t + 2|
and [0,5¢+ 1,10t + 1,10t + 2|. A

Let n =12t +1 (for t > 1). We consider the set V as Z;9;;1. The
number of graphs required for an LEO(12t + 1,5) is ﬂgt—%l(l—ztl =
5t(12¢+1). Thus, we need 5¢ base graphs (modulo 12¢t+1). The dif-
ferences we must achieve (modulo 12¢t+1) are 1,2, ...,6t. Whent =1
(so that n = 13), we use the base graphs 0,6,11,12|, |0,6,10,12|,
0,6,9,12], |0,6,8,12 and |0,6,7,12|. When ¢t > 2, we use the base
graphs [0,5¢ + 1,10t + 1,10t + 2|, |0,5¢ + 1,10¢,10¢ + 2|, |0, 5¢ +
1,10t —1,10¢+2], |0,5¢+1,10¢—2, 10t +2], |0, 5+ 1, 10t —3, 10+ 2|,
|5t+2,0,5t 5,5t +1], |5t+2,0,5¢t—6,5¢t+1|, |5t+2,0,5t—7, 5t + 1},
|5 +2,0,5¢ — 8,5t + 1, |5¢ +2,0,5¢t — 9,5t + 1],...., |6t, 0,5, 5¢ + 1,
|6¢,0,4,5¢+1l, 6t,0,3,5¢t + 1|, [6£,0,2,5¢ + 1] and |6t,0,1,5¢ +1|. A

Let n = 12¢ +4 = 12(¢t — 1) + 16 (for t > 1). We consider the
set V as {a1,az,...,a16,b1,b,... yb19(¢-1y}. To obtain an LEO(16 +
12(¢ — 1), 5), we use an LEO(16, 5) on {aj, as,...,a1s} (given in Ex-
ample 6), an LEO(12(¢ — 1),5) on {b1,b2,...,b12¢-1)} (given two
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cases above) if necessary, and an LEO-decomposition of 5K 4, _, a,:},
{baje1,b3542b3j43) fOr alli=1,2,...,8 and for all j =0,1,...,4t -1
(given in Observation 1) if necessary. A

Let n = 12t + 9 (for ¢ > 0). We consider the set V' as {ay, az, ...,
aizt, b1, ba, ..., bg}. To obtain an LEO(12¢+9, 5), we use an LEO(12¢, 5)
on {a;,as,...,a12:} (given three cases above) if necessary, an LEO(9, 5)
on {by,bs, ...,bg} (given in Example 5), and an LEO-decomposition
of 5K{“2i—lya2i};{b3j+l:baj+2163j+3} for all i = 1,2, ...,6t and for all
j=0,1,2 (given in Observation 1) if necessary. [ |

LEMMA 3.5. There ezists an LEO(n,6) for any n > 5.

PRrROOF. We consider cases when n > 5 is odd or even.

Let n = 2t + 1 (for t > 2). We consider the set V as Za: .
The number of graphs required for an LEO(2t + 1, 6) is ﬁ%—'*l'im =
t(2t+1). Thus, we need t base graphs (modulo 2¢41). The differences
we must achieve (modulo 2¢ + 1) are 1,2,...,t. We use the base
graphs |0,1,¢t+1,¢, |0,2,t+1,1|,|0,3,t+1,2|,...,|0,¢,t+1,t—1|. A

Let n = 2t (for t > 3). We consider the set V as Zy;_U{oo}. The
number of graphs required for an LEO(2t, 6) is ﬂ@gL—_l). =t(2t—1).
Thus, we need ¢ base graphs (modulo 2t — 1). The differences we
must achieve (modulo 2t — 1) are 1,2,...,t — 1. If ¢t = 3 (that is, if
n = 6), we use the base graphs |0, 2,00, 1|, |00,2,0,3| and |0,4,3,2]|.
If t > 4, we use the base graphs |0, — 1,00, 1|, |00,0,t — 1,2t — 2|,
l0,1,¢-1,t-2|,0,2,¢t-1,1|,0,3,¢t-1,2|,...,]0,t—2,t—1,t—-3|. M

THEOREM 3.2. Let A > 3 and n > 4. An LEO(n, ) ezists for
all A and necessary n.

PROOF. We recall from Theorem 1.1 that there do not exist
LEO(4, 3), LEO(4, 4) or LEO(4, 5). We proceed by caseson A (mod 6).

For A =0 (mod 6) (so that A = 6t for ¢ > 1), by taking ¢ copies
of an LEO(n, 6) (given in Lemma 3.5), we have an LEO(n, 6t). A

For A\=1 (mod 6) (sothat A\=6t+1=6(t—1)+7=6(t—1)+
(8 + 4) for t > 1), we first take an LEO(n, 3) (given in Lemma 3.2)
and an LEO(n,4) (given in Lemma 3.3). (This gives us A = 7 thus
far.) We then adjoin this to ¢t — 1 copies of an LEO(n, 6) (given in
Lemma 3.5) if necessary. Hence, we have an LEO(n,6t +1). A

For A =2 (mod 6) (so that A =6t +2=6(t — 1) + 8 for ¢t > 1),
we first take two copies of an LEO(n, 4) (given in Lemma 3.3). (This
gives us A = 8 thus far.) We then adjoin this to ¢ — 1 copies of an
LEO(n, 6) (given in Lemma 3.5). Hence, we have an LEO(n, 6¢+2). A
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For A =3 (mod 6) (so that A = 6t + 3 = 3(2t + 1) for ¢ > 0), by
taking 2¢ + 1 copies of an LEO(n, 3) (given in Lemma 3.2) we have
an LEO(n, 6t + 3). A

For A =4 (mod 6) (so that A = 6t+4 for t > 0), we first take an
LEO(n, 4) (given in Lemma 3.3). (This gives us A = 4 thus far.) We
then adjoin this to ¢ copies of an LEO(n, 6) (given in Lemma 3.5) if
necessary. Hence, we have an LEO(n, 6t + 4). A

For A =5 (mod 6) (so that A = 6t+5 for ¢t > 0), we first take an
LEO(n, 5) (given in Lemma 3.4). (This gives us A = 5 thus far.) We
then adjoin this to ¢ copies of an LEO(n, 6) (given in Lemma 3.5) if
necessary. Hence, we have an LEO(n, 6t + 5). |

4. ELO-Decompositions

The following examples play important roles in the sequel:

EXAMPLE 7. The set of ELO graphs (0, 8,1, 4), (0,8,2,3), (0,8,3,
2)) (0’ 8’ 4’ 1)) (1’ 6’ 2’ 5)) (1!6, 37 4)’ (1’ 6) 47 3)} (1’6’ 57 2)) (21 41 67 3))
(2,5,3,6), (3,8,4,7), (3,8,5,6), (3,8,6,5), (3,8,7,4), (4,2,5,8), (4,
2,6,7),(4,2,7,6), (4,2,8,5), (5,2,0,6), (5,2,8, 0), (5,2,7,8), (5,2,8,
7, (6,1,8,0), (6,7,0,8), (7,6,0,1), (7,6,1,0), (7,6,2,8), (7,6,8, 2),
(8,0,2,1) and (8,3, 1,2) constitute an ELO(9,5) onV = {0,...,8}. &

EXAMPLE 8. The set of ELO graphs (0,7, 3,4), (0,00, 1,6), (0, oo,
27 5)’ (O, m? 4’ 3)’ (07 w’ 5’ 2)7 (07 w’ 6’ 1)’ (1’ 2’ 37 6)’ (17 21 4’ 5)’ (1’ 2’
5’ 4)} (1’ 27 6’ 3), (17 2’ 8, w)} (17 7’ w? 8)’ (2’ 91 5’ 6)’ (2) m’ 3’ 8), (2’ wl
47 7); (21 OO, 6: 5): (27 00, 7’ 4): (27007 81 3)’ (37 4) 57 8): (3!4) 6’ 7)’ (3’ 4’
7,6), (3,4,8,5), (3,4,00,10), (3,9,10,0), (4,11,7, 8), (4,0,5,10),
(4’ m’ 67 9)) (4) m’ 8’ 7)’ (4, w) 9’ 6)’ (4, w’ 107 5)) (5’ 6? 7’ 10), (5, 6’ 8’
9), (5,6,9,8), (5,6, 10,7), (5,6,00,12), (5,11,12,00), (6,13,9, 10),
(6,00,7,12), (6, 00, 8,11), (6,00,10,9), (6, 0, 11, 8), (6,00,12,7), (7,
0,8,13), (7,0,13, 8), (7,0, 14, 00), (7,0, 00, 14), (7,1,9, 12), (7,1,10,
11), (7,1,11, 10), (7,1, 12,9), (8,10,0, o0), (8, 10,9, 14), (8,10,12, 11),
(8,10,14,9), (8,10, 00,0), (8,13,11,12), (9,2,0,10), (9,2,1,00), (9,
2,10,0), (9,2,00,1), (9,3,11,14), (9,3,12,13), (9, 3,13,12), (9, 3, 14,
11), (10,13,0,12), (10,13,1,11), (10,13,2, 00), (10,13,11,1), (10, 13,
0,2), (10,14,12,0), (11,4,2,12), (11,4,3,00), (11,4,12,2), (11,4,
0, 3), (11,5,0,14), (11,5,1,13), (11,5,13,1), (11,5,14,0), (12,2,1,
0), (12,2,3,13), (12, 2,4, 00), (12,2, 13, 3), (12, 2, 00, 4), (12, 14,0, 1),
(13,6,0,3), (13,6,1,2), (13,6,2,1), (13,6,3,0), (13,8,4,14), (13,8,
5,00), (13,8, 14,4), (13,8, 00, 5), (14, 10,0, 5), (14, 10, 5,0), (14, 10,6,
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), (14,10, 00, 6), (14,12,1,4), (14,12,2,3), (14,12, 3,2) and (14,12,
4,1) constitute an ELO(16,5) on V = {0,...,14,00}. A

We note that the multiplicity of the edges is fixed by position,
as per the ELO graph. Also, A > 3 and n > 4. We begin with small
cases of A.

LEMMA 4.1. There ezists an ELO(n,3) for the necessary n > 4.

PROOF. From case 3 of Theorem 2.1, the necessary condition is
n=0,1 (mod 4). Such ELO(n,3) are given in [7, Theorem 3]. W

LEMMA 4.2. There ezists an ELO(n,4) for the necessary n > 4.

PROOF. From case 2 of Theorem 2.1, the necessary condition is
n=0,1 (mod 3).

Let n = 3t (for t > 2). We consider the set V as Zz;_1U{oo}. The
number of graphs required for an ELO(3t, 4) is ﬂ@—g‘—'g =t(3t-1).
Thus, we need t base graphs (modulo 3t — 1). We consider cases
when ¢t is even or odd. If t = 2s (that is, if n = 6s for s > 1),
then we need 2s base graphs (modulo 6s — 1). The differences we
must achieve (modulo 6s — 1) are 1,2,...,3s — 1. We use the base
graphs (0,3s — 2,3s — 1,00), (0,00,3s — 1,3s — 2) and the pairs
0,3z — 2,3z,3z - 1), (0,3z —1,3z,3z —2) forz = 1,...,s — 1 if
necessary. If t = 2s + 1 (that is, if n = 6s + 3 for s > 1), then we
need 2s + 1 base graphs (modulo 6s + 2). The differences we must
achieve (modulo 6s + 2) are 1,2,...,3s+ 1. We use the base graphs
(0,3s — 2,35 — 1,00), (0,00,35s — 1,35 — 2), (0,3s5,3s + 1,35 + 2)
and the pairs (0,3z — 2,3z,3z — 1) and (0,3z — 1,3z,3z — 2) for
z=1,...,s—1. A

Let n = 3t + 1 (for t > 1). We consider the set V as Z3;;;.
The number of graphs required for an ELO(3t + 1,4) is ‘.‘%)E_‘) =
t(3t+1). Thus, we need t base graphs (modulo 3¢+ 1). We consider
cases when t is even or odd. If t = 2s (that is, if n = 6s + 1), then
we need 2s base graphs (modulo 6s + 1). The differences we must
achieve (modulo 6s + 1) are 1,2,...,3s. We use the base graphs
(0,3z — 2,3z,3z — 1) and (0,3z — 1,3z,3z —2) forz =1,...,s. If
t = 2s + 1 (that is, if n = 6s + 4), then we need 25 + 1 base graphs
(modulo 6s + 4). The differences we must achieve (modulo 6s + 4)
are 1,2,...,3s+2. We use the base graphs (0, 3z —2,3z,3z — 1) and
(0,3z—1,3z,3z-2)forz=1,...,sand (0,35+1,35s+2,3s+3). W

134



OBSERVATION 2. We see that the ELO graphs (a, bg, by, b2), (a, bs,
b, b3), (a, bg, b3, by), (a, bs, ba, bs) and (a, bg, bs, by) constitute an ELO~
decomposition of 5K (4} (b by,..bs} ¢

LEMMA 4.3. There ezists an ELO(n,5) for the necessary n > 4.

PRrOOF. From case 1 of Theorem 2.1, the necessary condition is
n=0,1,4,9 (mod 12).

Let n = 12t (for t > 1). We consider the set V' as Zj2;—1 U {c0}.
The number of graphs required for an ELO(12t, 5) is —(&-)%2‘—_12
5t(12t — 1). Thus, we need 5t base graphs (modulo 12t —1). The dif-
ferences we must achieve (modulo 12¢t — 1) are 1,2,...,6t —1. When
t = 1, we use the base graphs (0,00,1,2), (0, oo,2,3), (0,0,3,4),
(0,00,4,5) and (0,00, 5,1). When t > 2, we additionally use the base
graphs (0, 6z, 6z+1, 6z+2), (0, 6z, 6z+2, 62+3), (0, 6z, 6x+3, 6z+4),
(0,6z,6z+4,6x+5) and (0, 6z,6z+5,6z+1)forz=1,...,t—1. A

Let n = 12¢t+1 (for ¢t > 1). We consider the set V' as Zjg¢41. The
number of graphs required for an ELO(12¢ + 1,5) is Jgtil;-x—l-z—tz
5t(12t + 1). Thus, we need 5t base graphs (modulo 12t +1). The
differences we must achieve (modulo 12¢+1) are 1,2,...,6t. We use
the base graphs (0, 6z + 1,6z + 2,6z + 3), (0,6x +1, 6:1: + 3,6z +4),
(0,6z+1,6x+4,6z+5), (0,6z+1,6x+5,62+6) and (0,6z+1,6z+
6,6z +2),forz=0,...,t—1. A

Let n = 12t + 4 (for t > 0). If t = 0 (so that n = 4), we
use the ELO graphs (0,1, 2,3), (1,0,2,3), (1,3,2,0), (2,1,3,0) and
(3,1,0,2). If t > 1, we let n = 12(¢t — 1) + 16. We consider the set V
as {ay,...,a16,b1,...b13¢—1)}. To obtain an ELO(16 + 12(¢ — 1), 5),
we use an ELO(16,5) on {a1,as,...,a16} (given in Example 8), an
ELO(12(t - 1),5) on {by,b2,...,b12¢—1)} (given two cases above) if
necessary, and an ELO—decomposmon of 5K {as}.fbes1 bs, +2,bs, +3,56544,
bojesbejse} fOralli=1,2,...,16 and for all j =0, 1,. —3 (given
in Observation 2) if necessary. A

Let n = 12¢+9 (for t > 0). We consider the set V as {a;,...,aq,
by, ..., bizt}. To obtain an ELO(9 + 12¢,5), we use an ELO(9, 5) on
{al,ag, yag} (given in Example 7), an ELO(12t,5) on {b1, by, ..
bi2¢} (glven three cases above) if necessary, and an ELO—decompo—

sition of 5K}, {bs,+1,be,+z,bsj+s.bs,+4,ba,+s,bs,+s} foralli=1,...,9and
forall j =0,1,2,...,2t—1 (given in Observation 2) if necessary. W

LEMMA 4.4. There ezists an ELO(n,6) for any n > 4.

PROOF. We consider cases when n is odd or even.
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Let n = 2t + 1 (for t > 2). We consider the set V as Zotyi-

The number of graphs required for an ELO(2t + 1, 6) is 2(&'1_%1(22 =
t(2t + 1). Thus, we need t base graphs (modulo 2¢ + 1). The dif-
ferences we must achieve (modulo 2t + 1) are 1,2,...,t. If t =2 (so
that n = 5), we use the base graphs (0, 1,2,4) and (0,3, 1,2). Ift > 3,
we use the base graphs (0,t—1,¢,1), (0,¢,1,2) and (0,s,5+1,5+2)
fors=1,...,t—2. A

Let n = 2t (for t > 2). We consider the set V as Zg—; U {c0}.
The number of graphs required for an ELO(2t,6) is —@9{?—2 =
t(2t — 1). Thus, we need t base graphs (modulo 2t — 1). The dif-
ferences we must achieve (modulo 2t — 1) are 1,2,...,t — 1. Ift = 2
(that is, if n = 4), we use two copies of the base graph (0,1,2,00).
If t = 3 (that is, if n = 6), we use the base graphs (0,2,1,00),
(0,00,2,1) and (0,1, 00,2). If t = 4 (that is, if n = 8), we use the base
graphs (0, 3,2,00), (0,00,3,1), (0,1,00,2) and (0,2,1,3). Ift =5
(that is, if n = 10), we use the base graphs (0,1, 4,00), (0,00, 3,4),
(0,2,00,3), (0,3,1,2) and (0,4,2,1). If t > 6, we use the base graphs
(0,t—1,t—2, 00), (0, 00, t—1,£—2), (0, £—2, 00, t—1), (0,t—4,t—3,1),
(0,t-3,1,2) and (0,s,s+1,s+2) fors=1,...,t-5. [ |

THEOREM 4.1. Let A > 3 and n > 4. An ELO(n, ) exzists for
all A and necessary n.

PRrOOF. We proceed by cases on A (mod 6).

For A =0 (mod 6) (so that A = 6t for ¢ > 1), by taking t copies
of an ELO(n, 6) (given in Lemma 4.4), we have an ELO(n, 6t). A

For A\=1 (mod 6) (so that A =6t+1=6(t—-1)+7=6(t—1)+
(3 + 4) for t > 1), we first take an ELO(n, 3) (given in Lemma 4.1)
and an ELO(n,4) (given in Lemma 4.2). (This gives us A = 7 thus
far.) We then adjoin this to ¢ — 1 copies of an ELO(n, 6) (given in
Lemma 4.4) if necessary. Hence, we have an ELO(n,6t +1). A

For A = 2 (mod 6) (so that A =6t +2=6(t — 1) + 8 for t > 1),
we first take two copies of an ELO(n, 4) (given in Lemma 4.2). (This
gives us A = 8 thus far.) We then adjoin this to ¢t — 1 copies of an
ELO(n,6) (given in Lemma 4.4) if necessary. Hence, we have an
ELO(n,6t +2). A

For A =3 (mod 6) (so that A = 6t + 3 =3(2t + 1) for ¢t > 0), by
taking 2t + 1 copies of an ELO(n, 3) (given in Lemma 4.1) we have
an ELO(n,6t + 3). A

For A = 4 (mod 6) (so that A = 6t +4 for t > 0), we first take an
ELO(n, 4) (given in Lemma 4.2). (This gives us A = 4 thus far.) We
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then adjoin this to ¢ copies of an ELO(n,6) (given in Lemma 4.4) if
necessary. Hence, we have an ELO(n, 6t + 4). A

For A =5 (mod 6) (so that A = 6t+5 for t > 0), we first take an
ELO(n,5) (given in Lemma 4.3). (This gives us A = 5 thus far.) We
then adjoin this to ¢ copies of an ELO(n, 6) (given in Lemma 4.4) if
necessary. Hence, we have an ELO(n, 6t + 5). |

5. Summary

In this paper, we addressed the necessary conditions for the ex-
istence of LEO- and ELO-decompositions in general (that is, for all
possible values A). In all cases, we proved that the necessary condi-
tions established in Section 2 are sufficient for these decompositions.
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