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Abstract

A DI-pathological graph is a graph in which every minimum dom-
inating set intersects every maximal independent set. DI-patholigcal
graphs are related to the Inverse Domination Conjecture; hence, it is
useful to characterize properties of them. One characterization ques-
tion is how large or small a graph can be relative to the domination
number. Two useful characterizations of size seem relevant, namely
the number of vertices and the number of edges. In this paper, we
provide two results related to this question. In terms of the num-
ber of vertices, we show that every connected, DI-pathological graph
has at least 2y(G) + 4 vertices except K33, K34, and six graphs on
nine vertices and show that our lower bound is best possible. We
then show that with one exception, every connected, DI-pathological
graph with no isolated vertices has at least 2v(G) + 5 edges and show
that our lower bound is best possible.

1 Introduction

Let G = (V(G), E(G)) be a graph. If {z,y} € E(G), we write T ~ y. An
independent set of vertices is a set J C V(G) such that if v;,ve € I, then
{v1,v2} ¢ E(G). An independent set I is said to be maximal independent
if I ¢ J € V(G) implies that J is not independent. An independent set [
is said to be a maximum independent set if |I| >| J| for any independent
set J of G. The cardinality of a maximum independent set is denoted by
a(G). If W is a set of vertices, then we define Ng(W) = {z € V(G) |
z ~ y for some y € W} and Ng(W] = Neg(W)UW. A set D is said to
be dominating if N[D] = V(G). A dominating set is said to be minimum
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dominating if no other dominating set has smaller size. We denote the
cardinality of a minimum dominating set by ¥(G) or just « if the underlying
graph is not important. If D is a dominating set in G and d € D, let
Po(d) = {v € V(G)\ D | v & No(D\ {d})} and Ppld) = {d} U Pp(d). The
vertices of Pp(d) are called private neighbors of d.

When G has no isolated vertices (so in particular G is not K,), we
define v(G) = min({|B| | B € V(G) \ D, D minimum dominating in G, B
dominating in G}), and call 4'(G) the inverse domination number. One
area where inverse dominating sets are of interest is in computer science,
where resource centers (such as large databases) can correspond to the
nodes of dominating sets. In this situation, an inverse dominating set can
serve as a reliability safeguard. The inverse domination number was first
introduced by Kulli and Sigarkanti {6] who showed that the quantity is
indeed well defined. They also claimed that 4'(G) < a(G); however, it
was quickly realized that their proof was flawed. After observing that the
problem is nontrivial, Domke, Dunbar, and Markus stated the above claim
as a conjecture (the Inverse Domination Conjecture) in [1]. Some work has
been done on the subject, but the results are relatively sparse. In (5], the
conjecture is proved for all graphs G with v(G) < 4. In [2], the conjecture
is proved for several families of graphs. Note that if there is some minimum
dominating set D and maximal independent set I that are disjoint in a
graph G, then 7/(G) < |I| £ a(G), which would prove the conjecture for
G. Hence, if the conjecture is false, the counterexample would be found in
a graph in which every minimum dominating set intersects every maximal
independent set. Such graphs are called DI-pathological.

Since DI-pathological graphs are the only graphs which can be coun-
terexamples to the Inverse Domination Conjecture, it is useful to charac-
terize some properties of DI-pathological graphs. In [5], Johnson, Prier, and
Walsh showed that if v(G) = 1 and G has no isolated vertices, then G is not
DI-pathological. In the same paper, they showed that if v(G) = 2 and G
has no isolated vertices, then G is DI-pathological if and only if G 22 Knn
with m,n > 3. In [4], Johnson and Prier showed that if vy(G) = 3, G
is DI-pathological, and G is connected, then |V(G)| > 9. They further
showed that |E(G)| > 10 for all graphs G with v(G) = 3 that are con-
nected, DI-pathological, and have |V(G)| = 9. In the same paper, they
conjectured that if G is connected and DI-pathological with v(G) > 3, then
|[V(G)| = 3v(G), basing the conjecture on a natural extension of the vertex
and edge minimal graph they found for v(G) = 3. In this paper, we dis-
prove this conjecture showing that we can find a connected, DI-pathological
graph on 2v(G) + 4 vertices for all v(G) > 4 (K33 has domination num-
ber two and 6 = 2v(K33) + 2 vertices, and the graph Prier and Johnson
found has 4(G) = 3 and |V(G)| =9 = 2v(G) + 3). We also show that this
result is best possible. Finally, we look at the natural question of finding a
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lower bound on the number of edges in a connected, DI-pathological graph,
proving that with one exception, every DI-pathological graph has at least
27(G) + 5 edges and show this result is best possible by finding a graph
with 27(G) + 5 edges for each v(G) > 2.

2 Introductory Lemmas

The proof of our two main theorems (see Sections 3 and 4) will proceed
by contradiction using minimal counterexamples (with respect to the dom-
ination number). In this section, we prove a few introductory lemmas that
will provide the basis for the proofs of the two main theorems. The first
lemma allows us to take a DI-pathological graph and form a smaller DI-
pathological graph under certain conditions.

Lemma 1. Suppose G is a DI-pathological graph with some minimum dom-
inating set D with a vertex d € D that has ezactly one private neighbor,
say vq. Then G\ Pp[d] has no isolated vertices, has domination number
v(G) — 1, and is DI-pathological.

Proof. We first show that G \ Pp[d| has no isolated vertices. Suppose for
a contradiction that G \ Pp|d] has an isolated vertex v. Since v is not
isolated in G, it is either adjacent to d or v4. If v is adjacent to d, then v
cannot be in the dominating set (since otherwise D\ {v} is still dominating
and so D is not minimum). So v would then be a private neighbor of d, a
contradiction. So v cannot be adjacent to d and hence must be adjacent
to vg. Since vq is a private neighbor of d, v cannot be in D. But then no
vertex in D is adjacent to v, a contradiction with D being dominating.

Next note that G\ Pp[d] has domination number (G) — 1 since D\ {d}
is a dominating set of size v(G) — 1 and if there is a dominating set of size
at most v(G) — 2, then that set along with d is a dominating set of size at
most ¥(G) —1in G.

We now show that G \ Pp[d] is DI-pathological. Suppose by way of
contradiction that G \ Pp[d] is not DI-pathological and let D’ and I’ be
a minimum dominating set and maximal independent set of G \ Pp[d] re-
spectively such that D’ NI’ = @. Note that both D’ U {d} and D' U {vq}
are dominating sets in G.

If some vertex in I’ is adjacent to d, take D = D'U{d} as the dominating
set of G, and let T = I"'U{vy} if I'U{vy} is independent; otherwise let I=r.
Then T is a maximal independent set that is not adjacent to the minimum
dominating set D, contradicting our assumption that G is DI-pathological.

If no vertex in I' is adjacent to d, take D = D' U {v4} and take
T=rI'u{d}. Then D and T are a minimum dominating set and a maxi-
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mal independent set respectively which do not intersect, contradicting our
assumption that G is DI-pathological. O

The above proof can be modified slightly to show that the lemma still
holds if d has no private neighbors instead of one. However, it is more useful
for us to delete two vertices (d and its private neighbor) than just one, and
as the next lemma shows, if we can find a dominating set containing a vertex
with no private neighbors, then we can find a dominating set containing a
vertex with one private neighbor under certain mild conditions.

Lemma 2. Let G be a graph with no isolated vertices and fewer than 3v(G)
vertices. Then there exists a dominating set D such that there existsd € D
with precisely one private neighbor.

Proof. Let D’ be some minimum dominating set of G. If every vertex of
D' has at least two private neighbors, then G has at least 3v(G) vertices, a
contradiction. So there is some vertex in D’, say d’, with zero or one private
neighbor(s). If d’ has one private neighbor, we are done (set D = D’ and
d = d’). So suppose d’ has no private neighbors. If d’ is adjacent to any
other vertex in D, then D\ {d'} is a smaller dominating set, a contradiction.
Let d € V(G) \ D’ be adjacent to d’ (such a d is guaranteed to exist since
G has no isolated vertices and d’ is not adjacent to any vertices in D’).
Let D = (D' \ {d'}) U {d}. Then d' is adjacent to d and every vertex in
V(G)\ D other than d’ is adjacent to some vertex in D'\ {d’} C D since d’
had no private neighbors. So D is a dominating set and since |D| = |D'|, D
is 2 minimum dominating set. Further, d’ is not adjacent to D' so the only
vertex it is adjacent to in D is d. So d’ is a private neighbor of d. Finally,
d has no other private neighbors since every vertex in V{G)\ D other than
d’ is adjacent to some vertex in D'\ {d’'} = D\ {d}. So d has exactly one
private neighbor as claimed. 0

3 Vertex Minimality

In this section, for each 4 > 2 we find a lower bound on the number of
vertices in any connected, DI-pathological graph with domination number
7. Further, we provide an example showing that this lower bound is sharp.
We will start by stating known results for 7(G) = 2 and ¥(G) = 3 and then
use a known result for v(G) = 3 to classify all connected, DI-pathological
graphs on nine vertices. We then show that for v > 4, any connected, DI-
pathological graph with domination number 4 has at least 2 + 4 vertices
by using contradiction, specifically by using minimal counterexamples. Al-
though it may be added for emphasis, we will assume that any given graph
G is connected (and hence has no isolated vertices since y(G) > 2).
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For 4(G) = 2, Johnson, Prier, and Walsh showed in [5] that G is DI-
pathological if and only if G & Kmn with m,n > 3. Then clearly, the
unique DI-pathological graph with the minimum number of vertices is K33
with 2y + 2 vertices. The next two results are due to Prier and Johnson in
[4]. From the first result, we immediately get that [V(G)| > 9 = 2v(G) +3
when G is connected, DI-pathological, and y(G) = 3. They further find a
connected, DI-pathological graph with ¥(G) = 3 that has 9 vertices; this
graph appears as A; in Figure 1. We will make further use of the next two
lemmas to classify the set of all connected, DI-pathological graphs on nine
vertices with v(G) = 3.

Lemma 3. (4] Let G be a connected, DI-pathological graph with v(G) =
3, and let D be a minimum dominating set in G. Then for all z € D,
|Pp(z)| 2 2.

Lemma 4. [4] If D is a minimum dominating set in G, and J C V(G)\ D
is an independent set such that D C N(J), then G is not DI-pathological.

In [4], Prier and Johnson showed that the graph A, in Figure 1 is DI-
pathological. Lemmas 6, 7, 8, 9, and 10 will show that the graphs Ay,
As, A4, As, and Ag in Figure 1 are DI-pathological respectively. We will
then show in Lemma 11 that there are no other connected, DI-pathological
graphs on nine vertices with v(G) = 3.

Figure 1: All of the connected, DI-pathological graphs on nine vertices with
YG) =3

Lemma 5. Let Ay, As, Aq, As, and Ag be the graphs denoted in Figure 1.
Then for 2 < i < 6, v(A;) = 3. Moreover, in Ay and Az, vg must be in the
dominating set.

Proof. Since the maximum degree of the vertices in Az and A, is three, it is
impossible to dominate nine vertices with a set of size two. In Aj, As, and
Ag there is only one vertex, namely v, in A3 and As and v3 in As, of degree
at least four; hence v4 must be in any dominating set of size two in A3 and
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As, and then v; and vg must be dominated by a single vertex, which is not
possible. In Ag, v3 must be in any dominating set of size two, and then
v; and vy must be dominated by a single vertex which is not possible. So
there is no dominating set of size two in Asz, As, or Ag. So for 2 < i < 6,
v¥(A;i) > 3, and since {vg,v4,v7} dominates A;, y(A;) = 3.

Now if v, is not in the dominating set in A; or Az, then two vertices
must be picked from each of {vp,v1,v2,v3} and {vs,ve,vs,vs} in order
to dominate the graph. This is a contradiction, however, since y(43) =
v(A3) = 3. O

Lemma 6. Graph A; in Figure 1 is DI-pathological.

Proof. By Lemma 5, ¥(A2) = 3 and v4 must be in any minimum dominating
set. It is then clear that one vertex must dominate hoth v; and vs, so vg
or vz must be in the dominating set. Likewise, one vertex must dominate
s, U7, and vg, 50 v7 must be in the dominating set. Hence, {vg,v4,v7} and
{v2,v4,v7} are the only two possible minimum dominating sets.

Let D = {v;,v4,v7} be a minimum dominating set where t € {0,2}.
Since a maximal independent set is dominating, if we wish to pick a maximal
independent set I disjoint from D, we must pick either vg or vs to dominate
v7 and pick either v; or v3 to dominate v;. Then every neighbor of v, is
dominated by I but v, is not. So vy must be in I to make it maximal, so
I and D cannot be disjoint. Hence A; is DI-pathological. O

Lemma 7. Graph A; in Figure 1 is DI-pathological.

Proof. By Lemma 5, v(A3) = 3 and v4 must be in any minimum domi-
nating set. It is then clear that one vertex must dominate both v, and
v3, 80 ¥g or vz must be in the dominating set. Likewise, one vertex must
dominate ve and vg, so vs or v; must be in the dominating set. Hence,
{vo, va,v7}, {v2,v4,v7}, {v0,v4,vs}, and {va,va,vs} are the only four possi-
ble minimum dominating sets.

Let D = {v;,v4,v,} be a minimum dominating set where ¢ € {0,2} and
s € {5,7}. Since a maximal independent set is dominating, if we wish to
pick a maximal independent set J disjoint from D, we must pick either vg
or vg to dominate v, and pick either v; or vs to dominate v,. Then every
neighbor of v is dominated by I but vy is not. So v4 must be in I to make it
maximal, so I and D cannot be disjoint. Hence A3 is Dl-pathological. O

Lemma 8. Graph A4 in Figure 1 is DI-pathological.

Proof. By Lemma 5, v(A4) = 3. We will consider two cases, split by
whether v, is in the minimum dominating set or not.

Case 1: Suppose vy is in the minimum dominating set. First notice that
vy, U3, Ug, v7 and vg still have to be dominated by the other two vertices in
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the dominating set. Neither v; nor vs is dominated by either {v4,v3} or
{v4,vs}. Moreover, v; and vg are not adjacent and do not share a common
neighbor; hence we cannot pick v; or vg to be in the dominating set. Thus,
v, U7, and vg must be dominated by a single vertex, the only candidate
being v7, and v; and vz must be dominated by a single vertex, the two
options being vp and v,. Thus the only two minimum dominating sets
containing v4 are {vo,va, vz} and {v2,v4,v7}.

Let D = {v;,v4,v7} be a minimum dominating set where t € {0,2}.
Since a maximal independent set is dominating, if we wish to pick a maximal
independent set I disjoint from D, we must pick either vg or vg to dominate
vy and pick either v, or vz to dominate v; (of course we cannot pick both
v and vg). Then every neighbor of v4 is dominated by I but v, is not. So
v4 must be in I to make it maximal, so / and D cannot be disjoint if v, is
in D.

Case 2: Suppose vq is not in the minimum dominating set. Clearly, in
this case, the minimum dominating set must contain either one vertex from
{vo,v1,v2,v3} and two vertices from {vs,vg, v7,vs} or vice versa.

Case 2.1: Suppose that the dominating set contains exactly one vertex
from {vp,vy,v2,v3}. Then the dominating set must contain a vertex from
the set {vs,vs,v7,vs} that dominates a vertex in {vo, v1,v2,v3}, so it must
contain vs. We still need one vertex to dominate {vg,v;,v2}, so we must
use v;. Then we need the last vertex of the dominating set to dominate v4
and vg, so we must use vs.

Case 2.2: Now suppose the dominating set contains two vertices from
{vo,v1,v2,v3}. Then the dominating set must contain a vertex from the set
{vo,v1,v2,v3} that dominates a vertex in {vs, vg, v7, s}, so it must contain
vs. We still need one vertex to dominate {vs,vg,v7}, SO we must use vg.
Then we need the last vertex of the dominating set to dominate v; and v,
so we must use either vg or vs.

Hence the only minimum dominating sets in Case 2 are {v,vs,vs},
{v2,v3,v6}, and {vo, v, v6}.

Suppose D = {v1,vs,vs} is the minimum dominating set. Since a max-
imal independent set is dominating, if we wish to pick a maximal indepen-
dent set I disjoint from D, we must pick either vg or v, to dominate v;, and
hence v3 cannot be in I. Then v; must be in I to dominate vg. However,
then every neighbor of vg is dominated by I but vs is not. So vs must be
in I to make it maximal, so I and D cannot be disjoint.

Finally, let D = {v,vs3,vs} be a minimum dominating set where ¢ €
{0,2}. Since a maximal independent set is dominating, if we wish to pick a
maximal independent set I disjoint from D, we must pick either v, or v4 to
dominate v; (we cannot pick vs since it is in D). Since both vg and vy are
adjacent to v; and vy, neither can be in I so vg must be in I to dominate
vs. Then every neighbor of vs is dominated by I but vg is not. So v must
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be in I to make it maximal, so [ and D cannot be disjoint.
Combining all of this we get that A4 is not DI-pathological. a

Lemma 9. Graph As in Figure 1 is DI-pathological.

Proof. By Lemma 5, v(As) = 3. We will consider two cases, split by
whether v, is in the minimum dominating set or not.

Case 1: Suppose vy is in the minimum dominating set. First notice that
v1, V3, Vg, and vg still have to be dominated by the other two vertices in
the dominating set. Neither v; nor vg is dominated by either {v4,v3} or
{v4,vs}. Moreover, v; and vg are not adjacent and do not share a common
neighbor; hence we cannot pick v3 or vg to be in the dominating set. Thus,
v and vg must be dominated by a single vertex, the candidates being vs
and v7. Also v; and vz must be dominated by a single vertex, the two
options being vy and v,. Thus the only four minimum dominating sets
Containing V4 are {v09 U4, ’U'{}, {vﬁa V4, 1)7}, {v()a V4, v5}a and {1}2, V4, ’05}.

Let D = {v,v4,v,} be 2 minimum dominating set where ¢t € {0,2} and
s € {5,7}. Since a maximal independent set is dominating, if we wish to
pick a maximal independent set I disjoint from D, we must pick either vg
or vg to dominate v, and pick either v; or v3 to dominate v, (of course we
cannot pick both vz and vg). Then every neighbor of v, is dominated by I
but v4 is not. So v4 must be in I to make it maximal, so J and D cannot
be disjoint if v4 is in D.

Case 2: Suppose v4 is not in the minimum dominating set. Clearly, in
this case, the minimum dominating set must contain either one vertex from
{vo, v1,v2,v3} and two vertices from {vs,vs,v7,vs} or vice versa.

Case 2.1: Suppose that the dominating set contains exactly one vertex
from {vp,vy,v2,v3}. Then the dominating set must contain a vertex from
the set {vs, vs, v7, v} that dominates a vertex in {vg, v1, v, v3} so it must
contain vg. We still need one vertex to dominate {vy, v1,v2}, SO We must
use v;. Then we need the last vertex of the dominating set to dominate vy
and vg, so we must use vs or vy.

Case 2.2: Now suppose the dominating set contains two vertices from
{vo,v1,v2,v3}. Then the dominating set must contain a vertex from the set
{vo,v1,v2,v3} that dominates a vertex in {vs, vg, v7, vg}, so it must contain
v3. We still need one vertex to dominate {vs,vs,v7}, so we must use vs.
Then we need the last vertex of the dominating set to dominate v; and vy,
so we must use either v or vs.

Hence the only minimum dominating sets in Case 2 are {v;,vs,vs},
{'U] » U7, ‘Us}, {'UQ, v3, ’UG}, and {UOy V3, 'Us}.

Let D = {v;,v:,v8} be a minimum dominating set where t € {5,7}.
Since a maximal independent set is dominating, if we wish to pick a maximal
independent set I disjoint from D, we must pick either vp or v, to dominate
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vy, and hence v cannot be in I. Then vs or v7 (whichever is not v;) must
be in I to dominate vs. Then v4 and v cannot be in J. However, then
every neighbor of v, is dominated by I but v, is not. So v, must be in I to
make it maximal, so I and D cannot be disjoint.

Finally, let D = {v,v3,vs} be a minimum dominating set where ¢ €
{0,2}. Since a maximal independent set is dominating, if we wish to pick
a maximal independent set I disjoint of D, we must pick either v, or v4 to
dominate v, (we cannot pick vs since it is in D). Since both v and v are
adjacent to v; and vy, neither can be in I so vg must be in I to dominate
vs. Then every neighbor of vg is dominated by I but vg is not. So v must
be in I to make it maximal, so I and D cannot be disjoint.

Combining all of this we get that As is not DI-pathological. 0

Lemma 10. Graph Ag in Figure 1 is DI-pathological.

Proof. By Lemma 5, y(A¢) = 3. We will consider two cases, split by
whether v4 is in the minimum dominating set or not.

Case 1: Suppose vy is in the minimum dominating set. First notice that
vy, v3, Vg, v7 and vg still have to be dominated by the other two vertices in
the dominating set. Neither v; nor v; is dominated by {v4,v3}. Moreover,
v, and vy are not adjacent and do not share a common neighbor; hence
we cannot pick v3 to be in the dominating set. Likewise neither v, nor ve
is dominated by {v4,vs} and neither v, nor vg is dominated by {va,v6}.
Moreover v; and vg are not adjacent and do not share a common neighbor
and the same holds for v; and vs; hence we cannot pick vg or vg to be in
the dominating set. Thus, v7 must be in the dominating set, and v; and
v3 must he dominated by a single vertex, the two options being vp and vs.
Thus the only two minimum dominating sets containing v, are {vo, v4,v7}
and {vg,v4,v7}.

Let D = {v;,v4,v7} be a minimum dominating set where t € {0,2}.
Since a maximal independent set is dominating, if we wish to pick a maximal
independent set I disjoint from D, we must pick either vg or vg to dominate
v; and pick v; to dominate v, (vs is adjacent to both ve and vg). Then
every neighbor of v4 is dominated by I but v, is not. So v4 must be in I
to make it maximal, so I and D cannot be disjoint if v4 is in D.

Case 2: Suppose v, is not in the minimum dominating set. Clearly, in
this case, the minimum dominating set must contain either one vertex from
{vo,v1,v2,v3} and two vertices from {vs, vs, v7,vs} or vice versa.

Case 2.1: Suppose that the dominating set contains exactly one vertex
from {vp,v1,v2,v3}. Then the dominating set must contain a vertex from
the set {vs,vs,v7, Ug} that dominates a vertex in {vo, v1,v2,va}, 50 it must
contain vg or vs. We still need one vertex to dominate {vp,v),v2}, so
we must use v;. Then we need the last vertex of the dominating set to
dominate v4 and vg or v4 and vs, so we must use vs.
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Case 2.2: Now suppose the dominating set contains two vertices from
{vo,v1,v2,v3}. Then the dominating set must contain a vertex from the set
{vo,v1,v2,v3} that dominates a vertex in {vs, v, v7,vs}, so it must contain
vz. We still need one vertex to dominate vs and vz, so we must use vg or
vg. Then we need the last vertex of the dominating set to dominate v; and
v4, SO We must use either vp or vs.

Hence the only minimum dominating sets in Case 2 are {vi,vs,vs},
{v1,vs,vs}, {v2,v3,v6}, {va,v3,vs}, {vo,v3,vs}, and {vo,vs, vs}.

Let D = {v;,vs,v;} be a minimum dominating set where ¢t € {6, 8}.
Since a maximal independent set is dominating, if we wish to pick a maximal
independent set I disjoint from D, we must pick either vp or v, to dominate
v; and hence v3 cannot be in I. Then v; must be in I to dominate v;.
However, then every neighbor of vs is dominated by I but vs is not. So vs
must be in I to make it maximal, so I and D cannot be disjoint.

Finally, let D = {v;,v3,v,} be a minimum dominating set where t €
{0,2} and s € {6,8}. Since a maximal independent set is dominating, if we
wish to pick a maximal independent set I disjoint from D, we must pick
either v; or v4 to dominate v, (we cannot pick vs since it is in D). Since
both v and v, are adjacent to v; and vy, neither can be in I, so vg or vg
(whichever is not v,) must be in I to dominate vs. Then every neighbor of
vs is dominated by I but v, is not. So v, must be in I to make it maximal,
so I and D cannot be disjoint.

Combining all of this we get that Ag is not DI-pathological. O

We will now show that the graphs in Figure 1 are the only connected,
DI-pathological graphs on nine vertices with y(G) = 3.

Lemma 11. The only connected, DI-pathological graphs G on nine vertices
with v(G) = 3 are those in Figure 1.

Proof. We will first show that any connected graph on nine vertices with
7(G) = 3 that is DI-pathological must have A, in Figure 1 as a subgraph.
Then we will show that the six graphs in Figure 1 are the only connected
graphs on nine vertices that can be DI-pathological.

Suppose that G is a connected, DI-pathological graph on nine vertices
with y(G) = 3. Let D = {d;,d3,d3} be a minimum dominating set of
G. By Lemma 3 each d; has at least two private neighbors, and since G
has nine vertices, each d; must have exactly two private neighbors. Let
A = {ay,a2}, B = {b,b2}, and C = {e1,ca} be the set of private neighbors
of dy,d3, and dj3 respectively. By Lemma 4 there cannot be an independent
set of vertices in AU B U C such that at least one vertex is from each of A,
B, and C.

Suppose that each vertex in A is adjacent to each vertex in B. If d; ~ d3
for some j € {1, 2}, then {a;, b;,d3} is a minimum dominating set where a,
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or by (when j = 1 or j = 2 respectively) has at most one private neighbor
contradicting Lemma 3. So d2 # d3 and d; o d3. If a vertex in C is
adjacent to a vertex in A or B, say ¢ ~ a1, then {a;,b1,d3} is a minimum
dominating set where d3 has at most one private neighbor, contradicting
Lemma 3. So no vertex in C is adjacent to a vertex in A or B and d3 % d
and d3 % da, so G is not connected. So it is not possible for each vertex in
A to be adjacent to each vertex in B. Similarly, it is not possible for each
vertex in A to be adjacent to each vertex in C or for each vertex in B to
be adjacent to each vertex in C.

By Lemma 4, there does not exist an independent set of vertices in
AU B UC such that at least one vertex is from each of the sets A, B,
and C. The only way a; would not form an independent set with a vertex
in B and a vertex in C is if one of the following scenarios occurred: a;
is adjacent to both vertices in B or C or a; ~ b;, a1 ~ ¢;, and by ~ ¢
where {i,k} = {7,¢} = {1,2}. An analogous result holds for any vertex in
AUBUC. Also, a; 7 as since otherwise for j € {1,2}, {a;,d2,d3} is a
minimum dominating set and either some vertex has at most one private
neighbor (if a; is adjacent to some vertex in BUC or d, is adjacent to d or
d3) or G is not connected. Likewise by 7 by and ¢; o c;. We now show A4,
is a subgraph of G in two cases, split by whether or not at least one vertex
in AUBUC is adjacent to both vertices in one of the other two sets. (We
really show that G is either not DI-pathological, a contradiction with our
assumption, or that A; is a subgraph of G.)

Case 1: Suppose no vertex in AU BUC is adjacent to both vertices in
either of the other two sets. If some vertex, say a1, is not adjacent to either
vertex in a different set, say B, then since in this case a; is not adjacent
to some vertex ¢ € C and c is not adjacent to some vertex b € B, then
{a1,b,c} is an independent set which dominates {d,d2,d3} so G is not
DI-pathological by Lemma 4, a contradiction. So each vertex in AUBUC
is adjacent to at least one vertex in each other set and since we assumed
each vertex is not adjacent to both vertices in another set in this case,
each vertex in A U B U C must be adjacent to exactly one vertex in each
other set. Using this fact and recalling that vertices in the same set are
not adjacent, G[A U B U C] is a 2-regular simple graph on six vertices.
So this graph is either a Cg or two disjoint Css. Since in this case no
vertex is adjacent to two vertices in the same set, we can assume the Cg
looks like (aj,b1,c1,a2,b2,c2) and then {a1,c1,b2} forms an independent
set which dominates D, and hence G is not DI-pathological by Lemma 4,
a contradiction. In the case where G[A U B U C] is two disjoint Css, we
can assume the Css are (a, b;,¢1) and (az, bz, c2). But then {a;,b2,d3} is a
minimum dominating set where d3 has zero private neighbors, contradicting

Lemma 3.
Case 2: Now suppose some vertex in AU B U C is adjacent to both
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vertices in another set. Without loss of generality suppose a; ~ b; and
a; ~ by. If a3 ~ ¢1, and a3 ~ ¢ then A; would be a subgraph of G (with
v = da,vy = by,v2 = a1,v3 = bg,vq = d1,v5 = as,v6 = c1,v7 = d3,vg =
c2). So suppose az 7 c;. Since it is not possible for each vertex of A
to be adjacent to each vertex of B, and since a; ~ b; and a; ~ by, then
either as # by or az # bs, so say az % b;. Then by Lemma 4, b; ~ ¢
since otherwise {ag, b1,c1} would be an independent set which dominates
D. Since a; and b, are not adjacent, one of these two must be adjacent to
¢z by Lemma 4, and since a; and ¢; are not adjacent, one of these must
be adjacent to bz. So one of the following must be true: (a) az ~ be and
by ~ cg, (b) ag ~ by and az ~ ¢z, (c) by ~ ¢; and by ~ ¢z, and (d) az ~ ¢
and by ~ c;.

For (a), b; is adjacent to both vertices in C and b, is adjacent to both
vertices in A, so A, is a subgraph of G. For (b), {a2,b;,ds3} is a minimum
dominating set and d3 has zero private neighbors, contradicting Lemma 3.
For (c), {d1,b1,¢1} is a minimum dominating set and d; has at most one pri-
vate neighbor, contradicting Lemma 3. For (d), if d; ~ d3 then {d;, ¢, ¢}
is a minimum dominating set and co has zero private neighbors, contra-
dicting Lemma 3. If d3 ~ d3 then {d3,a;,a3} is a minimum dominating
set and ap has zero private neighbors, contradicting Lemma 3. If d; ~ d3
then A, is a subgraph of G (with vo = as,v; = ¢, v0 = da,v3 = dy,v4 =
C1,VUs = bz,'vs = a,V7 = bl,vs = dz) Otherwise {dl,dz,d;;} is an in-
dependent set which dominates the mimimum dominating set {c,a2,b:},
so by Lemma 4, G is not DI-pathological, a contradiction. Hence if G is
DI-pathological then A; must be a subgraph of G.

We shall now investigate which edges we could add to A; while keeping
the graph DI-pathological. For convenience, relabel the vertices of A; by
letting v; = i for each 0 < ¢ < 8. Since {0,4, 7} is 2 minimum dominating
set, we cannot add any of the following edges (since otherwise at least
one of the vertices 0,4, and 7 will have at most one private neighbor so the
graph will not be DI-pathological by Lemma 3): {0,2}, {0,5}, {0, 6}, {0, 8},
{1,4}, {3,4}, {4,6}, {4,8}, {1,7}, {2,7}, {3,7}, and {5,7}. If {0,7} is an
edge in G, then {0, 4,5} is a minimum dominating set in which vertex 4 has
at most one private neighbor, contradicting Lemma 3. A similar argument
can be used to eliminate several other edges from being added to A;. The
following table contains each edge we cannot add using this argument:
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[ Edge | Minimum dominating set | Vertex with < 2 private neighbors |
{0,7} {0,4,5} 4
{2,5) {2,3,7} 3
{1,3} (3,4,7} 4
{6,8} {0,4,8} 4
{2, 6} {0,2, 8} 0
2,3} {0,2,6} 0
{1,5} {3,5, 7} 7
3,5} {157} 7

At this point, the only possible edges left that are not in A; and have not
been forbidden are {0, 4}, {4,7}, {1,6}, {1,8}, {3,6}, and {3,8}. Clearly,
adding the edge {0,4} results in a graph isomorphic to the graph formed
by adding the edge {4,7}. Likewise, adding any single edge from {{1,6},
{1,8}, {3,6}, {3,8}} results in the same graph regardless of the edge we
pick. If both {1,6} and {3, 8} are added as edges then {3, 4, 6} is a minimum
dominating set where vertex 4 has zero private neighbors, contradicting
Lemma 3. Similarly, it is not possible to add both of the edges {1,8}
and {3,6}. If we add the edge {3,6} without adding either of {0,4} or
{4,7} then {2, 3,8} is 2 minimum dominating set and {0, 4, 7} is 2 maximal
independent set ensuring we do not get a DI-pathological graph. Similarly,
we cannot add any of the edges {1,6},{1,8}, and {3,8} without adding
at least one of {0,4} and {4,7}. We now have just a few possibilities left.
We could add just the edge {0,4}. This is the graph A;. We could add
just the edges {0,4} and {4,7}. This is the graph A3. We could add the
edges {3,8} and {0,4}. This is the graph A4. We could add the edges
{3,8},{0,4}, and {4,7}. This is the graph As. We could add the edges
{3,8},{3,6}, and {0,4}. This is the graph Ag. We could add the edges
{3,8},{3,6}, and {4,7}. In this case, {1,3,4} is a minimum dominating
set in which vertex 1 has zero private neighbors. Finally, we could add
the edges {3,8},{3,6},{0,4} and {4,7}. Again, {1,3,4} is a minimum
dominating set in which vertex 1 has zero private neighbors. Hence A;
through As are the only connected, DI-pathological graphs on nine vertices
with domination number three. O

The next lemma will show that the graph in Figure 2 is DI-pathological
on 2v(G) + 4 vertices. We will later show that if G is a connected, DI-
pathological graph with y(G) > 4, then |V(G)| > 2¥(G) + 4 and this
example shows that bound is tight.

Lemma 12. The graph in Figure 2 is DI-pathological.

Proof. Let G be the graph depicted in Figure 2. Vertex vg must be chosen
as part of the dominating set, or else both v;0 and v;; would have to be part
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Figure 2: A DI-pathological graph with the smallest number of vertices

of the dominating set, which certainly would increase the size. In addition,
v4 must be part of the dominating set, for if it were not, two vertices would
be needed to dominate {vg,v;,v2,v3} and two vertices would be needed to
dominate {vs,vs,v7,vg} which would increase the size of the dominating
set since {vp, v4, v7} dominates vg through vg. We then need two vertices to
dominate {vg, v, vs, Vs, V7,V } and it is clear that our only option is to pick
both vp and v7. Since vg must be an element in the minimum dominating
set (and hence cannot be in the independent set) and G[{vg,vi,...,vs}] is
DI-pathological (it is isomorphic to A; in Figure 1), it follows that there are
no maximal independent sets disjoint from any of the minimum dominating
sets. So G is DI-pathological. a

It is clear that for v(G) > 4, the graph in Figure 2 has 2v(G) + 4
vertices, and so there are connected, DI-pathological graphs on 2v(G) + 4
vertices for all 7(G) > 4. We have shown that K33 and K34 are the only
connected, DI-pathological graphs with v(G) = 2 and at most 2v(G) + 3
vertices and that the graphs A, through Ag are the only connected, DI-
pathological graphs with y(G) = 3 and at most 2v(G) + 3 vertices. We will
now show that every connected, DI-pathological graph G with domination
number ¥(G) > 4 has at least 2v(G) + 4 vertices. First, we prove a lemma
on how the connected, DI-pathological graphs with domination number two
or three are affected when we add two vertices, keep a connected graph,
and increase the domination number by one.

Lemma 13. LetG € {K3,3a K3,47 A11A2’ A3a A4a A53 Aﬁ} and let H be any
connected graph formed from G by adding the two vertices d and vy along
with the edge {d,vq4} such that no new edges are added between two vertices
in V(G). If v(H) = v(G) + 1, then H is not DI-pathological.
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Proof. First suppose that G € {K33,K3,4} and let R = {ry,72,73} and S
be the partitions of G. Since H is connected, d or vy is adjacent to G, so say
d is adjacent to € RUS. Let X be the set of vertices in the same partition
as T that are not adjacent to d. Note that d cannot be adjacent to every
vertex in R since then {d,r,} is a dominating set of size two, contradicting
the fact that v(H) = 4(G)+1 = 3. Similarly, d cannot be adjacent to every
vertex in S. So X is nonempty. Hence if X C R then X dominates $ and
if X ¢ S then X dominates R. Let y be any vertex in the partition that
z is not in. Then {vg4, z,y} is a minimum dominating set disjoint from the
maximal independent set X U {d} (note that x ¢ X since z ~ d), so H is
not DI-pathological.

Next suppose G € {41, A3, A3, A4, As, Ag} and let the vertices in G be
denoted by the subscripts of the vertices in Figure 1. By assumption d or vy,
say d, must be adjacent to some vertex in G. We will first show that d is not
adjacent to vertex 2 or vertex 5 and then we will show that d is not adjacent
to vertices 1, 3, 6, or 8 by using Lemma 1. Suppose d is adjacent to vertex
2. Let D, = {0,5,6,d}. If d ~ 7 then {0,5,d} is a smaller dominating set,
a contradiction. Notice that D; is a minimum dominating set where vertex
6 has a single private neighbor (since d # 7), namely 7. So by Lemma 1,
G\ Pp, (6] is DI-pathological. Since G\Pp, [6] has nine vertices, is connected,
and v(G \ Pp,[6]) = 3, it follows that G\ Pp,[6] € {A, Az, A3, A4, As}.
But since vertex 2 has degree four, G \ Pp, [6] is not isomorphic to A;, As,
or A,4. Notice that vertex 2 is adjacent to vertices 1,3, and 4. Moreover,
each of these aforementioned vertices are adjacent to vertex 0; however, the
vertex of degree four in A3 and Ag does not have a set of three neighbors
that share a common neighbor (besides the vertex of degree four itself).
So d cannot be adjacent to vertex 2. A similar argument will show that
d cannot be adjacent to 5. Since the argument can be made even if vg
is adjacent to vertex 2 or vertex 5, it follows that va % 2 and va # 5.
Now suppose that d is adjacent to vertex 1 (a similar argument can be
made for vertex 3, 6, and 8). Let D3 = {3,5,6,d}. Notice that D3 is
a minimum dominating set where vertex 6 has a single private neighbor,
namely 7. So by Lemma 1, G\ Pp,[6] is DI-pathological. Assume by way of
contradiction that vq ~ 0. Then (v4,0,3,2,1,d) creates a Cs; however, no
connected DI-pathological graph on nine vertices with v(G) = 3 contains a
Cs, a contradiction. So, vg % 0. Similarly, assume by way of contradiction
that d ~ 4. Then (d,1,0,3,2,4) is a Cs, contradicting the fact that no
connected DI-pathological graph on nine vertices with 4(G) = 3 contains
a Cg. Hence, d # 4. Assume by way of contradiction that d ~ 3. Let
Dy = {1,4,7,d}. Notice that D4 is a minimum dominating set where
vertex 0 is not adjacent to d and v4 and so it is the only private neighbor of
vertex 1. Then by Lemma 1, G \ Pp,[1] is DI-pathological. If vq ~ 4, then
we would have a contradiction since every 5-cycle shares an edge (at the
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very least a vertex) with every Cy in A;-As and (d,3,2,4,v4) is a 5-cycle
disjoint from the 4-cycle (5,8,7,6) in G\ Pp,[1]. Since d ~ 3, vq # 3 (this
would form a 3-cycle in G\ Pp,[1], and vy is adjacent to 6, 7, or 8, G\ Pp,_|[1]
cannot be isomorphic to Ay, Az, or Aj since G \ Pp,[1] contains a cycle of
length at least 7. But then G \ Pp,[1} cannot be isomorphic to A4 or As
since vertex 2, 3, 4, and 5 all have degree 2, so d # 3. Let D, = {0,4,7,d}.
Notice that D5 is a minimum dominating set where vertex 0 has one private
neighbor, namely 3. So by Lemma 1 G\ Pp,[0] is DI-pathological. Assume
by way of contradiction that vy ~ 4. Then there is a disjoint Cs and C,
in G\ Pp,[0]. However, in A4 or As (the only connected DI-pathological
graphs on nine vertices with ¥(G) = 3 that have a Cs), {vs,vs} must be
an edge in every Cs of A; and As. Moreover, v4 must be in every Cs,
since it is the only vertex that has neighbors adjacent to both vs and vs.
However, both Ay \ {v4,v3,vs} and A; \ {v4,v3,vs} are disconnected with
three vertices in each component, so it is not possible to create a Cy4 that
is disjoint from the Cj regardless of the other two vertices in the Cs, a
contradiction. Hence, vq # 4. Notice that vertex 2, 4, and 5 are all degree
two and form a path between themselves. The only DI-pathological graphs
on nine vertices with v = 3 and a path of length two of vertices with degree
two are Ay and As. Since it is impossible to form either of these graphs with
the remaining adjacencies in G\ Pp,[1] (d can only be adjacent to vertex 6
or 8, and vy can only be adjacent to 6, 7, or 8), G\ Pp,[1] is not isomorphic
to A; or Az, so d cannot be adjacent to vertex 3. We now return to the
minimum dominating set Ds. Either d or v4 must be adjacent to vertex 8
since there are no pendant vertices in A; through As. Since there are no
Ces in A; through As, d % 8, so vg ~ 8. Since G\ Pp,[6] now contains a
C+, G\ Pp,[6] is not isomorphic to A, Az, or As. Since d and vy are not
adjacent to vertices 0, 2, 4, and 5, there are four vertices with degree two
in G\ Pp,[6], a contradiction since A4 and As have at most three vertices
with degree two.

We can now assume both d and v, are not adjacent to any of the vertices
1,2,3,5,6, and 8. So d or vy, say d, is adjacent to 0,4, or 7. If d is adjacent
to vertex 4, let D = {0,4,7,vq} and let I contain {1,6,d}. Then I is
independent and dominates D so by Lemma 4, H is not DI-pathological.
If d is adjacent to 0, let D = {0,4,7,v4} and let I contain {2,6,d}. Then I
is independent and dominates D so by Lemma 4, H is not DI-pathological.
If d is adjacent to vertex 7, let D = {0,4,7,v4} and let I contain {1,5,d}.
Then I is independent and dominates D so by Lemma 4, H is not DI-
pathological. a

The following result will be useful in the proof of Theorem 15, as it
allows us to classify what graphs with |V(G)| = 2v(G) and no isolated
vertices look like.
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Theorem 14. (7] For a graph G with even order n and no isolated vertices,
the domination number equals n/2 if and only if the components of G are
the cycle C, or the corona Jo K, for any connected graph J (where Jo K
is the graph formed from J by adding |V (J)| new vertices and |V (J)| new
edges, the new edges forming a 1-factor with each new edge having ezactly
one vertez in V(J)).

Now we will bring all of this together to classify the smallest DI-path-
ological graph in regards to the number of vertices.

Theorem 15. Let G be a connected, DI-pathological graph with domination
number v(G) where v(G) > 4. Then |V(G)| > 2v(G) + 4.

Proof. Suppose for a contradiction that there is some connected, DI-path-
ological graph G with v(G) > 4 and |V(G)| < 2¥(G) + 4 and pick such a G
with as small a domination number as possible (still at least four). Since
¥(G) > 4 and |V(G)| < 2v(G) + 4, we have that V(G) < 3v(G). So by
Lemma 2, there exists a minimum dominating set D and a vertex d € D
such that d has one private neighbor, say v4. Then by Lemma 1, G\ Ppld]
is a DI-pathological graph (with no isolated vertices), and so one of the
components in G \ Pp[d] must be Dl-pathological. Let ¢ be the number
of components in G \ Ppld]; call the components Hy, ..., H,—1 with Ho
being DI-pathological. Suppose that |V (Hg)| > 2v(Ho) + 4. Since there
are no isolated vertices, for 1 < i <t —1, |V(H;)| > 2v(H;). Note that
Yoio ¥(H:) = 7(G) — 1. Then V(G) = U;Z3V (H;) U Pp[d], so

t—1
IV(G)| > (z 27(Hi)) +4+2=27(G)—2+4+2=2v(C) +4,

=0

a contradiction.

So |V(Ho)| £ 2v(Ho) + 3. By picking a smallest counterexample, we
must have y(Hp) < 3 (Hp is connected since it is a component and y(Ho) <
7(G)). By Lemma 11 and by the results in (5], Hp is one of the following
graphs: K33, K34, A1, A2, A3, A4, As, and Ag. Let G’ be the subgraph
induced by V(G) \ (Pp[d] UV (Hp)) and let G* be the induced subgraph on
V(HoU Ppld]). Since G is connected, it is clear that G* must be connected;
further, v(G*) = v(Ho) + 1 (else G has a dominating set of size v(G) —
1). By Lemma 13, there are a minimum dominating set D* and maximal
independent set I* in G* that are disjoint. Since d and vy are adjacent, it
is not possible for both to be in I*, so say vq & I”.

Suppose Ho (3 {K3‘4, Al, Ag, A3, A4, A5, As}. ’Y(G') = ’)’(G) —’)‘(Ho) -1.
Further, |[V(G')| £ 2v(G) + 3 — (2y(Ho) + 3 +2) = 2v(G) —2v(Ho) — 2 and
V(@) 2 21(G") = 21(G) - 29(Ho) — 2, 50 [V(G")] = 2+(G) — 2¥(Ho) -
In what follows, note that if we can ever dominate a component H; with
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fewer than vy(H;) vertices by using d or vg4, then we can form a dominating
set with at most v(G) — 1 vertices, which would be a contradiction. By
Theorem 14, G’ is a collection of components that are Cy4 or J o K; where
J is a connected graph.

If d is adjacent to b; where by € V(H;) where H; = Cyq = (b, b2, b3, bs),
then we can dominate the C; with d and b3 so d cannot be adjacent to any
vertex of a component that is a C4. If J = K, then d cannot be adjacent
to both vertices in K o K, since otherwise d dominates this component.
If J # K,, d cannot be adjacent to the vertices in V(J o K;) \ V(J) since
otherwise we can dominate this component with (V(J)\ {j}) U {d} where
j € V(J) is the vertex whose neighbor in V(J o K;) \ V(J) is adjacent to
d (j must be adjacent to some other vertex in V' (J) since J is connected).

Form D' and I’ component by component as follows: If H; = Cy, let D’
contain two nonadjacent vertices and I’ contain the other two nonadjacent
vertices. If H; = K, 0K, (i.e. K3), let I’ contain a vertex not adjacent to d
and D’ contain the other vertex. If H; = Jo K, for J # K\, let D’ = V(J)
and let I' = V(Jo K;)\V(J). In any case, d is not adjacent to I’ so I'UT*
is independent. Then D’ U D* is a minimum dominating set disjoint from
the maximal independent set I’ U I*, so G is not DI-pathological.

Finally, suppose Hyp = K3 3. Then G’ contains 2y(G)—5 = 2v(G')+1 or
279(G)—6 = 2v(G") vertices when |V (G)| = 2y(G)+3 or |V (G)} = 2v(G)+2
respectively. Let {r,72,73} and {si, s2, s3} be the partition of vertices in
the K33 into independent sets. Since V(G’) < 2v(G’) + 1, it is clear that
G’ is not DI-pathological. So let D’ and I’ be a minimum dominating set
and maximal independent set in G’ such that D' NI’ = @. Since Pp|d]
must be adjacent to K33, we may suppose vg is adjacent to some vertex,
say s1, in K33. If vg ~ sz then {v4,53} U D’ is a dominating set of size
¥(G) — 1, a contradiction. Similarly, vy % s3. If vy is not adjacent to
I’ then I' U {va, s2,s3} is a maximal independent set disjoint from the
minimum dominating set D = {ry,s;,d} U D’. If vy is adjacent to I’
then let D = {vg,82,53} UD’ and let I = I' U {ry,r3,73}. Then I is an
independent set that dominates the minimum dominating set D so G is not
DI-pathological by Lemma 4, a contradiction. 0

4 Edge Minimality

Having found the minimum number of vertices in a connected, DI-path-
ological graph with domination number 4 for all positive integers -y, we turn
to a related question, namely the question of finding the minimum number
of edges in a connected, DI-pathological graph with domination number ~.
In the introduction we noted that if v(G) = 2 and G is DI-pathological,
then G = K, , with m,n > 3 (see [4]), so the minimum number of edges
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in such a graph is 9 = 2y(G) + 5. We start with the following theorem and
corollary, which will show that trees (excluding isolated vertices) are not
DI-pathological.

Theorem 16. (3] If T is a tree other than K, and D is a minimum dom-
inating set in T containing at most one leaf, then there is a mazimal inde-
pendent set for T contained in V(T)\ D.

Corollary 17. If T is a tree other than K, then T is not DI-pathological.

Proof. Let T be a tree. T = K, is clearly not DI-pathological. If T # K3,
pick D to be a minimum dominating set in T that contains as few leaves
as possible. If D contains any leaf, say a, let b be any neighbor of a. Since
T # K,, b is not a leaf. Futher, (D \ {a}) U {b} is a minimum dominating
set with fewer leaves than D, a contradiction. Hence D has no leaves and
by Theorem 16, it is not DI-pathological. O

We will now proceed to find the smallest number of edges in a connected,
DI-pathological graph with domination number + for all v > 3. We start by
showing that the minimum number of edges in a connected, DI-pathological
graph with domination number three is 10 = 2y(G) +4, and show that only
one graph satisfies this lower bound.

Theorem 18. Suppose G is a connected, DI-pathological graph with ¥(G) =
3. Then E(G) > 10 with equality if and only if G = A, in Figure 1.

Proof. Let G be a connected, DI-pathological graph with v(G) = 3. By
Lemma 3, |V(G)| = 9. We know A, in Figure 1 satisfies |E(A;)| = 10 and
every other connected, DI-pathological graph on nine vertices has more
than ten edges. If [V(G)| = 11 then |E(G)] > 11, since it is connected and
trees are not DI-pathological. If |V(G)| = 10 then | E(G)| = 10 for the same
reason. So |E(G)| > 10 as claimed. To show the second claim, we need only
show that any connected, DI-pathological on ten vertices and ten edges is
not DI-pathological. Let D = {d;,d2,d3} be a minimum dominating set
in G. Each vertex in V(G) \ D is adjacent to some vertex in D, so this
uses at least seven edges. If there are only three edges left, then since there
are seven vertices in V(G) \ D, some vertex, say z, cannot be adjacent to
any other vertex in V(G) \ D, so z is only adjacent to a vertex in D, say
dy. Let B = {b1,b2} and C = {c1,c2} be private neighbors of d; and d3
respectively (which are guaranteed to exist by Lemma 3). Again, if there
are only three edges left, some vertex from B and some vertex from C
cannot be adjacent. So say b, # c¢;. Then {z,b;,¢,} is an independent set
which dominates D so by Lemma 4, G is not DI-pathological, which proves
the second claim. O
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We now find a sharp bound for the minimum number of edges in a
connected, DI-pathological graph G with v(G) > 4.

Theorem 19. Let G be a connected, DI-pathological graph with v(G) > 4.
Then |E(G)| = 2v(G) + 5 and this bound is sharp.

Proof. We showed in Lemma 12 that the graph in Figure 2 is DI-path-
ological and it clearly contains 2v(G) + 5 edges. Now suppose for a con-
tradiction that there is a connected, DI-pathological G such that |E(G)| <
29(G) + 4 with v(G) > 4 and pick such a graph with as small a domination
number as possible (still greater than or equal to four). By Theorem 15,
[V(G)| > 2v(G)+4, and then, since G cannot be a tree, |E(G)| > 2v(G)+4.
So |E(G)| = 2v(G) + 4.

Case 1: Suppose ¥(G) =4 (so |E(G)| = 12 and |V(G)| = 12) and each
vertex in a minimum dominating set D has exactly two private neighbors.

Let D = {d;,d3,ds,ds} be the minimum dominating set and let A =
{a1,a2}, B = {b1,b2}, C = {c1,c2}, and E = {e;, e3} be the set of private
neighbors of dj, ds, d3, and d4 respectively. We will prove a claim that will
be used to classify the possible degrees of the vertices in AUBUC U E.

Claim: There is at most one isolated vertex in GIAU BUC U E.

We prove this claim by contradiction, so assume that there are at least
two isolated vertices in GJAU BU C U E]. First suppose that two of the
isolated vertices are in different sets, say one is e¢; and another is ¢;. Then
every vertex in A is adjacent to every vertex in B since otherwise there
is an independent set, say {aj,b1,¢1,€1}, that dominates D, so G is not
DI-pathological by Lemma 4, a contradiction. But then all four remaining
edges go from A to B and the graph is not connected, a contradiction. Now
suppose the two isolated vertices are in the same set, say they are e, and e;.
Since G is connected, d4 must be adjacent to some other vertex in D. This
leaves three edges to be used in GJAUBUCUE]. Since GIAUBUCUE]
cannot have isolated vertices in different sets (we already proved this) and
E has isolated vertices, each vertex in AU BUC must be adjacent to some
other vertex in AUBUC. Since there are only three edges left to be used,
each vertex in AU B U C must be adjacent to exactly one other vertex in
AUBUC. So a, is not adjacent to either vertex in either B or C, say C, and
is also not adjacent to some vertex in B, say bp. Further, b, is adjacent to
at most one vertex in C, so say it is not adjacent to ¢;. Then {a1,b2,¢), €}
is an independent set whlch dominates D, so G is not DI-pathologlcal by
Lemma 4, a contradiction. This proves the claim.

So, since there are only four edges left and there is at most one isolated
vertex in G[AU BU C U E], either every vertex in G{AU BUC U E] has
degree one or one vertex in G{AUBUC U E] has degree two, say a;, one has
degree zero, and the rest have degree one. In either case, a; has degree at
most one, so we can assume it is not adjacent to any vertex in C or F and

126



that it is adjacent to at most one vertex in B; so say ag 7 ba. Further, b2
has degree at most one, so we can assume it is not adjacent to either vertex
in E and that it is adjacent to at most one vertex in C; so say b2 % c3.
Finally, co has degree at most one, so it is adjacent to at most one vertex
in E; so say c; # ez. Then {ag,b2,c2,€2} is an independent set which
dominates D so G is not DI-pathological by Lemma 4, a contradiction.

Hence Case 1 is not a possibility for G.

Case 2: Otherwise, there is some minimum dominating set D with a
vertex d € D such that d has one private neighbor vy (|V(G)| = 27(G)+4 <
31(G) if 1(G) > 5).

Then by Lemma 1, G \ Pp|d] is a DI-pathological graph (with no
isolated vertices), and so one of the components in G \ Pp[d] must be
DI-pathological. Let ¢ be the number of components in G \ Ppld]; call
them Hg, Hy,...,H,_; where Hy is DI-pathological. Suppose |E(Hp)| >
2v(Hp) + 5. Since the H;s are components (and hence connected) and are
not isolated vertices, |V (H;)| = 2v(H;), and hence |E(G)| > 2y(H;) — 1.
There must be at least one edge from d or v4 to each component (smce G was
connected). Further, d and v4 are adjacent. So |E(G)| > Z,_o |E(H;)| +
t—122y(Ho) +5+ ST v(H) - (t—1) +t+1 =25 1" v(H) +7 =
27(G) -2+ 7 = 2y(G) + 5, a contradiction. So the DI-pathological compo-
nent Hp must have 2v(Hp) + 4 edges and hence must be A; (for otherwise
v(Ho) > 4 but v(Hp) < v(G) and so H) is a smaller counterexample than
G). Further, for 1 < i <t -1, y(H;) must have exactly 2v(H;) — 1 edges
(and 2v(H;) vertices) and there must be precisely one edge from one of
d or vy to each of the ¢ components (else we could repeat the argument
on the edge count of G to get |E(G)| > 2¥(G) + 5). By Lemma 13, the
subgraph in G induced by the vertex set V{(H,)U{d,vq} = V(A1) U {d,va}
is not DI-pathological, so let D’ be a minimum dominating set and I’ be a
maximal independent set in this induced subgraph such that D'NI’' = @.
For1<i<t—1, H; is a tree and hence is bipartite with partition D;U E;.
Since there is precisely one edge from either d or vg to H;, we can assume
that the edge is incident to D;. Then D* =D'U{D; |1 <i<t-1}1is
a minimum dominating set in Gand [* =I'U{E; |1 <i<t-1}isa
maximal independent set in G with D*NI* = @. O

5 Final Remarks

Two natural questions are left unanswered by our results so far. The first
question is what happens to the vertex and edge bounds if we drop the
condition that our graphs must be connected. However, it seems this is a far
less interesting question as one can easily show that there are graphs G with
[V(G)| = 7(G) and |E(G)| = 0 for all ¥(G) > 1 if we allow isolated vertices
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and that there are graphs G with |V(G)| = 2y(G)+2 and |E(G)| = v(G)+7
for all 4(G) > 2 if we prohibit isolated vertices but allow the graph to be
disconnected (the graph consisting of K33 and independent edges meets
both bounds). Further, it easy to show in both cases that the bounds are
best possible.

For our second question, note that the same graph was sharp for both
the vertex and edge bound. In light of there being six DI-pathological
graphs on nine vertices, it does not seem likely that the graph in Figure 2
is the only DI-pathological graph on 2v(G) + 4 vertices. The graph in
Figure 3 confirms this suspicion.

2k — 6 vertices

0 il 1 o ——@rzeaeen o
7N P2 Ek-s 2k -1
5% 9° % 3 k -2 %2k
4
2 3

Figure 3: Another DI-pathological graph with the smallest number of ver-
tices

However, one might wonder if the graph in Figure 2 is the only graph
that is sharp for the edge bound. This is not true for 7(G) =4 or 4(G) =5
as evidenced in the figure 4; however, these graphs do not generalize in the
same way as the graph in Figure 2, so it is remains open whether the graph
in Figure 2 is the only sharp graph for the edge bound for higher 7.

Figure 4: Two DI-pathological graphs with v = &k (the graph on the left
has v = 4 and the graph on the right has v = 5)
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