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Abstract

Given a graph G a k-ranking is a labeling of the vertices such
that any path connecting two vertices with the same label contains
a vertex with a larger label. A k-ranking is minimal if and only if
reducing any label violates the ranking property. The arank number
of a graph ¥.(G), is the maximum k such that G has a minimal
k-ranking. The arank number of a cycle was first investigated by
Kostyuk and Narayan. They determined precise arank numbers for
most cycles, and determined the arank number within 1 for all other
cases. In this paper we introduce a new concept called the flanking
number, which is used to solve all open cases. We prove that ¥,.(Cy)
= |logy(n +1)| + |logy(2t2)] + 1 for all n > 6 which completely
solves the problem that has been open since 2003.

1 Introduction

Given a graph G, a labeling f : V(G) — {1,2,...,k} is a k-ranking if and
only if f(u) = f(v) implies that every © — v path contains a vertex w such
that f(w) > f(u). The rank number of a graph x,(G), is the smallest k
such that G has a k-ranking. This problem has been well studied [1]. In
1996 Ghoshal, Laskar, and Pillone introduced the idea of minimal rankings
[2]. A k-ranking f is minimal if for all u € V(G), a function g satisfying
g(v) = f(v) when u # v and g(u) < f(u), is not a ranking [2]. Then the
arank number of a graph ¥,.(G) is largest k such that G has a minimal
k-ranking. Rankings with v,.(G) labels will be referred to as arankings.
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The arank number of a cycle was first investigated by Kostyuk and
Narayan [7]. They determined precise arank numbers for most cycles, and
determined the arank number within 1 for all other cycles. In particular,
they determined the following results for m > 4. These are shown in Table
1.

n ¥.(Cr)
2m L 2m—2 << 2™ 4 2m1 3 2m —1 or 2m
2m _2m—2 _92<n<2Mm-2™m"% ] 2m —2
am _ oM=< pL2m_2 2m—2or2m—1
M _2m=Z_ 92 p<2m~-2m"0 ] 2m -2
2" _1<n<2m42m 41 2m -1

Table 1. Known arank numbers for cycles

The next open cases 1,.(C14) = 6, and ¢,.(Cy) = ¥,(C21) = 7 were
solved by Kaplan [6]. The next unsolved case is to determine whether
%,.(C30) = 8 or 9. It is known that a minimal 8ranking of C3q can be
constructed, but it is not known whether a minimal 9-ranking of C3q exists.
In this paper we introduce the concept of a flanking number of a ranking
which can be used to determine if a minimal ranking of one graph can
be extended to a create a minimal ranking of a larger graph. In Section
3, we use the idea of the flanking number to investigate all possible ways
for constructing a minimal 9-ranking of C3g. All of these ways will involve
extending a minimal 7-ranking of Cy5. We carefully exhaust all possibilities
and show that any 9-ranking of Csg is not minimal, leading to the conclusion
that v,(C30) = 8. Later we apply the same ideas to all unsolved cases,
showing that ¢,.(C,) = [loga(n + 1)) + |logy(2$2)] + 1 for all n > 6.

2 Preliminaries

Given a path P, with vertices vy,...,v, and a ranking f, we will use the
notation {f(v1), ..., f(vn)) to represent the labels of the vertices. For a cycle,
Chn, we use the notation (f(v1),..., f(vs), —) to represent the labels of each
vertex in C,.

We restate a series of known results, starting with result of Ghoshal,
Laskar, and Pillone.

Theorem 1 (Ghoshal, Laskar, and Pillone [2]) Let S; denote the set
of vertices labeled i in a ranking. Then in any minimal k-ranking |S,| >
|S2] > -+~ > |Sk|.
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Building on this result, Kostyuk and Narayan obtained the following
two theorems.

Theorem 2 (Kostyuk and Narayan [7]) For any minimal ranking of
Cnr |Sl U82| 2 %

Theorem 3 (Kostyuk and Narayan [7]) Let m < n. Then ¥,.(Cn) <
wr(Cﬂ)'

We restate a definition of Ghoshal, Laskar, and Pillone {2].

Definition 4 For a graph G and a set S C V(G), the reduction of G,
denoted G%, is a subgraph of G induced by V — S with an extra edge uv in
E(G%) if there exists a u — v path in G with all internal vertices belonging
to S.

Unless otherwise stated, we will let the set § = S;. In this article, a
reduction of G will imply removal of all vertices with label 1 and the label
of each remaining vertex is decreased by 1 to produce the ranking of Gf’g.
For example, given C7, where the labels are (1,2,3,2,1,4,5, —), then the
reduction, (C7)%, is (1,2,1,3,4,-).

Lemma 5 Let G be a graph and let f be a minimal 9,.(G)-ranking of G.
Then a reduction of G yields a minimal v,.(GY%)-ranking of G%.

Definition 6 Given a graph G, an expansion of G is a graph G¥* such
that (G#*)% = G.

Unless stated otherwise, an expansion is created by raising the label of
vertices by one and then inserting a set of new vertices with a label of 1. To
insert a vertex w, we subdivide an edge by removing edge uv and adding
edges uw and vw. For example if G = Cy is labeled with (1,2,1,3-),
then each of the following is an expansion of Cy : (1,2,3,1,2,1,4,-),
(1,2,1,3,1,2,1,4,-), or (1,2,1,3,2,1,4, —). We note that the reductions
are unique, but there may be multiple expansions.

Kostyuk and Narayan [7] presented the next lemma which involves in-
serting vertices labeled 1 so that the expansion is a minimal ranking. For
example, if G = Cs and we have the minimal ranking (1,2,1,3,4—), we can
insert a vertex labeled 1 between the vertices with label 3 and 4 to get Cg
with the minimal ranking (1,2,1,3,1,4-).
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Lemma 7 Let f be a minimal k-ranking of G with adjacent vertices u and
v where f(u) > 1, f(v) > 1, and f(u) # f(v). Let G¥ be the graph created
by subdividing (u,v) and inserting a verter w between u and v. Then let
the ranking f# of G¥# be defined so that f#(w) = 1 and f#(z) = f(z) for
all x # w. Then f# is a minimal k-ranking of G#.

Kostyuk and Narayan (7] also presented the following:

Lemma 8 Let f be a minimal k-ranking of G. A graph G’ is created by
subdividing edges of G and adding a set of vertices S that dominates G'.
Then the labeling f' where f'(z) = f(z)+1 for allz € V(G) and f'(z) =1
for all z ¢ V(G) is a minimal (k + 1)-ranking of G'.

This lemma gives insight on how we can expand a graph G with a
minimal k-ranking obtain G’ with a minimal (k + 1)-ranking. For example
consider G = C; with the minimal ranking (1,2,1,3-). We expand this
cycle by raising the labels first to get (2, 3, 2,4—) and then insert dominating
set of vertices with label 1 to get (2,1,3,2,1,4—). It is also possible to
produce (1,2,3,1,2,4-).

In the next section, we will present a refinement of this lemma that
makes it clear which vertices need to be dominated.

3 Flanking Numbers

To help us construct cycles with arankings, we introduce the concept of a
flanking number. The idea is to start with a ranking f and increase all of its
labels by 1, producing the ranking f*. Then we check to see which vertices
in the new ranking has a label that can be reduced to 1 while respecting
the definition of ranking. The flanking number of a vertex will be 1 if its
label cannot drop to label of 1 and still maintain rankings, and 0 otherwise.
Note that the words “drop” and “reduce” are used interchangeably here.
We formally state this in the following definition.

Definition 9 Let (G, f) denote a graph G with a minimal ranking f, and
let (G, f*) be the ranking where f*(v) = f(v)+1 for every v € V(G). The
Ranking number of a vertez is a function {(v) — {0,1} where {(v) = 0 if
the label of v can drop to 1 in f* such that the resulting graph is still a
ranking, and 1 otherwise. As a shortcut, we can use ((V(G)) as a function
that assigns a flanking number to each vertez v in G.

Example 10 Let G = Ps with the ranking f = (1,2,1,3,1). Then f+ =
(2,3,2,4,2). Then ((V(G)) = (0,1,0,1,0).
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The next theorem establishes a sufficient and necessary condition to
ensure that the resulting graph is minimal after subdividing edges with a
set of vertices labeled 1.

Theorem 11 Let G be a graph with a minimal ranking f. Suppose that
v is a verter in G with ((v) = 0. If (G¥#, f*) is an expansion of G, and
v s not adjacent to any subdividing verter with label 1, then the resulting
ranking of G¥# is not minimal.

Proof. Suppose ¢((v) = 0 in (G, f*). Consider (G#, f*) and suppose
that there is no subdividing vertex adjacent to v. Then we observe that
all vertices adjacent to v will have labels greater than 1. If we change the
label of f(v) by dropping it to 1, then we need to check to see whether
the definition of ranking holds or not. Since the paths from v to any new
subdividing vertices must go through adjacent vertices, which has a label of
at least 2 (recall, G has raised labels). Since the label of subdividing edges
is 1 and f(v) = 1, and the fact that the path contains adjacent vertices
with the labels of at least 2, the definition of rankings is not violated after
dropping f(v) to 1, therefore the ranking of G# is not minimal. m

In other words, a set of subdividing vertices must dominate the set of
all vertices with flanking number of 0 in G or the resulting ranking of G#
is not minimal.

The next proposition will give us a method for constructing a minimal
ranking. The main idea is, if vertex v has flanking number 0, then it can
drop to label 1 in G*. However, if we subdivide two edges adjacent to v
with new vertices with labels of 1 in G* to produce G¥, then v is flanked by
the new vertices, and v cannot drop to a label of 1 in any of the subsequent
expansions. In the rest of the paper, v is flanked if in an expansion of a
cycle, G#, there exists a path u —w that goes through v such that the label
of v is larger than the labels of vertices u and w, and all other labels of
vertices on the path is smaller than u and w. v is automatically flanked
soon as two adjacent subdividing vertices flanks it in an expansion of G.
The vertex v is automatically flanked as soon as two adjacent subdividing
vertices flank it in an expansion of G.

Proposition 12 Let G be a graph with a minimal ranking f and vertex v
with ((v) = 0. If an expansion of G has a minimal ranking f*, then the
flanking number for a given v in G# is:

a) 0 if only one edge adjacent to v is subdivided.

b) 1 if at least two edges adjacent to v are subdivided.
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Proof. First, consider that if v in G¥ does not have any edge adjacent
to it that is not subdivided, then Theorem 11 implies that the rankings
of G# is not minimal. Therefore in order to ensure that f* is a minimal
ranking, then v must have at least one adjacent edge that is subdivided.
Suppose that we have only one edge adjacent to v was subdivided in the
expansion of G. Then the subdividing vertex, w will have a label of 1, and
v will have label that is one greater than the label it had in G. Now to
check the flanking number of v, we raise all labels of G#, including the
label of w, then we allow the label of v to drop to 1. Following the proof
for Theorem 11, we only consider the relationship between v and w. Since
the label of w is not equal to the label of v and {(v) = 0 in G, therefore
¢(v) =0 in G*.

In the second case, let the two vertices, w; and wy subdivide the edges
adjacent to v during the expansion of G. Next, let us check the flanking
number of v by raising all the labels of G¥, which implies the labels of
vertices w; and wy will both be 2, then dropping the label of v to 1. This
time, we need to look at the relationship between w,, w;, and v. Notice
that there exists a path from w; to wp through v such that the label of w,
is equal to wa but the label of v is smaller than the label of wy, violating
the definition of rankings. Therefore, in this case, the flanking number of
v in a minimal ranking of G¥ is 1. Note that the proof in the second case
can be extended to the cases with more than 2 subdividing vertices. m

Proposition 13 In a cycle G containing a verter v where ((v) = 1, then
in any expansions of G with a minimal ranking, the flanking number of v
remains 1.

Proof. If {(v) =0, then the label of v cannot drop to 1 in G without
violating the definition of ranking. This means there exists a path from
vertex w to = going through v where the label of z is equal to the label
of w and the label of v is greater than both labels. Now if we expand the
cyclic graph G, then all new vertices subdividing will have labels smaller
than vertices v, w,z, and the labels of vertices w,z will still be equal to
each other and smaller than the label of v. So there still exists a path from
w to z in G# through v. Therefore, the label of v cannot drop to 1, and
therefore ((v) = 1in G¥#. =

This proposition sheds light on the stability of flanking number. That is,
once a vertex has a flanking number of 1, it will always remain flanked by the
same vertices in any future expansions, and thus will never become a vertex
that can drop its label to 1 in subsequent expansions. The application of
this idea becomes evident later with the flanking partition structure. Next
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we introduce tools for identifying the flanking number for any vertex of a
given graph G:

Proposition 14 Given two adjacent vertices v and u on a path or a cycle
G with a minimal renking f, if the label of v is smaller than the label of u,
then ¢(v) =0.

Proof. Since the label of v is smaller than the label of u in (G, f)
and (G, f*), v has no bearing on whether dropping the label to 1 in f*
would yield a path from u to any other vertices in G that would yield us a
non-ranking. =

In the above sense, u does not flank v. But v flanked u in the sense
that if there are two vertices adjacent to u with the same label, but less
than the label of u, then both vertices flanks that label such that the label
u cannot drop to 1 without violating the definition of rankings.

Corollary 15 Adjacent vertices on a cycle or a path cannot both have a
non-zero flanking number.

The above propositions yield tools for constructing arankings of cycles.
For example we will construct C; with arankings and show that C; has a
unique aranking (up to permutation of labels with the largest rankings).
This will be our starting point for further constructions of arankings for
open cases.

Working from the aranking of C3 to get to C7, there are two possible
strategies for domination of all zero flanking numbers, namely two or three
edge subdivisions. These produce four possibilities:

e (1,2,1,3,4-)
e (1,2,3,1,4-)
e (2,1,3,1,4-)
e (1,2,1,3,1,4-)

The last case involving Cg is different from all other cases, since {(Cg) =
(0,1,0,1,0,1-), and requires three additional vertices to dominate all ver-
tices in Cg. Since we would get a minimum of 9 vertices in the next minimal
expansion, this is not the way to reach a minimal aranking of C7. In the
three other cases, they differ only by the position of the top three labels.
Without loss of generality we choose any of the three cases and demon-
strate that we can get to C7 by using two subdividing vertices. Taking
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(1,2,1,3,4-), we have {(Cs) = (0,1,0,0,0—). Given that Cs has five ver-
tices, we only can use two vertices to subdivide edges in order to produce
C7. There is a unique way of dominating four vertices with flanking num-
ber of 0 with two subdividing vertices by inserting a subdividing vertex
between label 1 and 3, and label 4 and 1, so we get (1,2,3,2,1,4,5-) for
Cr.
For C4 we have the labels (1,2,1,3—) with ¢{(Cy) = (0,1,0,0-). By
Theorem 2, at least half of the vertices of C7; must be labeled 1 or 2. Then
it is clear that we cannot expand an aranking of C4 into an aranking of
C+. Hence we are left with one arankings of C7, which is unique up to the
permutation of the top three labels. We will use this unique aranking of
C~ in the future constructions of arankings of Ci5 and some open cases.

We summarize two observations in the following lemmas. The first
follows the nature of flanking numbers of newly inserted vertices, and the
second involves the monotonicity property of the number of vertices with
flanking numbers of zero:

Lemma 16 Given a cycle G, if a vertex v with label 1 subdivides an edge
of G* to produce an ezpansion of the graph, G* with a minimal ranking,
then ¢(v) = 0.

Proof. Since vertex v has a label of 1, the lowest possible labeling in a
ranking of any graph, and using Proposition 14, we see that the label of v
is smaller than the labels of adjacent vertices, and therefore ((v) =0. m

Lemma 17 Let G be a cycle with a minimal ranking, then the number of
vertices with flanking number of 0 in G is equal or less than the number of
vertices with flanking number of 0 in G¥#.

Proof. By Lemma 16, all inserted vertices will have flanking number 0.
By Proposition 12, we see that for each vertex in G with flanking number
0, we need to insert at least one vertex adjacent to each vertex to produce
G* with a minimal ranking. There are two possible types of insertions -
if v in G has only one adjacent subdividing vertex in G#, then v will have
a flanking number of 0, increasing the number of vertices with flanking
number of 0 by 1 for each vertices in this case. Now, if there are two
vertices subdividing edges adjacent to v, then the flanking number of v will
become 1, but both vertex inserted will have flanking number of 0, with a
gain of 1 or 0 vertices with flanking number of 0. So therefore, the number
of vertices with flanking number of 0 in G is always equal to or less than
the number of vertices with flanking number of 0 in G#. =
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Lemma 17 provides tools for extending minimal rankings of graphs to
other minimal rankings of graphs. When a vertex with label 1 is inserted,
the number of vertices with flanking number of 0 either stays the same or
increases. It increases only when vertices are inserted next to a vertex that
is not already dominated by another vertex. It stays the same only when
the insertion of 1 is next to a vertex that is already dominated by another

vertex.

Corollary 18 Given a cycle G with a minimal ranking, the number of
vertez insertions needed to dominate all vertices with flanking number of 0
in G on a cycle is less than or equal to the number of vertices insertions
needed to dominate all vertices with flanking number of 0 in G#

We can simplify our analysis by focusing at only components of cycle
G with minimal rankings at a time, where we only look at vertices with
flanking number of 0. That is, we partition G into a set of path by remov-
ing all vertices with flanking number of 1. We say that each partition is
independent from other partitions, and we can analyze on how best expand
each partition in order to get arankings for each partition.

Proposition 19 In any cycle, vertices with flanking number 0 can be par-
titioned by removing vertices with non-zero flanking number.

Proof. Given a cycle G with two nonadjacent vertices, u,v € V(G),
and ¢(u,v) = (1,1), we observe that » and v will never have flanking
number 0 in any expansions of G. This follows by Proposition 13. Suppose
we insert a vertex w into G, and we consider two possible paths from u
to v, one that contains w and one that does not. Now observe that the
label of w is smaller than the labels of both u and v, so it has no hope of
flanking a vertex that is on the path uv without w. This implies that we
can focus on each path segment between each vertex with flanking number
1 independently. =

Next we will investigate the construction of arankings of larger cycles,
and generating all possible arankings for Cor_;.

Corollary 20 The number of vertices with flanking number 0 will always
remain the same or increase in each partition.

Proof. This corollary follows directly from Proposition 19 and Corol-
lary 18, showing that inside each partition, the number of vertices that need
to be dominated by inserted vertices with label 1 will always increase or
remain the same. ®
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Extending Theorem 11, and applying Lemma 19, we can use vertices
with flanking number 1 to subdivide all vertices with flanking number 0
into sets of vertices that must be dominated by vertices inserted into G*.
This allows us to look at each partition individually:

Lemma 21 Given a cycle G, if there exist m consecutive vertices with
flanking number 0, then the expansion of the subgraph induced by m con-
secutive vertices must have at least % insertions of vertices with label 1 in
order to dominate all m vertices and achieve a minimal ranking for the
ezpanded graph.

Proof. If any vertex with flanking number 0 is not dominated by a
vertex insertion during the expansion, then by Theorem 11 the graph G#
is not minimal. Also, since each vertex insertion is capable of dominating
two vertices in the m consecutive vertices at the same time in a cycle, then
the number of insertions that will dominate all vertices is at least 2. =

This proposition gives us the tools that allow us to count the number
of vertices we need to insert in order to dominate all vertices with flanking
number 0 in order to preserve the minimality of a ranking.

Theorem 22 All minimal rankings of cycle C,, are constructed by ezpand-
ing multiple times from C3, Cy where in each expansion, all vertices with
flanking number of 0 is dominated by subdividing vertices with label 1.

Proof. Given any cycle with a minimal ranking, observe that the largest
two labels cannot be equal to each other, or the definition of ranking would
be violated. Furthermore, also observe that the second largest and third
largest labels cannot be equal to each other in a cycle or the ranking would
be violated, since there exists a path from both vertices that does not go
through a vertex with the largest label on a cycle. So we need to look at
how many vertices have a label that is equal to the third largest label in
a ranking of a cycle. Note that if there are no other vertex with label to
third largest label, then reduction of the cycle to only three vertices would
yield C3. Now, if we assume that there is one other vertex, then we need to
place it such that the path from a vertex with third largest label to other
vertex with the same label must go through vertex with the largest label or
a vertex with the second largest label, otherwise the definition of ranking
would be violated. Reducing this cycle yield us Cy. Finally, if we try to
put in one more vertex with the label equal to the third largest label, then
there will be a path that links two vertices with the third largest label,
violating the definition of rankings, so the resulting cycle is not minimal.
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Therefore, we only can expand from C3 and Cj to generate all possible
minimal rankings of C,. ®

Using Theorem 22 we will be able to construct all possible cycles with
minimal rankings, and consequently all arankings of cycles.

Note that with Theorem 2, we will only consider the expansions from
C3 when dealing with open cases for arankings.

4 Flanking Partition Structure
‘We begin with two propositions.

Proposition 23 Given 2m + b,b € {0,1} consecutive vertices where each
vertex has flanking number of 0 and m +r + b (where 0 < r < m) labels to
insert in the graph during the expansion process, the mazimum number of
HAankings that can occur is 2r + b.

Proof. We apply the pigeonhole principle for both the odd and the
even case. First, observe that to optimize the number of flankings, we need
to make sure that each subdividing vertex is shared by two vertices in the
path. So in this case, we need to insert one vertex each for both first and
last edge of consecutive vertices with flanking number of 0. Next, distribute
m + b — 2 subdividing vertices among vertices so that every possible vertex
in G with flanking number 0 is dominated. Note that in the b = 1 case,
there will be one subdividing vertex that will flank a vertex in G. After
distributing the vertices, we insert the remaining labels, and we get two
flankings for each insertion. Therefore, the maximum number of flankings
that can occur is 2r +b. ®

Proposition 24 Given a cycle or a path G with m vertices with flanking
number of 0, if the insertion of r vertices yields s flankings. Then in an
expansion of G¥#, the number of vertices that need to be dominated to ensure

that G** has a minimal ranking ism 47 — 5.

Proof. Recall that if two subdividing vertices are inserted adjacent to
vertex v with flanking number 0, then v will gain flanking number of 1,
removing it from the set of vertices with flanking number 0. If we flank s
vertices, then they cannot be included in the set of vertices with flanking
number 0. All of the newly inserted vertices will have flanking number 0,
so we add 7 to the number of vertices with flanking number 0, leaving us
withm4+r—s. =
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The combination of the above two propositions and Proposition 19 will
be useful in our approach.

Definition 25 The flanking partition structure is a set of consecutive ver-
tices with flanking number O separated by a vertex with flanking number 1.
Let us establish that [mq, ma, ..., mg] notation on a cycle where we have m;
consecutive vertices with flanking number 0, ending with one vertex with
flanking number 1, then ma consecutive vertices with flanking number 0,
then one vertex with flanking number 1, and so on.

For example, consider the following arankings of C5 with its respective
flanking numbers:

(5,4,1,2,3,2,1,6,7,1,2,3,2,1,4-) - (1,0,0,0,1,0,0,0,0,0,0,1,0,0,0-).

The partition structure of the above example is (3, 6, 3]p. Next, we will
use the idea of partition structure to establish all possible arankings of Cjs.

5 Arank of Cy

Now that we have all the tools along with Theorem 22, Theorem 2, and the
language of partition structures, we will start looking at the arank number
of C30. We will show that there is no way of constructing 9-rankings of Csg
using arankings of Cy5. We will first take all seven arankings of Cj5 (up
to rotation in cycles and permutation of the top three labels) and attempt
to construct a 9-ranking of C3¢ and observe why it is not possible in each
case. First, we transform each aranking of Cj5 into a partition structure as
follows:

With these constructions, we can now move on to prove the following
proposition:

Proposition 26 ,(Cs3p) = 8.
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Proof. Consider C3. By Theorem 2, at least half of the vertices of
C3o must be labeled 1 or 2. So, we only can use cycles with 15 or fewer
vertices. Since 9,.(C14) = 6 and ¥,.(C15) = 7, ¥,.(C30) = 8 or 9. We can
find an 8-ranking of C3g easily, but we need to see if it is possible to extend
a 7-ranking of Cjs to a minimal 9-ranking of Cio.

Note that with 15 vertices to insert into Cs in a series of two expansions,
we will need to determine how to divide up vertices into two groups of vertex
insertions. First, observe that for each ranking, we would need to insert at
least 7 vertices in order to dominate a set of vertices with flanking number
of 0. Finally, by Theorem 1, we only can insert 7 subdividing vertices in
the first expansion of Cys, and 8 subdividing vertices in the expansion of
expansion of Cj5 to get Co

Now, starting with cases (a) and (f), with partition structure of [14],,.
Observe that there is only one way of dominating fourteen vertices with
flanking number of 0 using 7 subdividing vertices. This will give us a
partition structure [21],. With this structure, we will need at least eleven
subdividing vertices needed to dominate the vertices with flanking number
of 0in C¥ in this case. Therefore, we cannot obtain a 9-ranking from these
two cases.

The next cases, (b) and (e) have a partition structure of {2,11] . The
only possible way of inserting 7 subdividing vertices would be putting one
vertex in the partition with length 2, and 6 vertices in the partition with
length 11. We can expect at most one flanking in the partition with length
11 and no flanking in the partition with length 2, so the total number of
vertices with flanking number of 0 in the expansion of C)5 is 3 in component
and 16 in other component. Therefore, in the next expansion, it would
require at least 248 vertex insertions to dominate all vertices with flanking
number of 0 to ensure the resulting cycle to have a minimal ranking. So we
eliminate (b) and (e). Similar arguments can be made for (c) and (d).

Finally, we are left with the last case, (g), which has three partitions
with lengths 3, 6, and 3. It is clear that we need two vertex insertions
to dominate the partitions with length 3, and three vertex insertions to
dominate the partition of length 6. This gives us seven vertices for the first
expansion. However, since there is a unique way to dominate the partition
of length 6, and in the expansion of the C}5, we can see that the number
of vertices with flanking number 0 in that particular partition increases to
9, which implies that it needs five vertices to dominate it completely. Since
the two other partitions already need two vertices to dominate each, more
than 8 vertices are needed to reach C3p. Hence, ¥,.(C30) =8. ®
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Notice that in the previous proof, it is possible to simply use the idea
of flanking numbers to construct a graph, and also to help motivate the
search for the arank number of a cycle. It is a good exercise to use the
ideas above, along with the seven cases delineated for C)5 to demonstrate
that there are only seven possible cases of C3; that can be reached from
Cis (and all of these are derived from case (g), and cannot come from any
other cases).

Our work thus far makes it easier for us to understand how to focus
our efforts on each partition, as long as we focus on each partition inde-
pendently. It is easier to focus on the number of vertices within a partition
than focusing on each vertex. How we focus on each partition will become
clearer with each proof of the exhaustion lemmas (named as we will ex-
haust all possible labelings for insertions) below. Before we move on to
the exhaustion lemmas, we will define the notation of “insertions” within
a graph. For example if one partition has three consecutive vertices with
flanking number 0, then we denote this as:

0-0-0

Now suppose we wish to insert two vertices. Both insertions will occur
between two 0’s or at an end, and will be denoted with an asterisk. All
possible insertions are as follows:

*x—0-0-—%—0
0—x—0—-%x-0
0—+x—-0-0—+

Note that after inserting two vertices in first and second, we get a par-
tition structure of [5],, but for the middle case, we get a partition structure
of (2,2],. Before going further with this, we will need to make another
observation: in order to get arank number and arankings of a cycle of a
given length, we need to find a construction such that it uses the fewest
vertex insertions over two expansions from one cycle with rankings to other
cycle in order to determine arankings for open cases. However, while we
are trying to find the fewest vertices, we are also limited by the number of
vertices with flanking number of 0, as it determines how many vertices we
would need to insert to ensure that the ranking is minimal in subsequent
expansions of a cycle.

Before proving the general case, we need to first study the basic parti-
tions such as (3], and few others. Note that we already inserted two vertices
to produce three possible cases with the following partition structures, [5],,
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[2,2],, and [5],. Note that in the first and last partition structures, we
need three vertex insertions to dominate the vertices with flanking number
of 0. Compare to the middle one, which needs only two vertex insertions,
yielding partition structure of [3,3],! So therefore, if we have four vertices
to insert over two expansions of (3], (which resembles a path), then the
only possible partition structure would be (3, 3],.

Formalizing the above into a lemma:

Lemma 27 Given the partition structure of (3], the fewest number of ver-
tex insertions over two expansions is 4. The partition structure after the
first expansion is is [2,2]p, and the partition structure after two expansions

of [3]p i8 [3’3]17'

Lemma 28 Given the partition structure of [6],. The fewest number of
vertez insertions over the series of two expansions of [6), is 8, yielding

seven possible partition structures:
(14]p, (11,2]p, [8,5]p, {5, 8lp, (2,11]p, [14]p, and (3,6, 3],

Proof. The case with three vertices inserted into the partition size of
6 is trivial. As each vertex insertion must dominate two vertices, and since
no vertices were flanked, we are left with partition structure of {9}, which
will require 5 vertices to dominate in the subsequent expansions, which will
yield 6 possible partition structures as follows:

* *
0, * *
(0$*:070a*’ 0:*10709 *, *
(0,%,0,0,%,0,0,%,0,%,0,0,%,0) — [8,5],
(Ov*y 0,0,*,0,0,*,0,0, ) a*’o) - [11,2];7
(Oa*) 0: 0’ *701 Oa*yOaO) ] aos *) - [14113

Next, we seek to insert an additional four vertices, and we will check
all possible cases, and look at the number of vertices needed to ensure the
subsequent expansion would yield a cycle with a minimal ranking. All pos-
sible insertions of four vertices into (6], yields:

(*s 0) *, 0, Oa *, Oa 0) *, O) - [la 8]p
(*! 0: 01 *a 03 *a Oa 01 *v 0) - [4, 5]})
(*1 01 01 *, 0, 0’ *, 0; *, 0) — [77 2]?
(*) Oa 0’ *, 0) 0’ *, Oa 0, *) - [IO]P
(0,%,0,%,0,%,0,0,%,0) — [2,1,5],
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(07 *, 0’ *, 0) Ov *, 0) *, 0) d [21 41 2]p
(0,%,0,%,0,0,%,0,0,%) — (2,7],
(Oa *! Ol 01 *! 01 *) 0, *s O) — [5’ la 2]}7
(Oa *, 0’ 0’ *, Oy *, 0) Oy *) - [5’ 4]p
(Oa *, 07 07 *, Oi Oa *, 03 *) - [8’ I]P

Note that for all partition structures except for (2,4, 2],, an insertion of
five vertices is needed to dominate all vertices for the next expansion. With
{2,4,2],, we only need four vertex insertions, and this insertion is unique,
yielding the partition structure of {3,6,3], m

Lemma 29 Given [14],, the fewest verter insertions through two ezpan-
sions to ensure minimal ranking for a given partition requires a total of 18
verlex insertions.

Proof. We begin with [14],, which requires seven subdividing vertices.
Using Proposition 24 and Proposition 23, we get [21],, which implies that
we need at least eleven vertex insertions to dominate the partition struc-
ture, getting 18 insertions over two expansions. If we attempt to insert
eight vertices into [14],, then we will have 14 + 8 — 2 = 20 vertices with
flanking number of 0. This implies we will need at least ten additional ver-
tex insertions, giving us a total of 18 vertices. Since we have a total of 18
vertices, we would consider 9 vertex insertions in the first expansion, but
by Theorem 1, we would need at least 9 vertex insertions in the next expan-
sion. Therefore, the number of fewest vertex insertions over two expansions
of [14], is 18. m

Lemma 30 Given [11,2],, the fewest verter insertions through two expan-
sions to ensure minimal ranking for a given partition requires a total of 17
vertex insertions

Proof. First, we attempt to insert the fewest amount of vertices for
both partitions, which is 7 vertices ~ 6 vertices for partition [11],, and one
vertex for partition [2],. By Propositions 23 and 24, we see that we have
11 +6 — 1 = 16 vertices with flanking number of O for larger partition,
and 3 vertices for other partition. Now, to ensure minimal ranking in the
subsequent expansion, we need at least 8 + 2 = 10 more vertex insertions,
giving us a total of 17.

Now, we consider inserting 8 vertices, and observe that we have two
ways of doing so: insert 7 vertices into [11], and 1 into [2], or insert 6
vertices into [11], and 2 into {2],. In the first case, we get 11+ 7 — 3 =15
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vertices with flanking number of 0 in the larger partition, and in other
partition, 2 + 1 = 3 vertices with flanking number of 0. This implies that
we will need at least 8 vertices in first partition, and 2 vertices in other
partition, with the total of 10 vertex insertions for the second expansion
to ensure that the ranking would remain minimal. This gives us 18 vertex
insertions in this case, which is greater than the above 17 insertions.

In the second case, we get at least 11+ 6 — 1 = 16 vertices with flanking
number of 0 in the larger partition, and in the other partition, at least
2 4+ 2 —1 = 3 vertices with flanking number of 0. This implies we need
8 + 2 = 10 additional vertex insertions, giving us a total of 18 vertex
insertions. Since 17 vertex insertions are still the smallest possible amount
of vertex insertions over two expansions, we do not need to consider 9 vertex
insertions in the first expansion. m

Lemma 31 Given [5,8),, the fewest vertez insertions through two expan-
sions to ensure minimal ranking for a given partition requires a total of 17
vertez insertions

Proof. There is a unique way of dividing seven vertex insertions be-
tween the partitions in this partition structure [5,8],. This is done by
inserting three vertices into [5], and four vertices into [8],. This results in
[543 —1], and [12],, which implies that we need 4 + 6 vertices to dominate
all vertices, giving us the total of 17 vertices over two expansions.

Now we look at inserting eight vertices, and notice that there are two
possible ways of dividing eight vertex insertions between the partitions in
[5,8]p. One way is to insert four vertices in [5],, and four vertices in (8],
and the other way is to insert three vertices into (5, and five vertices into
[8]p. In the first case, we get [5 + 4 — 3,12, which implies that we need
to insert at least nine vertices in the next expansion, giving the total of
17 vertex insertions over two expansions. But in the second case, we get
[5+ 3 —1]p, [8 + 5 — 2], which implies we need at least 4 4 6 vertices to
dominate all vertices in the next expansion, giving us the total of 18 vertex
insertions over two expansions of [5,8],. ®

We conclude this section with the following lemma.

Lemma 32 Given a set of partitions of vertices with flanking number 0 in
a cycle, the number of vertices with nonzero flanking number is equal to
the number of partitions given. The number of vertices of a graph can be
determined by adding the sizes of all partitions and the number of partitions
in a graph.
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Proof. Each partition on a cycle is separated by a vertex with non-
zero flanking number. Thus, the number of vertices with non-zero flanking
number in the flanking partition structure is determined by counting the
number of partitions. Therefore, the number of vertices in a graph is deter-
mined by adding the lengths of all partitions and the number of partitions
in a graph. ®

6 The arank number of a cycle

Finally we next investigate the remaining open cases involving arank num-
bers of cycles. Before jumping into next two theorems, let us define a special
type partition structure, where we have repeated partitions:

Definition 33 If we have a partition of length k repeated v times, then we
write the following partition structure as: (k).

Theorem 34 Suppose that 9,.(Cam_z) < ¥.(Can_1) and the following
partition structures of Com_y for m > 3 are given by:

(14, 3(2m-2_4)]p, (2,11, 3(2m-2_4))p, (5,8, 3(2m-2_4)]5,(3, 6,3, 3(2m-2_4))p-
Then 1,[),.(02!’&_‘.2".—[_3) < ‘lﬂ,.(Cgm.'.gm-!_.g).

Proof. Since ¥,.(Com-2) < 9,.(Can_1), we will begin with 1,.(Cam_1).
We seek to dominate all 2~2 — 4 partitions of size 3. Since we need
to insert two vertices for each of partition of size 3, we need to insert at
least 2™~1 — 8 vertices. Finally, we consider [14],, (2,11],, (5,8]p, and
[3,6,3], and we see that we need to insert at least seven vertices for each,
giving us a total of at least 2™~! — 1 vertices that need to be inserted
into Com_;. Expanding yields a minimal ranking of Cpmgm-1_s. Thus,
it is impossible to reach Com yom-1_3 from Cam_; and expect to maintain
a minimal ranking. Therefore, %,.(Comqom-1_3) < ¥, (Camyom-1_3) for all
m>3 n

The above theorem is an important component of the next theorem,
which has two parts.

Theorem 35 a) For every m > 3, Con_1 has seven arankings (up to per-
mutation of the top 3 labels), and the partitions are as follows: [14, 3am-2_4)lp
(two cases), [2,11,3(2m-2_4)lp (two cases), [5, 8,3(gm-2_4)]p (two cases),
[3,6,3,3(2m-2_4) |p (one case)

b) For allm > 3, ¥, (Cam_2) < 9, (Cam_1).
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Proof. The proof follows by induction on m. For the base cases we
recall that ¥,.(Cy4) < ¥,(C15), and that ¥_(C30) < ¥,(C31), and that for
both C;5 and Ca1, there are exactly seven arankings up to permutation of
the top three labels. We assume that both of the above statements are true
for m, and seek to extend to m + 1 by induction.

Observe that for each partition structure, we have [3(gm-2_4]p. By
Lemma 27, we observe that we need 4 vertices for each partition of length
3 over two expansions, yielding 2™~! — 8 partitions with length 3, with the
total of 2™ — 16 vertex insertions over two consecutive expansions.

With this in mind, we look at other partitions. For [14],, by Lemma 29,
we see that the number of the fewest vertex insertions over two expansions
is 18, giving us the total of 2™ + 2 insertions over two expansions, yielding
minimal rankings for Cam _342m 42 = Cam+141, which does not suffice, since
we want arankings for 2™+ — 1.

Now we look at [11,2],, and again, by Lemma 30, we see that we need
17 vertex insertions along with insertions for partitions of length 3, which
yields arankings for Cym+1. Similarly for [5, 8], using Lemma 31. Both of
those partition structures also do not work.

Finally, we look the last partition structure, (3,6, 3], and apply Lemma
27 for partitions of length 3. We need 8 vertex insertions to produce [34],,
and apply Lemma 28 for [6],. We need 8 vertex insertions over two expan-
sions to produce the follow partition structures of:

(14),, (11, 2],, (8, 5]p, [5, 8, (2, 11]p, [14]5, and (3,6, 3],

And yielding arankings for Cym+1_; with the following partition struc-
ture:

(14, 3(2m-1_4)]p (two cases);

(2,11, 3(2m-1_4]p (two cases);

(5,8, 3(2m-1_4)]p (tWo cases); and

[3,6,3,3(2m-1_4)]p (one case).

Note that we cannot construct Com+1_2 by expanding the arankings of
Cam_1, since the minimum number of vertices needed to dominate every
vertex with flanking number of 0 in Cam_; over two expansions is 2™ in
order to maintain a minimal ranking. But we just shown that it is possi-
ble to generate arankings for Cam+1_; by expanding twice on C§* — 1 by
inserting fewest vertices possible over two expansions, thus, showing that
it is impossible to reach Cam+1_g by expanding arankings of C3* — 1 twice.
So 9¥,.(Cam+1_2) < Y,(Cam+1_;), completing the proof by induction. ®

Corollary 36 For alln > 6, ¥,(Cn) = |logy(n + 1) + |logs (2£2) + 1].
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We conclude with a surprising corollary stating that even as m > 4
increases the number of arankings of Com_; stays constant.

Corollary 37 For any n > 4 there are exactly seven arankings of Com_;.
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