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Abstract

A set S C V of vertices in a graph G = (V, E) is called open
irredundant if for every vertex v € S there exists a vertex w e V' \ §
such that w is adjacent to v but to no other vertex in S. The upper
open irredundance number Ol R(G) equals the maximum cardinality
of an open irredundant set in G. A real-valued functiong : V — [0,1]
is called open irredundant if for every vertex v € V, g(v) > 0 implies
there exists a vertex w adjacent to v such that g(N[w]) = 1. An
open irredundant function g is mazimal if there does not exist an
open irredundant function k such that g # h and g(v) < h(v), for
every v € V. The fractional upper open irredundance number equals
OIR;(G) = sup{|g| : g is an open irredundant function on G}. In
this paper we prove that for any graph G, OIR(G) = OIR;(G).

1 Introduction

Let G = (V, E) be a graph of order n = |V| and let v € V' be an arbitrary
vertex. The open neighborhood of v is the set N(v) = {u € V|uv € E},
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while the open neighborhood of a set S C V is the set N(S) = |J,cg N(u).

Similarly, the closed neighborhood of a vertex v is the set N[v] = N(v)u{v},

and the closed neighborhood of a set S C V is the set N[S] = |J s N(u).
A set S C V of vertices is called irredundant if for every vertex v € S,

N[v] = N[S - {v}] #0.

The irredundance number ir(G) of a graph G equals the minimum cardi-
nality of a maximal irredundant set S in G, while the upper irredundance
number I R(G) equals the maximum cardinality of an irredundant set in G.
First defined by Cockayne et al. [2] in 1978, there are now more than 200
papers dealing with various aspects of irredundance in graphs. Notewor-
thy among these many papers are those by Finbow [6] and Cockayne and
Finbow [3], which place irredundance in a very general context.

A set S is a dominating set of a graph G = (V, E) if N[S] = V. The
domination number v(G) equals the minimum cardinality of a dominating
set in G, while the upper domination number I'(G) equals the maximum
cardinality of a minimal dominating set in G.

A set S of vertices is independent if no two vertices in S are adjacent.
The independence number Bo(G) equals the maximum cardinality of an
independent set in G, while the independent domination numberi(G) equals
the minimum cardinality of a maximal independent set S in G.

The following inequality chain was first observed by Cockayne et al. [2].

ir(G) < v(G) <i(G) < Bo(G) < T(G) < IR(G).

Fractional analogs of dominating and irredundant sets have been defined
as follows. Fractional domination was first introduced by Hedetniemi et al.
in 1986 [9]. A function g:V — [0,1] is a dominating function if for every
vertex v € V, g(N[v]) > 1. The weight of a dominating function g is
9(V) = 3 .cv 9(v). The fractional domination number v¢(G) of a graph G
equals the minimum weight of a fractional dominating function g on G.

A dominating function g is minimal if for every dominating function A
such that g # h, g(v) < h(v), for every v € V. The upper fractional domi-
nation number I'f(G) equals the maximum weight of a minimal fractional
dominating function on G.

It is easy to see that for every minimal dominating set S, the charac-
teristic function f: V — {0,1}, defined by f(v) =1ifve€ S and f(v) =0
ifve V\ S, is a minimal dominating function. Thus, for any graph G,

#(G) £ ¥(G) <T(G) <Tf(G).

In [4] it was shown that for the Hajés graph G, v7(G) < v(G), and in
{1] it was shown that there exist graphs G for which I'(G) < T's(G).
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A function g : V — [0,1] is an érredundant function if for every ver-
tex v € V, if g(v) > 0, then there exists a vertex w € N[v] for which
g(N[v]) = 1. An irredundant function g is mazimal if there does not exist an
irredundant function k such that g # h, g(v) < h(v), for every v € V. The
fractional irredundance number of a graph G equals iry(G) =inf{g(V): g
is a maximal irredundant function on G}. The upper fractional irredun-
dance number equals IR;(G) = sup{g(V) : g is an irredundant function on
G}.

It is easy to see that for every maximal irredundant set S, the charac-
teristic function f: V — {0,1}, defined by f(v) =1 if v € § and f(v) =0
ifve V\ S, is a maximal irredundant function. Thus, for any graph G,

irs(G) < ir(G) < IR(G) < IR;(G).

In [7] it was pointed out that for the path Pz, ir;(Pr) < ir(Pr). But in
(8] the following theorem was proved.

Theorem 1.1. For any graph G, IR(G) = IR;(G).

2 Open Irredundance and Fractional Open
Irredundance in Graphs

In this paper we focus on open irredundant sets, first introduced by Farley
and Schachum in 1983 [5], and their fractional analogs.

A set § C V of vertices is called open irredundant if for every vertex
v e S, N(v) — N[S — {v}] # 0. The open irredundance number oir(G) of
a graph G equals the minimum cardinality of a maximal open irredundant
set S in G, while the upper open irredundance number OI R(G) equals the
maximum cardinality of an open irredundant set in G.

A fractional analog of open irredundant sets can be defined as follows.

A function g : V — [0,1] is open irreducible or oiru if for every v € V
with g(v) > O there exists w € N(v) such that g(N{w]) < 1. In the special
case that for every v € V with g(v) > 0 there exists w € N(v) such that
g(N[w]) = 1 we say that g is fractional open irredundant. Finally, if g is a
fractional open irredundant function such that g : V' — {0,1} then g is open
irredundant. Examples of each type of function are shown in Figures 1-3.

For § C V, we define g(S) = }_,c5 9(v), and then define the weight of
a function g to be g(V'). A g-cover of y is a closed neighborhood N which
contains the vertex y bhut is not centered at y and g(N) < 1. So, if g is
oiru, every v € V for which g(v) > 0 has a g-cover. An open irredundant
function g is mazimal if there does not exist an open irredundant function
h such that g # h, g(v) < h(v), for every v e V.

189



Figure 1: An oiru function.
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Figure 2: A fractional open irredundant function.
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For a graph G, the fractional lower open irredundance number is
oir;(G) = inf{g(V) : g is a maximal fractional open irredundant function},
the fractional upper open irreducibility number is

OIRU{(G) = sup{g(V) : g is an oiru function},
and the fractional upper open irredundance number is
OIR;(G) = sup{g(V) : g is a fractional open irredundant function}.

To simplify the notation in the remainder of the paper, let W = OIRUj.
Note that since all open irredundant functions are fractional open irre-
dundant and all fractional open irredundant functions are oiru, we imme-
diately have
oiry < oir < OIR < OIR; < OIRUy. 1)

There are graphs for which the strict inequality oiry < oir holds. For
example, let G be the path Py, shown in Figure 4. Each singleton set,



Figure 3: An open irredundant function.
0

S = {v;} is open irredundant, but not maximal, so 0ir(G) > 2. Consider
the set S = {va,vs}. It is open irredundant, since
N(va) — N[S — {v2}] = {v1,v3} —{ v2,v3,v4} = {v1} # 0 and similarly
N(vs) = N[S = {vs}] = {va} # 0.
Furthermore, S is a maximal open irredundant set on G: S8’ = SU {v1} is
not open irredundant since

Ug) N[S’ - {'Uz}] = {'Ul,'Ug} {vl,vg,vg,w} @

and by symmetry, S = S U {v4} is not open irredundant either. Thus
oir(G) = 2.

Figure 4: An example of 0ir(G) = 2
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Now, the function which is identically zero on the vertices of G will
vacuously be fractional open irredundant, but not maximal. So, any maxi-
mal open irredundant function, g, must be non-zero on at least one vertex,
and that vertex must have a neighbor, w such that g(N[w]) = 1, thus, the
weight of g must be at least 1 and oirg(G) > 1. For € € (0,1) define a
function g. on the vertices of G as shown in Figure 5. Then v; has neigh-
bor w = wy for which g(N[w]) = 1, vz has neighbor w = vz for which
g(N[w]) = 1 and vy has neighbor w = v3 for which g(N{w]) = 1. So g is
fractional open irredundant. Since v; has only one neighbor, v2, increasing
the value of g on vy, vz or vz would destroy open irredundance. Similarly,
since v4 has only one neighbor, v3, increasing the value of v4 will destroy
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open irredundance. So, g is a maximal open irredundant function on G.
Now, since {g. : ¢ € (0,1)} C{ g : g is maximal open irredundant on G},
we have
o0irs(G) = inf{g(V) : g is maximal open irredundant on G
< inf{ge : € € (0,1)}
=inf{l+e€:€€(0,1)}
=1.

Thus o0irf(G) = 1 < 2 = 0ir(G).

Figure 5: A family of functions g. on G = P;
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For the OIR < OIRy < OIRU; portion of Inequality 1, we will show
that in fact, equality holds.

3 The Result

Lemma 3.1. Every sequence (gn) of functions of the form g, : V — [0,1]
has a subsequence (g,,) which converges pointwise to a function g : V —
0,1). That is

lim g, (v) = g(v), for allveV.

t—o00

Proof. Fix one vo € V, and let (g») be a sequence of functions g, : V —
[0,1]. Then since g»(vo) € [0,1] for each n € N, the sequence (gn(v0))5x., is
bounded and by the Bolzano-Weierstrass Theorem has a subsequence (g, )
which converges to some value in the closed set [0,1]. We then define

9(vo) = Jim gn, (vo)

Similarly, we may find a subsequence of (g,,) whose values at a second
vertex, vy, converge to some value in (0,1}, which we define to be g(v;).
Repeating this process with each of the vertices in V' and the resulting
subsequence of functions from the previous step, will produce a subsequence
(gn,) of (grn) and define a function g for which

9(v) = lim gn, (v).
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Definition 3.1. For a function g : V — [0, 1], define

mg = min {g(w) : g(w) > 0}
sg = min {1 — g(w) : g(w) <1}
ng = min {|1 — g(N)|: g(N) # 1 and N is a neighborhood (open or closed) }

ay min {mg, s¢,1g}

~ 10
zy = the number of zeros of g and

ug = the number of vertices at which g(v) =1

Lemma 3.2. Let (gn)ow, be a sequence of functions converging to a func-
tion g. There exists k € N such that the following are true.

|gn{v) — g(v)| < ag, Vv € V.
@)nzk= { |gn(N) — g(N)| < ag, V neighborhoods N, (open or closed.)

b.) If there exists n > k such that gn(N) =1 then g(N) = 1.
c.) If there ezists n > k such that go(N) < 1 then g(N) < 1.
d.) If there exists n > k such that g,(v) = 0 then g(v) = 0.
e.) If g(v) > 0 then go(v) >0 for alln > k.

£) If g(v) <1 then gn(v) <1 for alln > k.

Proof. Let M be one more than the maximum degree found in G. Note
that a, > 0, so by definition of convergence, for each v € V' there exists n,
such that

lgn(v) — g(v)| < ag/M for all n > n,. (2)

Define k = max{n, : v € V}.

a.) Statement 2 implies the first inequality. Let N = N[ug] or N (vo) for
any arbitrary vertex vg € V and let D be the degree of vo. Then for
n>k,

90 (N) = g(N) £ 3" lon() =90} < 3 72 < (D+1)3% <oy
vEN veN

bh.) To get a contradiction, suppose there exists n > k such that g,(N) =
1 on some neighborhood N and that g(N) # 1. Then by (a),

lg(N) — 1] = |g(N) — gn(N)| < ag,

which is impossible, since
ay <ng =min{|g(N) —1]: g(N) #1 and N is a neighborhood}.

193



c.) Suppose there exists n > k such that g,(/N) < 1 on some neighbor-
hood N and that g(N) > 1. Then

lg(N) —1] < |g(N) — gn(N)]| < ag,
which, as before, is impossible.
d.) Suppose there exists n > k such that g,(v) = 0 for some v € V' and
that g(v) > 0. Then applying (a),
g(v) = |g(v) — gn(v)| < ag < my.
which is impossible, since mg = min{g(w) : g(w) > 0}.
e.) Suppose g(v) > 0, but that g,(v) = 0 for some n > k, then
9(v) = [gn(v) — 9(v)| < ag < my,
which again, is impossible.
f.) Suppose g(v) < 1, but that g,(v) =1 for some n > k, then
11— g()| = lga(v) — 9(v}| < ag < s,
which is impossible, since s, = min{|1 — g(v)|: v € V}.
O

Proposition 3.3. If (g.) is a sequence of oiru functions which converges
to a function g, then g is oiru.

Proof. By Lemma 3.2 (d) and (e), there exists k¥ € N such that for n > k,
the zeros of g, and g are the same. Thus for any vertex v with g(v) # 0, we
must have g, (v) # 0 (for n > k), and since each g, is oiru, v has a neighbor
w such that g,(N[w]) < 1. By Lemma 3.2(c), g(N[w]) <1 as well, so g is
oiru. a

Corollary 3.4. The supremum, W(= OIRUy) is a mazimum. That is,
there exists an oiru function g such that g(V)=W.

Proof. AsW is a supremum, for every n € N there exists g, € {g(V) : g is oiru}
such that W — g, (V) < 1/n, and thus lim,_, gn(V) = W. By Lemma 3.1,

the sequence (g,,) has a subsequence (gn,) which converges to a function g.

All of the functions g,, are oiru, so by Proposition 3.3, g is oiru as well.
Finally, since every subsequence of a convergent sequence also converges to
that same value, we have

o) = 3 0(6) = 3 Jimon () = Jim 30 00, (0) = Jim gn(V) = W
v v v
(3)

O
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We now define the set Gw = {g: g is oiru and g(V) = W}. By the
previous proposition, we have Gy # 9, so we may also define

G,={g€eGw: zg > zs forall f e Gw} and
G.={9€G;: ug2usforal feG.}.

(Recall that z, is the number of zeros of g and u, is the number of vertices,
v, such that g(v) =1.)

In addition, let n, = max{z, : g € Gw}. Thus, for every g € G,
2g = n, the maximum number of zeros possible.

Finally, define m = inf{m, : g € G.}.

Proposition 3.5. m is a minimum. That is, there exists g € G, such that
mg =Tm.

Proof. As m is an infimum, there must exist a sequence (g,) of functions
in G, such that lim,_,o, my, = m. Now, for each g, there exists a v, € V
such that my, = g.(vn). Since V is finite, there must be at least one vertex,
call it v, that appears infinitely many times in the sequence (gn(v»)). So,
there exists a subsequence of the form (gn,(vo)) which also converges to m.
We now define

9= zl—l>rgo gne:
First note that just as in Equation 3, g(V) = W, and by Lemma 3.2(d) and (e),
g must have the same number of zeros as each of the functions g,, so
2y = n. Similarly, by Lemma 3.2(f) (g), uy = u,,. Thus, g € G, and

g(vo) = lim gn, (vo) = m.
O

Since m is a minimum value, we may define the set G, = {g € G, : mg = m}
and know that it is non-empty.

Lemma 3.6. Let g € G,,, and v € V such that g(v) = m. For every
y € V — {v} such that g(y) > 0, there exists a g-cover of y which does not
include v, that is, there existsw € V such that w # y, y € N(w], v € Nw],
and g(Nw]) < 1.

Proof. Let y € V —{v}. If g(y) = 1, then since g is oiru, y has a g-cover N,
and that cover cannot contain v since g(v) = m > 0 would cause g(N) > 1.

So, we need only consider the case of 0 < g(y) < 1. To obtain a
contradiction, assume that every g-cover of y contains v. Define a new
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function § : V' — [0, 1] by shifting an amount a, from g(v) to g(y). That
is, let

g(v) = g(v) —aq
i) = g(y) + a4

and § = g at all other vertices. Since g(v) = m = my, from the definition
of agy, it follows that z3 = z, and uz = u,. Furthermore, since we simply
shifted weight from one vertex to another, g(V') = W. However, §(v) < m,
which was the minimum possible weight for an oiru function, thus § must
fail to be oiru. There must exist p, € V such that g(py) > 0 but p, has no
g-cover.

Note that since g and § share the same zeros and §(p,) > 0, we know
that g(py) > 0 and thus p, has a g-cover. Any g-cover, N, of p, must
contain y and not contain v, since it can only fail to be a g-cover if g(N;) >
1. Note that N, is not a g-cover of y then, since we assumed that all such
covers also included v. The only way it can fail to be a g-cover is if y is
the center of the neighborhood N,. Therefore, we know that p, and y are
adjacent vertices and that p, # y.

Now define one more function, § : V — [0, 1] as follows:

g(y)=0
3(py) = g(py) + 9(v)

and § = g at all other vertices. That is, shift all of the value at y to
py. Now, § can’t be oiru since it has one more zero than g, and g had
the maximum possible for oiru functions. Thus, there exists some t € V
such that g(t) > 0 but ¢ has no g-cover. Now, t # y, since g(y) = 0, so
g(t) > 0. (The only other vertex where g and g fail to be equal is at p,,
and g(py) > 0.) So, t has a g-cover, N;. Now N, is not centered at ¢, so
the only way it can fail to be a g-cover is if §(NV;) > 1. Since g(N) < 1,
it must be the case that p, € N; and y &€ N;. Recall that every g-cover of
Py must contain y, so N; cannot be a g-cover for py, which means that p,
must be the center of N;. We proved above that y is adjacent to p,, so y
must be in N, giving us a contradiction O

Proposition 3.7. OIRU; = OIR; = OIR

Proof. By the previous Proposition, G, # 0. If m = 1 then every g € G,
takes on values of either 0 or 1, thus they are all open irredundant, and the
supremum of the weights of all open irredundant functions must be greater
than their weight. That is, OIR > W = OIRU;. Combining this with the
inequality (1), gives the desired result.

We now show that in fact, m = 1 is the only possibility. Let g € G,,,
and v € V such that g(v) = m. By Lemma 3.6, each y € V — {v} with
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9(y) > 0, has a g-cover, Ny, which does not contain v. For an arbitrary
€ > 0, define a new function, h: V — [0,1] via

h(v)=m+e
h(y) = g(y),for all y € V — {v}

Since g(V) = W, we have h(V) = W + ¢. However, the maximum weight
for an oiru function is W, so h cannot be oiru. The only vertex whose
value differs from g is v, so every y € V — {v} has an h-cover. To fail at
being oiru, there must be no h-cover for v. This is only possible if for every
w € N(v), g(N[w]) > 1 — ¢, and since ¢ is arbitrary, it must be the case
that g(N[w]) > 1 for every w € N(v).

However, g is oiru, so for some wo € N(v) we must have g(N[wo]) = 1.
Let z be any vertex in N|wo]— {v}, and define a new function h : V' — [0, 1]
via

h(v) = m + g(z)
h(z) =0,

and h = g at all other vertices. Then R(V) =W, and every y € V — {v}
has an h-cover, since they each had a g-cover which did not include v, the
only vertex whose value increased. Since we just shifted the value of g(z)
to v, A(N[wo]) = 1, so v also has an h cover. Thus, / is oiru. Recall that
g was oiru with the minimum number of zeros, so the only way h can also
be oiru is for g(z) = 0 for every z € Nwo] — {v}. Since g(N[wp]) =1, it
must be the case that m = g(v) = 1. a
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