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Abstract

A vertex cover of a graph G = (V, E) is a subset S C V such that every edge is incident
with at least one vertex in S, and a(G) is the cardinality of a smallest vertex cover.
For a given vertex cover S, a defense by S to an attack on an edge e = {v, w}, where
v € S, is a one-to-one function f : § — V, such that (1) f(v) = w, and (2) for each
s € S — v, f(s) € N{s]. Informally, a set is an eternal vertez cover if it can defend
an "attack” on any edge and the process can be repeated indefinitely. The cardinality
of a smallest eternal vertex cover is denoted aSP(G). A set of vertices which is not an
eternal vertex cover is mortal. A formal definition of eternal vertex cover is provided
and demonstrated to be equivalent to a characterization using closed families of vertex
covers. Eternal vertex covers are shown to be closed under taking supersets and a lower
bound for a22(G) is given which depends on the vertex connectivity number and the
independent domination number. A corresponding upper bound is given for the size of
a mortal set. The death spiral number of a mortal vertex cover is defined and used to
partition the collection of all mortal sets. Mortal sets are shown to be closed under taking
subsets implying the collection of mortal sets for a graph with at least one edge is an
independence system. The death spiral number of a graph is the maximum of the death
spiral numbers of all mortal sets. An optimal attack/defense strategy is determined for
a set of size a%2(T) — 1 in a tree T, along with a polynomial labeling algorithm which
computes its death spiral number.

Keywords: vertex cover; eternal protection; mortal vertex cover; tree
covers; independence system; death spiral number

1 Introduction

A relatively recent area of research involves relating an “eternal” concept
to a standard graphical invariant. Goddard, Hedetniemi, and Hedetniemi
[6] introduced this idea by applying it to domination. If G = (V,E) is a
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graph, a subset S C V is a dominating set, not necessarily minimum, when
every vertex not in S is adjacent to a vertex in S. The set S can be thought
of as a collection of “guards,” where each guard protects its own vertex as
well as the vertices adjacent to it. An “attack” is the selection of a vertex
win V — S and a “defense” is the shift of a guard from a neighbor v of
w to w. Informally, S is an eternally secure set if the new configuration
of guards (S — {v}) U {w} is a dominating set and this process can be
repeated without ever producing a non-dominating set, regardless of the
attack strategy. The smallest number of guards required in an eternally
secure set is the eternal security number. Work on eternally secure sets can
be found in [1, 3, 11, 12].

This concept has been extended in three ways: (1) Allowing more than
a single guard to shift in each defense, (2) considering graphical invariants
other than domination, and (3) protecting edges from attack as opposed to
vertices. Such extensions have heen studied in {5, 7, 8, 9, 10, 13, 14, 15, 16].
This paper deals with eternal vertex covers as described in [2, 5, 10, 13, 16].

Let G be a graph with vertex set V(G) and edge set F(G). We assume
E(G) # 0 and none of the edges of G are loops. Given S C V(G), an
edge e € E(G) is covered by S (or simply covered if S is understood) if e
is incident with a vertex in S. The edge e is uncovered if e is not covered.
The set S is a vertez cover of G if every edge of G is covered by S. The
minimum size of a vertex cover is the verter cover number of G, denoted
a(G).

In the context of vertex covers, an attack occurs on a single edge and
a defense by S to the attack on the edge e = {v,w}, where v € S, is a
one-to-one function f : § — V/, such that (1) f(v) = w, and (2) for each
s € S —v, f(s) € N[s]. Informally, we say that “the guard on s shifts to
f(s)". More generally, if {v = z1,%2,...,241 = w} C S and f(z;) = zi4y
for 1 <4 <t we say “f shifts guards along a path from v to w”. An attack
strategy is a function A : P(V(G)) — E(G) where P(V(G)) is the power
set of V(G). Informally, a set S is an eternal vertez cover if there is no
attack strategy that can force an uncovered edge in some finite number of
attacks.

In Section 2, we will provide a formal definition of eternal vertex cover,
show its equivalence to a simple characterization, and use that characteri-
zation to prove some basic results.

The eternal vertex cover number of G, denoted a®(G), is the smallest
cardinality of an eternal vertex cover. This number is well-defined since for
any graph V(G) is an eternal vertex cover and, under our assumption that
G is loopless, any set with |[V(G)| — 1 vertices is an eternal vertex cover.
For any tree T, let J(T) be the set of non-leaf vertices of T. Klostermeyer
and Mynhardt [13] show the following:



Theorem 1 For any tree T, a2(T') = [I(T)| + 1.

If a guard set is not an eternal vertex cover, we say it is mortal. A
similar concept for domination is discussed by Burger, et. al. [4]. For
mortal guard sets, there is an attack strategy that will force an uncovered
edge after a finite number of attacks. For a mortal guard set S of size k
the minimum number of attacks needed to uncover an edge of G against an
optimal defense by S is the death spiral number of § denoted ds(G, S). The
maximum of the death spiral numbers taken over all mortal sets of size &
is called the kt* death spiral number of G, denoted ds*(G), i.e. ds*(G) =
max{ds(G, S) : S is mortal and |S| = k}.

In Section 3, we make these notions precise by partitioning the mortal
sets and present some general results. In Section 4 we provide a complete
analysis of death spirals and death spiral numbers for trees T when |S| =
|[I(T)|. We will show that a best initial configuration for the defender is
S = I(T), and from then on an optimal attack strategy paired with an
optimal defense strategy will cause every resultant vertex cover to contain
exactly one leaf. In addition, we provide a polynomial labeling algorithm
which computes ds*(T) for any tree.

2 General Graphs - Eternal Vertex Covers

The study of mortal and eternal vertex covers of arbitrary graphs appears
to be difficult. In this section we introduce basic facts related to such a
study. We assume G is an arbitrary connected graph with n = |V(G)|.

Let VC(G) be the collection of all vertex covers of G. A defense strategy
is a function D : VC(G) x E(G) = P(V(G)) such that D(S,e) = f(S) for
some defense f hy S to an attack on e. Given S € VC(G), a defense
strategy D, and an attack strategy A, we recursively define a sequence of
sets by S}, , = S and S, = D(Sh, 4,A(Sh,4)) for all i > 0 such that
S} 4 € VC(G). We are now able to provide a precise definition for eternal
vertex cover.

Definition 2 A4 set S is an eternal vertex cover if (1) S is a verter
cover and (2) there exists a defense strategy D such that for any attack
strategy A, Sp 4 € VC(G) for alli > 0.

This definition formalizes the common definitions found in the litera-
ture. The introduction of the S%’s provides a basis for sound inductive
arguments. However, an alternative simpler characterization exists based
on the following definition.



Definition 3 A collection of vertex covers, T, is said to be a closed
family of vertex covers if there ezists a defense strategy, D, such that
D(S,e) €T forall S € T and for all e € E(G).

The following theorem shows the equivalence of Definition 2 to a char-
acterization of eternal vertex covers using closed families of vertex covers.

Theorem 4 A set S is an eternal vertez cover if and only if S is in some
closed family of vertex covers.

Proof: Suppose S is an eternal vertex cover. Let D be the defense
strategy specified in Definition 2. Let T ={S},! a4: A is an attack strategy
and i > 0}. Let T € T and let e € E(G). By the definition of 7, T = S}, ,
for some attack strategy A and for some i > 0. Let ¢,, be the minimum
such ¢. By Definition 2, T is a vertex cover. Define an attack strategy A’ by
A(T) = e and A'(X) = A(X) for X € P(V(G)) — T. By the minimality
Of i, S5 4 = S5 4 for 0 < k < iy Hence, T = Spa = Sp'ar and
A'(Spa) = A'(T) = e. By substitution, D(T,e) = D(Si"y,, A'(S§%)) =
SB:Z,I € 7. By the arbitrary choice of T and e, for all T € T and for all
e € E(G), T is a vertex cover and D(T,e) € T. By definition 3, 7 is a
closed family of vertex covers.

Now, suppose § € T where 7 is a closed family of vertex covers. By the
definition of a closed family of vertex covers, there exists a defense strategy
D such that D(T,e) € T for all T € T and all e € E(G). Let A be an
attack strategy. By definition, S} , = § € T. Suppose Spa €T. By
the choice of D, S} = D[(S*(D, A), A(Sh, 4)] € T. Hence, by induction,
Sh.a €T for all i > 0. Since every set in a closed family of vertex covers
is a vertex cover, S"D' 4 € VC(G) for all i > 0. By the arbitrary choice of
A. S is an eternal vertex cover by definition 2. O

The proof in Theorem 4 relies on the functional nature of Definition
2 but it is not restricted to the vertex cover property. Characterizations
similar to the one given in the theorem exist for any type of eternal security
which lends itself to such a definition. In particular, given a definition of a
secure set and a specification of allowable responses by a secure set to an
attack, a set will be eternally secure if and only if it belongs to a family
of secure sets which is closed under the allowable responses. We will use
Theorem 4 and the following lemma to analyze subset relations hetween
sets of guards.

Lemma 5 Let X' and X be vertex covers. If X' C X and f' is a defense
by X' to an attack on an edge e, then there exists a defense f by X to an
attack on e such that f'(X') C f(X).



Proof: If X' = X let f = f'. Otherwise, X’ C X and it is sufficient to
show the result holds when X’ = X — {z} for an arbitrary x € X. Let f
be a defense by X’ to an attack on an arbitrary edge e. Let z1,79,...,Tp
be vertices in X of a maximal path, P, subject to the conditions z; = z
and f'(z;) = .- for 2 <t < p. (Note that if z ¢ f'(X’) then p=1.)

If e is not an edge of P, define f : X — V(G) by f(v) =v forv €
{x1,29,....,xp} and f(v) = f'(v) for v ¢ {z1,Z2,...,7p}. If e = {zi,zit1}
is an edge of P, define f : X — V(G) by f(z;) = zit1, f(ziv1) = s,
fw) = v for v € {z1,22,...,7p} —{ Zi,Tis1}, and f(v) = f'(v) for v ¢
{z1,%2,...,7p}. In both cases, f is a defense by X to an attack on e and

F(X)=f(X)—zp C f(X). O

Theorem 4 and Lemma 5 can be used to prove that the set of eternal
vertex covers is closed under the operation of taking supersets.

Theorem 6 If X' is an eternal vertex cover and X' C X, then X is an
eternal vertex cover.

Proof: Suppose X' is an eternal vertex cover and X’ C X. By Theorem
4, X' € T' where T’ is a closed family of vertex covers. Let 7 be the
collection of proper supersets of sets in 7'. Every set in T is a vertex cover
since it contains a vertex cover in 7’. Also, X € T since X' C X. Let
Y be an arbitrary element in 7. By definition of 7 there exists Y' € 7'
such that Y’ C Y. By Theorem 4 for any edge e there exists a defense
f' by Y’ such that f'(Y’) € T'. By Lemma 5, there exists a defense f
by Y to an attack on e such that f/(Y’) C f(Y). Since f'(Y’) € T’ and
(Y)Y C fY), f(Y) € T. Hence, T is a closed family of vertex covers and
X is an eternal vertex cover by Theorem 4. DO

Theorem 4 also provides a proof of the following statement involving
&(G), the vertex connectivity number of G, and v;(G), the independent
domination number of G.

Theorem 7 If X is a vertez cover of G and |X| > n — min{x(G),%(G)},
then X is an eternal vertexr cover.

Proof: Suppose X is a vertex cover and |X| > n — min{x(G),7:(G)}.
Equivalently, |V (G) - X| < min{&(G), 7i(G)}. The condition |V(G)—-X] <
x(G) implies that [X], the subgraph of G induced by X, is connected. Also,
by the definition of vertex cover, V(G)— X is an independent set of vertices;
so, [V(G) — X| < 7:i(G) implies V(G) — X does not dominate G. Hence,
there is a vertex z € X such that N(z) N (V(G) — X) = 0. Equivalently,
N(z) € X — {z}.

Let 7 be the set of all vertex covers Y with [Y] = |X|. Suppose an
attack is made on the edge {u,v} where v € V(G) — X. By definition



of vertex cover u € X and since [X] is connected there exists a path in
[X] from z to u. Hence, there is a defense f which shifts guards along
a path from z to v and leaves all other guards fixed. For this defense,
X - {2} C f(X), so X being a vertex cover and N(z) being a subset
of X — {x} implies f(X) is also a vertex cover. Since |f(X)| = |X|, we
conclude f(X) € T. By the arbitrary choice of e, T is a closed family of
vertex covers; hence, X is an eternal vertex cover by Theorem 4. O

3 General Graphs - Mortal Vertex Covers

The contrapositive of Theorem 7 gives an upper bound on the size of a
mortal vertex cover.

Corollary 8 If X is a mortal vertex cover of G, then
|X| < n — min{(G), %(G)}.

For each value of & > 1, we partition the set of mortal vertex sets of
size k by the following recursive definition. Let 7% be the set of all sets of
size k which are not vertex covers. For j > 0, let 'T;? be the set of all vertex
covers S of size k such that (1) for every attack there is at least one defense
f with f(S) not in 7% for any i < j — 1, and (2) there exists some attack
so that for every defense, f, f(S) is in T¥, where i < j — 1. Intuitively,
a best attack followed by a best response reduces the ”life expectancy” by
one. The set S is in 7'" if and only if |S| = k and ds(G,S) = j. Also,
ds*(G) is the largest value of j for which ’T" is not empty. For S € 7"‘ we
say (A, D) is an S-optimal attack/defense paz'r if A is an attack strategy, D
is a defense strategy, and S, 4 € T 3-i for 0 < ¢ < 5. Further, (4,D) is a
k-optimal attack/defense pair if (A, D) is an S-optimal attack/defense pair
for some set S of size k such that ds(G, S) = ds*(G),

The following observation states the properties of 7%’s for easy refer-
ence.

Observation 9 If X is a mortal vertex cover of G and X € T*, then:

1. For an attack on any edge e, there is a best defense, i.e., there is a
defense f such that f(X) € 7—§ for some j > i—1 or f(X) is an

eternal vertex cover;

2. There is a best attack, i.e., there is an edge e such that if f is any
defense to an attack on e then f(X) € 7';‘ for some j <i-—1;

3. For a best attack, there is a best defense, i.e., a defense f such that

fX)eTE .



Note that Part 3 of Observation 9 follows from parts 1 and 2. If u
and v are adjacent vertices and S C V(G) — {u,v} then S is not a vertex
cover. Hence, k < n — 2 implies 75 # @ . Also, since there are only a
finite number of subsets of V(G) of size k, Observation 9 part 3 implies the
following corollary.

Corollary 10 For each positive integer k < n — 2, there is a finite value
Ii; for which TX #0 for 0 <i < I and T* =0 for I, < i < oo.

The next ohservation follows immediately from the definition of a(G).

Observation 11 Ifk < « then I, =0

If S € T* then by Part 2 of Observation 9 there exists an edge e such
that for every defense f to an attack on e, f(S) € T’° where j < i. By Part
1 of Observation 9, S ¢ 7% for any i’ > i. By deﬁmtlon, TE is disjoint from
T* for all i > 0; hence, the collection of T¥’s are disjoint by induction. We
show that the union of the 7%’s contains all of the mortal vertex sets of
size k by using Theorem 4 to prove the contrapositive.

Theorem 12 A set S is an eternal vertex cover if and only if S ¢ T'f'
forany 7 >0.

Proof: Let T ={S§:S5 ¢ Tlsl, for any j > 0} and let S € 7. Suppose
there exists an edge e such that for every defense f by S to an attack
on e, f(S) € 'T‘SI for some j > 0. Let A be the set of all such edges,
and for each e e A, let D, he the set of defenses by S to an attack on
e. Let m = mineca(maxsep, ({7 2 0: f(S5) T;St})). By this choice of
m for every attack there is at least one defense f such that f(S) ¢ ’T'SI
for any i < m and there exists some attack such that for every defense f,
f(S) e Tls| for some i < m. By definition, S € 7-ISI +1 which contradicts
the deﬁnmon of T. Hence, for every e there exists a defense f by S such
that f(S) ¢ T'SI for all > 0, ie., f(S) € 7. Therefore, T is a closed
family of vextex covers and by Theorem 4, every set in 7 is an eternal
vertex cover.

On the other hand, suppose there exists an eternal vertex cover S € TISI
for some j. Let m be the minimum integer such that T8 contains an
eternal vertex cover and let S be such a set. Clearly, m > 0. By the
definition of 715 there exists an attack such that for every defense f,
f(S) € T'isl for some i < m. By the choice of m, f(S) is not an eternal
vertex cover. Hence, S is not in any closed family of vertex covers, which
contradicts Theorem 4. 0O



Corollary 13 The collection of T¥’s partition the mortal vertex sets of
size k.

By Theorem 12, when I, = 0, there is at least one set of k vertices
which is not a vertex cover and every set of k vertices which is a vertex

cover must he eternal.
Theorem 6 and Lemma 5 can be used to verify the natural and expected
relation between a mortal set and its subsets expressed in the next theorem.

Theorem 14 If X € Tix| and X' C X then X' € 7'5”, for some i’ < 1.

Proof: The result is trivial if X’ = X so we assume X’ C X. We let
X € 'Tlixl and induct on ¢, the length of the death spiral. If ¢ = 0 then

X € TH! and X is not a vertex cover. Hence, X' C X is not a vertex
cover, so X’ € TH*'! and the result holds.

Let i > 0 and assume that the result holds for all I < i (i.e., if X € T1*!
and X' C X, then X’ € T for some # < ). From Observation 9 part
2, there exists an edge e such that attacking e is a best attack against X
(i.e., for any defense f by X to an attack on e, f(X) € TLI X1 for some
k < i—1). By the contrapositive to Theorem 6, X’ is mortal and, by
Theorem 12, X' € Ti,xl for some i'. Let f’ be a best defense by X' to
an attack on e. From Observation 9 part 1, f/(X’) € T}{(X N for some
' 2 i — 1. By Lemma 5 there exists a defense f by X to an attack on
e such that f'(X’) C f(X). By the choice of e, f(X) € ’Ty(x)l for some
J £ 1-1. By induction, j* < j. We have ¢/ — 1 < j/ < j <i—1; hence,
¥ <i. O

The following corollary is the contrapositive to Theorem 6 and also
follows from Theorem 14.

Corollary 15 If X is a mortal set and X' C X then X' is a mortal set.

If G has a least one edge then the empty set is mortal and Corollary
15 implies the collection of mortal subsets of G is an independence system
(see [17] page 1484).

4 Trees with o — 1 Guards

If the number of guards in a tree T is not greater than the number of
internal vertices, then, by Theorem 1, the guard set is mortal. In this case,
a hest defense will place guards so as to maximize the death spiral number.
Here, we investigate the case where there are exactly |I(T)| = a® — 1

10



guards. Throughout the section we will assume that T is a tree with at
least one edge.

Suppose e is an edge of a tree T with end vertices u and v. Associate
with e the two ordered pairs, or directed edges, (u,v) and (v, u). Suppose C
is the component of T — e which contains u. If d = (u,v) then the tail-graph
of d, denoted Ty, is the subgraph of T which is induced by {v}UV(C). We
will also refer to Ty as a tail-graph of v. The Fan of d, denoted Fan(d), is
the set of directed edges of the form (y,u) with y # v.

We assign a label to each directed edge d = (u,v) recursively as fol-
lows. Once all the edges in Fan(d) have been assigned labels, we let
m = mingeran(ay{L(d’)} and M = mazyepan(ay{L(d’)} and assign the
label L(d) to d according to the equation:

M ifm< M
1+ M otherwise

0 if deg(u) =1

L(d) =

Figure 1 shows a simple tree with the associated labeled digraph. The
vertices b,c,d, e, g are the interior vertices of the tree. In the digraph a
possible guard set is indicated by the white vertices and Fan((e,g)) =
{(d,e),(f,e)}. Notice that u is an interior vertex of T if and only if the
edge (u,v) is labeled using the second or third condition of the recursive
definition. Also, both of these conditions imply the existence of an edge d’
in Fan(d) such that L(d’) < L(d).

a b c d e f

® *—0—&  J
g

h i

(a) Tree (b) Associated digraph and labeling
with initial assignment of guards

Figure 1: Example of a labeling and initial guard assignment

The directed edges (x,y) and (u,v) have the same direction if and only if
there is a directed path in T which contains both (z,y) and (u,v). The next
lemma establishes an important monotonicity condition on the labeling for
edges with the same direction.



Lemma 16 Let d = (u,v) be a directed edge in T. If d' € Ty is in the
same direction as d then L(d') < L(d).

Proof: Let P he a longest directed path from a leaf of Ty — v to u. We
induct on the length of P. If the length of P is 0 then v is a leaf and d
is the only edge in T, so the result holds vacuously. If the length of P is
greater than 0, then the label on d is generated by either the second or third
condition in the recursive definition and L(e) < L(d) for all e € Fan(d).
By induction, if e € Fan(d) and d’ € T, is in the same direction as e then
L(d") < L(e). Since every edge in Fan(d) is in the same direction as d, the
result follows by transitivity of inequality. O

The following observation provides useful properties of the labeling.

Observation 17 Suppose d = (u,v) is a directed edge of T. The following
conditions are equivalent:

1. u is an interior vertex of T,

2. L(d) is generated using the second or third condition of the recursive
definition of the labeling;

3. There exists a directed edge d’' € Fan(d) such that L(d') < L{d);
4. L{d) > 1.

Notice that Lemma 16 implies that all the labelings are non-negative.
Thus, Part 3 of the observation implies Part 4. The rest of the implications
are immediate from the recursive definition.

Let d be a directed edge and let P be a directed path d,,...,d1,do = d
. We say P is an L(d)-labeled path if L(d;) = L(d) for all m > i > 0. We
define Fan of P, denoted Fan(P), to be Fan(d,,). The path P is non-
extendable if L(d') < L(d) for all d’ € Fan(P). When L(d) # 0 and P is
non-extendable, d,,, must have been labeled via the third condition in the
recursive definition of the labeling. This leads to the following observation.

Observation 18 If P is a non-extendable L(d)-labeled path, then L(d') =
L(d) ~ 1 for all d’' € Fan(P).

Note that if d = (u,v) and L(d) = 0, then u is a leaf, P = d, and
Fan(P) = 0; so Observation 18 is vacuously true .

Let S be a subset of V(T') and let d = (u, v) be a directed edge. We say d
is S-vulnerableif |SNV (Ty)| <| I(Ty)|, that is, the guard set, when restricted
to Ty, is mortal. Note that if v € I(T), then I(Ty) # V(Tq) N I(T) since
v & I(Ty). We say d is exposed by S (or simply exposed if S is understood)
ifvogsS.
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The Labeling Attack Strategy is to attack an S-vulnerable exposed edge
d such that L(d) is a minimum among such edges. A key idea for the
corresponding defense strategy is to respond to such an attack by shifting
guards along a non-extendable L{d)-labeled path. The precise formulation
includes some technicalities so we delay it for the moment. First we will
show that the Labeling Attack Strategy provides an upper bound on the
death spiral number of 7. We begin with a counting argument.

Lemma 19 Let S C V(T). Let d = (u,v) be a directed edge with L(d) >
1. If (i) for all d € Fan(d) |S 0 (V(Ta) — {u})] 2| I(Ta)l, and (i)
there ezists d' € Fan(d) such that |S N (V(Ty) — {u})| > [{(Ta)l, then
IS0 (V(Ty) — {vH)l 2 (Ta)|-

Proof: By the definition of Fan(d), SN(V (T4)—{v}) equals the disjoint
union of SN {u} with Uge pana)(SN(V(Tar) — {u})). Hence, |SN(V(Ta)—
D] = 180 )] + | UsreFan (SN (V(T) — {u))] > | Usrepania (5 N
(V(Tz) - {u}))]. Since | Ugeran (S0 (V(Ter) = {y1)] = Sareran@lS 0
(V(T4)—{u})], the assumption implies Lae pan(a)| SOV (Tar)—{u})| 2 1+
Ed'GFan(d)]I(Td')l' The result follows since I(Td) = {U}U(Ud’eFan(d)I(Td’))
. 0

The next lemma guarantees the existence of a suitable next edge to be
attacked.

Lemma 20 Let S C V(T) and d = (u,v) be a directed edge with L(d) > 1.
If IS 0 (V(Ty) — {v})| < |I(Ty)|, then there exists an S-vulnerable directed
edge d' = (u',v') in Ty such that d’ is in the same direction as d and
L(d") < L(d).

Proof: We induct on |I(Ty)|. If |I(T4)] =1 then Ty is a star centered
at u. Also, |S N (V(Ty) - {v})| < |{(T4)| implies |S N (V(Ta) — {v})| = 0.
In this case, every directed edge in Ty — {v} which is in the same direction
as d has the form (x,u) where z is a leaf. By the definition of the labeling,
all such directed edges are labeled 0 and they all satisfy the conclusion of
the lemma.

Let |I(Ty)] > 1. Suppose u is in S. Among the components of Ty
induced by SN (V(Ty) — {v}) let Cy be the one that contains u. Since
V(C.) C 8N (V(Ty) — {v}), the condition |S N (V(Ty) — {v})| < |[I(Tu)l
implies I(Ty) — V(C.) # 0. Let {di, ..., dx} be the set of all directed edges
such that for each i, d; = (y;, ;) where y; € I(Ty)—V(C,) and z; € V(C,)
(the y!s are distinct but the /s need not be). See Figure 2 for an example
of this construction. For all i we observe that d; € T4 and is in the same
direction as d, hence, L(d;) < L{(d) by Lemma 16. This implies, again by
Lemma 16, that if d’ € Fan(d;) then L(d’) < L(d).

13



If for some i there exists d’ € Fan(d;) such that [SNV(Ty)| <| I(Ty)|
and L(d’) < L(d;) then d’ is S-vulnerable and satisfies the conclusion of the
lemma since d’, d;, and d are all in the same direction and L(d;) < L(d)
implies L(d') < L(d). Also, If for some i there exists d’ € Fan(d;) such that
SN (V(Tw) — {wi})| < |I(Ta)|, then by induction, since |I{Ta')| < [I(Ty)|,
there exists an S-vulnerable directed edge d” in Ty such that d” is in the -
same direction as d’ and L(d") < L(d’). Since d", d’, and d are all in the
same direction as d and L(d") < L(d') < L(d), d" satisfies the conclusion
of the Lemma.

Otherwise, if 1 < i < k and d’ € Fan(d;) we have: (i) |[SNn (V(Ty) —
{v:)] 2| I(Ts)| and (ii) L(d') < L(d) implies |S NV (Ta)| 2| I(Tw)| + 1.
Suppose 1 < ¢ < k. By Observation 17, there exists d € Fan(d;) such
that L(d) < L(d;). By (ii), |S N V(Tp| 2| I(T3)| + 1. This implies |S N
V(T - {v:} 2 [I(T i d))l +1 since y; £ S. By constructlon y; is an interior
vertex so L(d;) > 1, by Observation 17, which verifies the hypotheses of
Lemma 19 for d;. Lemma 19 and the arbitrary choice of i imply |S N
(V(Ta,) — {z:}| =2 [I(Ty,)| for 1 < i < k. These sets are disjoint so we may
sum the inequalities to obhtain TX_,|S N (V(Ty, ) - {x,})| > 2 (T,
This implies |Sﬂ (V(Ty) - {v})| = lV(C’ N+ZE SNV - {z:})| =
IV(CW)| + Z5_,11(Ty,)|. Since V(C,) U (U‘“II(T@ ) 2 I(Td) we have
[S N (V(Tu) — {v})| = |I(T4)|, a contradiction to the hypothesis of the
lemma, so this situation cannot occur.

If u is not in S then, as in the argument above, the absence of a directed
edge which satisfies the conclusion of the lemma implies the edges in Fan(d)
satisfy the hypotheses of Lemma 19; hence |S N (V(Ty) — {v})| =| I(Ty)|
once again contradicting the hypothesis. O

Corollary 21 Let S C V(T) and d = (u,v) be a directed edge with L(d) >
L IfISO(V(Ty) — {v})| < |I(T4)| then there exists an erposed S-vulnerable

directed edge d' = (v',v") in Ty such that d’ is in the same direction as d
and L(d') < L(d).

Proof: By Lemma 20 there exists an S-vulnerable directed edge d’' =
(v’.v') in Ty such that @’ is in the same direction as d and L(d’) < L(d). If
d’ is exposed, we're done. Hence, we assume d’ is not exposed which implies
1SN (V(Te) — {v'})| < [I(Ty)|. If L(d") > 1 we're done by induction on
L(d). If L(d') = 0 then being S-vulnerable implies d’ is exposed (indeed in
this case S is not even a vertex cover). O

Corollary 22 If § C V(T) and |S| < |I(T)| then there erists an exposed
S-vulnerable directed edge.
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V(Cu) = {u, 2,71}
V(de) = {zl’ylawl’el’ZZ}
V(Ta,) = {z2,y2, w2, 03,44, ¢5}

& 123

Figure 2: Construction from Lemma 20

Proof: Let v be a leaf of T and d = (u,v) be a directed edge. Since
I(T4) = I(T), d is S-vulnerable. If d is exposed, we’re done. Consequently,
we assume v € S which implies |S N (V(Ty) — {v})] < |S| £ [[(Ta)|. If
L(d) = 0 then by Observation 17 u is not an interior vertex. This implies
T is a K2, S = 0 and d is exposed. Otherwise, L(d) > 1 and the result
follows from Corollary 21. O

For S C V(T) we let Ezp(S) be the set of exposed S-vulnerable directed
edges and define the life expectancy of S, denoted LE(S), by LE(S) =
min({L(d) : d € Exp(S)}). The next lemma relates the death spiral num-
ber of a mortal vertex cover S to the life expectancy of S.

Lemma 23 If S C V(T) with |S| < a2(T) — 1, then S € T} where j <
LE(S). In particular, the Labeling Attack Strategy will force an uncovered
edge in at most LE(S) attacks.

Proof: By Corollary 22 and the definition of LE(S) there exists an
exposed S-vulnerable edge d = (u,v) where L(d) = LE(S). Following
the Labeling Attack Strategy, we attack this edge and let f he a defense
to this attack. By definition, f shifts a guard from u to v; so, |f(S) N
(V(Ty) = (v = 1SNV (Tu)| -1 < |SNV(Ty)| < |I(Ty). By Corollary
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21 there exists an exposed f(S)-vulnerable directed edge d’' in Ty such
that d’ is in the same direction as d and L(d') < L(d). By the definition
of life expectancy and the choice of d, LE(f(S)} < L(d") < LE(S). By
induction, £(S) € T1°' where t < LE(f(S)). It follows that S € T1*! where
F<L(d)+1< L(d)= LE(S). O

Lemma 23 shows that the Labeling Attack Strategy provides an upper
bound on the life expectancy of a set of size aS9(T) — 1. Our next task
is to provide a defense that forces the bound. We begin by describing the
guard placements that will be generated by our defense.

A subset S of V(T') is a standard defensive position (an SDP) if |S| =
|I(T)| and |S — I(T)| <1 (i.e., S contains at most one leaf). We let Sy be
the standard defensive position I(T). Otherwise, |S — I{(T)| = 1 and there
exists a single leaf s € S—I(T') and a single internal vertex v € I(T)—S. We
call v the central vertexr of S. Among the various tail-graphs of v, we define
the guarded — leaf component of S, denoted GLC(S), to be the one that
contains s. Note that GLC(S) has a guard on each of its internal vertices as
well as on the leaf s and that Sp has no guarded-leaf component. A simple
hut effective response to attacks on edges in the guarded-leaf component is
described in the proof of the following observation.

Observation 24 If e is an edge in GLC(S) where S is an SDP, then
there is a response to an attack on e which results in an SDP S’ such that
either S' = Sy or GLC(S') = GLC(S).

Proof: Let z and y be the end vertices of e. If z and y are both in S,
we swap them and S’ = S. Otherwise, without loss of generality z € S and
y ¢ S. By the definition of GLC(S), either y = v or y is a leaf. In either
case, the path P in T from s to y is contained in GLC(S) and goes through
2 to y. Obtain Sk by shifting the guards along P leaving all other guards
fixed. If y = v then 8’ = Sy, and if y is a leaf then GLC(S') = GLC(S).
(]

We use this ohservation in proving the following lemma.

Lemma 25 If the initial guard set is So, then there is a defense strategy
such that after any k attacks the guard set will be a standard defensive
position S with LE(S) + k > LE(So).

Proof: For k =0, LE(Sp) + 0 > LE(Sp). Suppose after £ > 0 attacks
the guard set is an SDP, Sy, with LE(S,) + k& > LE(Sp). Further suppose
an attack is made on the directed edge d = (z,y) where x € S and y ¢ Si.
Let P4 be a non-extendable L(d)-labeled path dp,, dpm—1,...,d; with d; = d
and dy, = (Zy T—1)-
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If S;. = Sp, then y is a leaf of T so L(d) > LE(Sp). Obtain Si4+1 by
shifting guards along Py so =, becomes the central vertex of Sk41. This
defense puts the vertex z,,—; into the guarded-leaf component of Si41, so,
(Tm—1,Zm) is not S-vulnerable. It follows that Ezp(Sks+1) C Fan(Pas) U
Exp(Sk). By Observation 18, LE(Sk+1) = min(L(d) — 1,LE(Sk)) >
LE(Sk)—1. Hence, LE(Sk4+1)+k+1> LE(Sk)—1+k+1> LE(So)+k >
LE(So). If k > 1 then the inequality is strict, which corresponds to the in-
tuitive notion that an attack that allows the defense to return to Sp cannot
be optimal.

We now assume S # So. By the definition of SDP, either y = v or
y is a leaf. Let t be the vertex adjacent to the guarded leaf s. Note that
L(t,s) > LE(So) since s is a leaf. Let Py be the path in T' from s to y.
There are three cases.

Case 1. The edge (z,y) is in GLC(Sk). Obtain Si4; by using the
response from Observation 24. If Siy1 = Sp, then LE(Sk41) +k+1 =
LE(So) +k+1> LE(Sy). If GLC(Sk41) = GLC(Sy), then Exp(Sk+1) =
Exzp(S:) which implies LE(Sk4+1) = LE(Sx) and LE(Sk41) + k+1 >
LE(Sk)+k > LE(So). Note that both instances produce a strict inequality
which confirms the notion that optimal attacks will be on edges which are
not in GLC(Sk).

Case 2. The edge (z,y) is not in GLC(Sk) and y = v. Obtain an
SDP Sk, by shifting guards along P;. The central vertex of Sk41 is
T and Tm—; is in the new guarded-leaf component, so, (Zm-1,%m) is in
the guarded-leaf component of Sx41 and so is not Sk4i-vulnerable. This
implies Exp(Sk+1) C Fan(Ps)UEzp(Sk). By Observation 18, LE(Sk+1) >
min(L(d)—1, LE(Sk)) > LE(Sx)—1. Hence LE(Sk+41)+k+1 > LE(Sk)—
1+ k+12> LE(S).

Case 3. The edge (z,y) is not in GLC(Sx) and y # v which implies
y is a leaf of T. If v ¢ V(Py), obtain Sk, by shifting guards along the
path from s to v and along the path P; toward y. As in the previous case
Zm is the central vertex of Sk41 and (Tm—1,Zm) is not Sk41-vulnerable, so
Ezp(Sik41) € Ezp(Sk) U Fan(Py) U {(t,8)} (see Figure 3 (a)).

Now suppose v € V(FP,). Let e = (u,v) be the directed edge such that
y € T.. Note that u is not in the guarded-leaf component of Sx which
implies e € Ezp(S) and L(e) > LE(Sx). Let P,. be a non-extendable
L(e)-labeled path e;, e;—1,....,e1 = e with e = e; and e; = (a,b). Let Py
he the unique path in T, from a to y. Note that v ¢ V(P, ) since v is a leaf
of T.. Obtain Sk, by shifting guards along the path from s to v and along
P, from a to y. This makes a the central vertex of Sk41. If a ¢ V(Fa),
then b is in the guarded-leaf component of Si41, so (b,a) is not Sk4i-
vulnerable and Fan(P,,) = Fan(P,.) (see Figure 3 (b)). If a € V(Fy),
then (b,a) € E(Ps) and Fan(P,,) C Fan(P,.) U {(b,a)} (see Figure 3
(c)). In all cases, Ezp(Sk+1) € E(Ps) U Fan(Py) U Fan(P,,c) U Exp(Sk).
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Hence, LE(Sk41) = min({L(d), L(d)—1,L(e)—1,LE(S)}) > LE(Sk) -1,
and LE(Sk41) +k+1> LE(Sy)+k 2 LE(Sp). O

The Labeling Defense Strategy is the strategy given in the Proof of
Lemma 25.

|
| e

v Ou C
b

Fan(Pa)
Fan(P,)
a
I Fan(P.) /
l Yy Y Y
vé V(F) veV(Fy) ve V(R
a g V(Py) aceV(P)=>be v(Py)
(a) (b) (c)

Figure 3: Case 3, (z,y) exposed and y # v.

Corollary 26 For any attack strategy, the number of attacks needed to
uncover an edge against the Labeling Defense Strategy is greater than or
equal to LE(S,); that is, ds/TT) > LE(Sy).

Proof: The attack strategy must terminate with an SDP, S, that has
an uncovered edge. If I(T) = @ then S = @ and no attacks are needed.
Otherwise, none of the leaves are adjacent and the uncovered edge must
have a leaf and the central vertex as its endpoints. Consequently, the life
expectancy of S is 0 and the result follows from Lemma 25. O

We can now compute the death spiral number for a tree when the size
of the guard set equals the number of internal vertices.
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Theorem 27 For any tree T, ds\!D(T) = LE(So).

Proof: By Corollary 26, ds!!™V(T) > LE(Sy). Let d = (u,v) be a
directed edge such that v is a leaf and L(d) = LE(Sp) and let S be a
subset of V(T) such that |S| <| I(T")|. Since Ty = T, d is S-vulnerable;
hence, by Lemma 23, S € lesl where j < L(d) = LE(S,). O

Given a vertex cover S, an attack/defense pair (A, D) is consistent for
S if there is a path P which contains the edge D(S%(D, A), A(S*(D, A)))
for all i > 0 and the guards that respond to each attack all shift in the
same direction along P. If A is the attack strategy described in the proof
of Lemma 23 and D is the defense strategy described in Lemma 25, then
(A, D) is consistent. This leads to the following corollary.

Corollary 28 For any tree T there exists a consistent, |I(T)|-optimal at-
tack/defense pair.

It is not true that every optimal attack/defense strategy pair is consis-
tent as can be seen from Figure 4. Note that the given guard set is in T3
and that attacking the edge {a,b} followed by the edge {d,e} is a consis-
tent optimal attack. However, attacking the edge {a, b}, which forces the
guards on b and d to move, followed by the edge {e, g} is also optimal but
is not consistent.

a b d e g

Figure 4: Example showing inconsistent edge attacks can be optimal

5 Questions
1. What are precise values of ds*(T") for a tree T when k < I(T)?

2. What are precise values of ds*(G) for general graphs or classes of
graphs?

3. What are upper and lower bounds for ds*(G) for general graphs or
classes of graphs?

4. If X is mortal, does there always exist a consistent optimal attack/defense
strategy for general graphs?
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