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Abstract Compressed sensing (CS), which is a rising technique of signal
processing, successfully manages the huge expenditure of increasing the
sampling rate as well as the intricate issues to our work. Hence, more and
more attention has been paid to CS during recent years. In this paper,
we construct a family of error-correcting pooling designs based on singular
linear space over finite fields, which can be efficiently applied to signal pro-
cessing in terms of CS.

Keywords: Compressed sensing, Pooling designs, disjunct and inclusive
matrices, Singular linear space

AMS classification: 20G40 51D25

1. Introduction

In the wake of rapid development of information technology, CS!!~2
emerges as a new theory, which provides an effective way to cope with
signals processing. Due to high efficiency and economizing resources, CS
has attracted considerable attention. According to the Nyquist sampling
theorem, it is well known that if we want to keep information from losing
when uniformly sampling a signal, we must sample at least two times faster
than its bandwidth. Acutually, not only does it become more and more
difficult to satisfy the requirement in many applications, such as digital
image, video cameras, medical scanners, radars and so on, but also wastes
a mass of resources. However, CS breaks through traditional theory with
remarkably reducing the time of signal processing and the cost of calcula-
tion. Consequently, it will lead to the coming of new era with respect to
signal processing.
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Roughly speaking, CS can be generally described as two steps. Firstly,
given a measurement matrix called (compressed) sensing matrix, which
is served as collecting the information and simultaneously compressing a
sparse signal. Secondly, recover the sparse signal with the measurement
matrix by solving an optimization problem. It is apparent from the above-
mentioned that sensing matrix plays an significant in the CS theorem.
However, there are two kinds of sensing matrices. One is called random
sensing matrices whose entries are randomly drawn from certain probabil-
ity distributions, which concludes Gaussian matrices; Bernoulli matrices;
Random partial orthogonal matrices®=5! and so on. Another is named
deterministic sensing matrices, whose properties are better than random
sensing matrices. As a matter of fact, there are some defects about ran-
dom sensing matrices!®l. First, as the random selections of entries, random
sensing matrices demand a lot of storage space to store them. Second, there
is a tedious calculation to computers. Adversely, the deterministic sensing
matrices can get rid of those defects. Here we put our focus on the latter
ones.

For a discrete sparse signal z € R' which has k < ¢ nonzero entries.
Define the support set of = as

S($)={i€{1,--~ ,t}lxi‘-léo}:

where k = |S(z)| is the sparsity of z. If the support set is identified, the
recovery of sparse signal is a routine task, which means the recovery of
signals can be regarded as recovering the support set of z in the terms of
the CS theorem. Generally speaking, for an s x ¢ measurement matrix @
with s < t, which can be used to compress z into a measurement vector
y € R® with s times:

y=®x+e,

where € is a noise term. To a large extent, the prosperity of the recovery
process depends on the performance of the measurement matrix. In other
word, if the matrix ® is appropriate, S(z) can be recovered by y, even
though s « t.

As a mathematical tool, pooling design is noted as using in molecular
biology, such as DNA library screening, nonunique probe selection, gene
detection, etc. A pooling design is usually represented by a binary matrix,
whose columns are indexed by items and rows are indexed by pools. The
value of an entry at cell (4,7) equals to 1 or 0, if the i-th pool contains or
does not contain the j-th item, respectively. Actually, we all known that
it is inevitable for biological experiments to produce erroneous outcomes.
Thereby, in order to make pooling design error tolerant, the concept of
ke-disjunct matrix (see [7]) is introduced. A binary matrix ® is called k-
disjunct if given any k + 1 columns of ® with one appointed, there are

242



e + 1 rows with a 1 in the appointed column and 0 in each of the other &
columns. An k%-disjunct matrix is actually called k-disjunct. D’yachkov
et al. proposed the concept of fully ké-disjunct matrices (see (8]). A k°-
disjunct matrix is fully k®-disjunct if it is not ¢*-disjunct whenever ¢ > k

ora>e.

Definition 1.1.9 A binary matrix ® is (k;e;)-disjunct if for any k + 1
distinct columns Cy, Cy, ..., Crk,

k
|Co\ U Gi [2 e,
=

and is (k; e2)-inclusive if for any k + 1 distinct columns Cy, Cy,...,Ck,

1GN(U & I< e

The disjunct and inclusive matrices act an crucial role in the recovery of
support set S(z) scheme.

Now, we introduce the link between pooling designs and support re-
covery [9]. Define the quantization operator @ : R®* — {0, 1}*, which maps
v € R® to a binary vector 7 satisfying

o 1, ifv; >0,
Y=1 0, ifv;<0.

For a given signal = € R, let
Si(z)={ieS(z)|z:>0}, S_(z)={ieS(z)]|z:i<0}.

In order to complete support recovery, it is suffices to recover both S, (z)
and S_(z). Suppose ® is a disjunct and inclusive matrix, then we have

y=%z+¢, 7T=0Q(). (1)

Our goal is to recover the position of positive entries from §, which is the
quantization result of the inaccurate measurement vector y. Consider the
vector ¢, its i-th entry leads to a destructive error if

Q(®z): # Q(Pz +€)i.

Therefore, those errors alter the result §. The destructive parts need to be
dealt with.

Lemma 1.2.% Let z € R* be a sparse signal with |S(z)| = k < t. In the
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formulation (1), suppose ® is an s x t (k; e;)-disjunct and (k; ez)-inclusive
matrix and the noise vector ¢ causes ! destructive errors with ! < <1322,
Then S, (z) can be identified.
The algorithm can be used to recover S(z) is as fellow:

Algorithm 11T

Input:

e A (k;e1)-disjunct and (k; e2)-inclusive s X ¢t measurement matrix &

e A binary quantization result §

Output:

e Support set S(x)

Procedure:

I: Sy(z) — 0,5 () — 0

2: Compute the tolerable number of destructive errors I, where [ is the

largest integer smaller than =132

: Compute b = j — @, where j is an all one vector with length s
foreach1<i<tdo

Use &; to denote the i-th column of &, compute |®?| = &7b

if |®?| < ez + ! then

S1(z) — Si(z) Ui}

end if
end for
10: Flip the entriesof Fby 0 — 1,1 » 0
11: Repeat steps 3-9 in which S (z) substituted by S_(z)
12: Return S(z) = Sy (z) | JS_(z)

The Lemma tells us that Sy (z) can be identified when the CS matrix is
regarded as a disjunct and inclusive matrix. It is suffice to exchange the
roles of negative and positive entries by displacing z,y, e with —z, —y, —¢
respectively, the S_(z) also can be identified. Hence, the support set S(x)
can be recovered. In fact, the Lemma just means if e; > ey, then the S(z)
can be recovered exactly. Based on the disjunct and inclusive properties of
the measurement matrix, the above-mentioned recovery algorithm is pro-
vided in [9].

LR R

Recently, some deterministic constructions of sensing matrices have been
presented. DeVore’s polynomials over finite fields!'%; algebraic curves by
Gao et al.'!l; Amini and Marvasti’s bipolar matrix by BCH codel!? and its
generalization13]; additive combinatorics by Bourgain et al.!4, Inspired
by the above studying, we propose a new construction of pooling designs
based on singular linear spaces over finite fields, which can be used to pro-

cess signals effectively.
2. Singular linear spaces

In this section we shall introduce the concepts of subspaces of type (m, h)
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in singular linear spaces, (see Wang et al. [15]) and provide several lemmas.

Let F, be a finite field with ¢ elements, where g is a prime power. For
two non-negative integers n and [, ]Ff,"“) denotes the {n + !)-dimensional
row vector space over F,. The set of all (n+!) x (n+!) nonsingular matrices

over [, of the form
Tn T
0 Ty /)’

where Tj; and T3 are nonsingular n X n and ! x | matrices, respectively,
forms a group under matrix multiplication, called the singular general linear
group of degree n + ! over F, and denoted by GL, 4. (Fg). If I = 0 (resp.
n =0), GL, n(Fq) = GL,(F,) (resp. GLio(Fq) = GLi(F,)) is the general
linear group of degree n (resp. ). (See Wan [16]) Let P be a m-dimensional
subspace of IF,(,"“), denote also by P an m x (n+1) matrix of rank m whose
rows span the subspace P and call the matrix P a matrix representation
of the subspace P. There is an action of GL, 414 (F,) on Fe* defined as
follows

IF¢(In+l) X GLny1,n(Fq) — IFl(In“)

(($1, s 3Ty Ty .- ,.Tn.H),T) Land (xlr s Ty Tngly e - ,$n+[)T.
The above action induces an action on the set of subspaces of IFS,"“), i.e., a

subspace P is carried by T € GLp41,2(Fq) to the subspace PT. The vector
space IF,(,"“) together with the above group action, is called the (n + I)-
dimensional singular linear space over Fq. For 1 < j < n+ 1, let ¢; be
the row vector in IF.(,"“) whose j-th coordinate is 1 and all other coordi-
nates are 0. Denote by E the I-dimensional subspace of IF.(,""") generated
by €nt1,€n42---,€ntt- A m-dimensional subspace P of IF‘,(,"+[) is called
a subspace of type (m, k) if dim(P N E) = h. The collection of all the
subspaces of types (m,0) in IF((,"“) , Where 0 < m < n, is the attenuated
space. (see A.E. Brouwer et al. [17])

Lemma 2.1. Let V' denote the (n + {)-dimensional row vector space over
a finite field F,, and fix a subspace W of type (n + [ — d, h) contained in
V. Let M4 (i1, hy;d, h;n + I, n) denote the set of all subspaces U of type
(%1, h1) contained in V satisfying U+W =V, and let N (i), hy; d, h;n+l, n)
denote the size of M (i1, h1;d, h;n + 1, n). Then

. iy n+l—-d—-nh h
Nalis b d i+ m) = g0 [ il—hl—d]q [m]q' )
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Proof. By the transitivity of GL,41,n(IFq) on the set of subspaces of the
same type, we may choose the subspace W of type (n+{—d, k) as the form

I(n+l—d—h) 0(n+l—d—h,d+h—l) 0 0
0 0 I othl=h)

Let U has a matrix representation of the form

X(i; —d—hy,n+l—d—h) 0(1’1 ~d—hy,d+h~-1) 0 0
Y(d,n-H—d—h) I(d+h-—l) B(d,h) I(d,l—h)
o(h1,n+l—d—h) 0 AlhLR) - glhyi=h)

where X is an (i; —d — k1) x (n + 1 — d — h) matrix of rank (i, —d — h;),
Yisadx (n+1!~d~— h) matrix, A is an hy X h matrix of rank h;, B is
a d x h matrix. Then X is an ({; — d — h;)-subspace which contained in
I(n+l=d—h) By Wan (2002b, Theorem 1.7 [16]), there are [nJ-_l ;ld__ dh]
q
choices for X. By the same token, A is an h;-subspace which contained in
I™ and has [:1 ] choices. By the transitivity of GLn41,n(Fq), we may let

X = (JGa—d—m) Qlia—d=hintl=h—is+h)) A = (J(h)  g(hh=h1)) Then
U has the unique matrix representation of the form

JG1—d=hy) gliy—d=hy n+l—h—ig+h1 iy ~d—h1h+d=I}(i1~d—h1.hy) g 0
( 0 yldmtimh=itthy) ofdhtd=1) otk gldh=h1lgd.t=h) )
oth1.i1—d=hy) 0 olh1-h+d=1) I 0 olh1d-h)

e _ gitntt-ay [ HI—d—hi [ h
Hence Ny (41, h1;d,hsn+1,n) =¢ ' [zl—hl—d hy q'D

Lemma 2.2. Let V denote the (n+ [)-dimensional row vector space over a
finite field IF,, and fix a subspace W of type (n+-{—d, h) contained in V. For
a given subspace U, of type (ig, hy) contained in V satisfying Us+ W =V,
let N, (i1, h;ig, he; d, h; n+l,n) denote the number of subspaces U, of type
(21, h1) contained in V satisfying Uy + W =V and U; C U,. Then

Ny (iy, h1yig, hoyd, hyn + 1, n) = ¢@lia—i) [:f __d __hz] [ ]

Proof. Since the subgroup GLn4in(Fq)w 0f GLntin(Fy) fixing W acts
transitively on the set {U|U+W = V,dimU = i3}, the number N (41, hy; 2,
ha;d, hin +1,n) depends only on ¢; and i3. By Lemma 2.1 and (2), we get

—i d—h h
Ny (iy, ha; g, hosd, hyn + 1, n) = qdlz=#) [n e _;] [hfL' g
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Lemma 2.3. Let V denote the (n +[)-dimensional row vector space over a
finite field Fg, and fix a subspace W of type (n+!—d, h) contained in V.. For
a given subspace U, of type (i1, k1) contained in V satisfying U1 + W =V,
let N.'(41, h1; iz, ho;d, h;in + l,n) denote the number of subspaces Uz of
type (iz, h2) contained in V satisfying U + W =V and U; C U;. Then

1y . . . _ n+l—h-4+h h—hy
N+ (zl;hlaz2)h21dah’n+l7n)— [iz—hz—i1+h] . h2_h1 q' (4)
Proof. Let

M = {(Uy,U)|Ur € My (i1, h1;d, hin+1,n), Uz € My (i, hsd, hin +
lvn))Ul g Uﬁ}'

We compute the size of M in the following two ways.
For a fixed subspace U; of type (i1, h1), there are N, '(i1, h1; é2, ho; d, h;n+
l,n) subspaces of type (i2, h2) containing U;. By Lemma 2.1

|M| = N.'(41, hyjia, hoid, hsn + L, n)Ny (iy, hy;d, hin 4+ Ln).  (5)

For a fixed subspace U, of type (iz, h2), there are N (i), h1; io, ho; d, h;n+
I,n) subspaces of type (i1, h1) contained in U;. By Lemma 2.1

IM| = Ny (i1, h1; 12, he; d, hsn + [, n) N1 (i, hosd, hyn + I, n). (6)

Combining (5), (6), (3) and (2), (4) holds. O

Lemma 2.4. Given integers 0 < hy <h<landd<i-h;<n+l-h<
n+d, the sequence N, (i, hy;d, h;n +1,n) is unimodal and gets its peak at

1= [%_f + h.

Proof. By Lemma 2.1, if ¢; < i, then we have

Ny (i3, hasd, hsn 41, n)
Ny(i2, hy;d, hn+1,n)
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d(n+l—iy) ‘n+l—d—h h
1 —hi—d | |b],

dntizin) [P+ I{—d—R] [h
7 [zz—hl—d o Ll
ig—hy—d

II «-v

= gdliz—i1)  __t=i—hi—d+1
q n4l—h—i;+h;

(¢ -1)
i=n4l—h—iz+h1+1

(g ~MH — ) (@ M2 — gd) .. (g7 M — ¢
(qn+l—h—i2+h1+l _ 1)(qn+l—h—iz+h1+2 _ 1) L (qn+l—h—i1+h1 . 1)

i;—hy+1 i1~hy1+2 _ qd q‘iz—hl - qd

n4l—-h—iz+hy+1 — 1’

q

d
— q . q lllll
n+l—h—ij+hy _ 1

qﬂ+l—h—i1 +hy—1 - l

q

iy—hi+2 — qd iz—h) d

<< T

t1—h141 _qd q
where qn+l—h-—11+h1 -1 < qn+l—h—11+h1—-1 -1
Ifip < [BEL=hy 4 hy, thenip —hy < n4l—h—ig+h +1,
iz_hl et d . . —
qn+fgh—zg+hlg-1 —3 < 1. Hence, when by +d < 4; <i2 < [WJ +hy,
Ni(y,hyd, hyn+1,n)
N+(i2)hl;d7h;n+l!n)

If iy > [BEE=R) 4 py, then i —hy +1 > ndl—h—iy +hy,
i1—hy+1 _ d

,,‘{L,_,,ltﬁ,,{l > 1. Hence, when [m'—é_—hj +h €4 < iy <

Ni(iy, hisd, hsn+1,n)

N+(i2’hl;d’h;n+l$n)

we have < 1.

q

n+1!—h + h;, we have >1.0

Proposition 2.5.(Wan {16] Corollaryl.9) Let 0 < i; < i3 < n. Then
the number N’(i),%2,n) of io-dimensional vector subspaces containing a

given i;-dimensional vector subspace IF.(,") is equal to
[n - 21]
12— 1) q

3. The construction
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In this section, we construct a family of inclusion matrices associated
with subspaces of IF((,"H), then exhibit its disjunct property and the perfor-
mance of signal recovery. Finally, we show our construction is superior to
the DeVore’s construction using polynomials over finite fields on the recov-
ery of signals.

Definition 3.1. Given integers 0 < hy S hg < h<landd <3 —h <
ig—hg < n+l—h < n+d. Let My (i1, h1; iz, hojd, h;n+1,n) be the binary
matrix whose rows (resp. columns) are indexed by M, (i1, hy;d, h;n+1,n)
(resp. M (42, ha;d, h; n+1,n)). and with a 1 or 0 in the (%, j) position of the
matrix, if the i-th subspace which belongs to M (i1, hy;d, h;n +1,n) is or
is not contained in the j-th subspace which belongs to M (i2, he;d, h;n +
l,n), respectively.

By Lemma 2.1,2.2 and 2.3, M, (41, hi; 2, he; d, hyn+1,n) is a N, (i1, hy;
d, h;n+1,n) x Ny (ig, ho; d, h; n+1, n) matrix, whose constant row (resp. col-
umn) weight is N1/(iy, hy; 12, h2; d, h; n+1,n) (resp. Ny (i1, h1; i2, ha; d, Ay nt
l,n)). Lemma 2.4 tells us how to choose i3 so that the test to item is min-
imized.

Theorem 3.2. Given integers 0 < hy S hg -2, hg <h<l,d<i; - £
ig—ho—2, i9—hg < n+l—h < n+d andlet t = N, (i, hy; iz, ho; d, hyn+l, n),
u= N-{-(il, hl;i‘Z_l,hZ;da h;n+l)n)’ v= N+(i1’hl;i2"‘ 17h2 _l;d; h;n+
lyn), r = N+(i1,h1;i2 - 2ah2;d)h;n + l,Tl), y= N+(ilyhl;i2 - 2vh2 -
1;d, h;n+1,n), z = Ny (i1, h1;i2— 2, ho — 2;d, h;n+1,n) and w = max{u—
zau—yu—z,v—z,v—yv—2}if1 <k < [%}‘ﬁ}ij + 1 then
M, (i1, hy; 12, ho;d, hyn+ 1, n) is k®1-disjunct and k*2-inclusive, where e; =
t—max{u,v}—(k—1)w—1 and ez = max{u, v}+(k—1)w+1. In particular, if
1<k < min{|[i=mex{wol=1) 19 g1}, then My (31, a3 iz, hoid, hyn+1,n)
is fully k®1-disjunct.

Proof Let P, P, P,,- - , P, be k+1 distinct columns of M (i3, hy; 12, he; d,
h;n + l,n). In order to obtain the maximum numbers of subspaces of
M (i1, hy;d, h;n + 1, n), which contains in

k k

PnlJP = PPy,

i=1 =1
we may assume that dim(P N P;) = ip — 1 and dim(P NP, N Fj) =
dim((P N P;) N (PN P;)) = iz — 2, for any two distinct ¢ and j , where
1<14,j <k. Since P € M4 (iz, ho;d, h;n+1,n), PNP; (resp. PNFP;NF;)
is a subspace of type (iz—1, ko) or type (i2—1, hp —1)(resp. type (i2—2, h2)
or type (iz — 2,hs — 1) or type (iz — 2, hg — 2)) of IF.(,""") by Lemma 2.1.
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By Lemma 2.2, z > 0, y > 0 and z > 0. By Lemma 2.2, the number of
subspaces of P not covered by Py, P, -+, Py is at least

t — max{u,v} — (k — 1)[max{u, v} — min{z, y, 2}]

=t — kmax{u,v} + (k — 1) x min{z,y, z} =t — max{u,v} — (k — 1)w.

Therefore, we may take e; = t — max{u,v} — (k — 1)w — 1 under the
assumption that k. Since e; > 0, we get

t — max{u,v} — 1
w

kE<| |+1.

At the same time, as the definition of k°!-disjunct matrix and k®2-inclusive
matrix, we can get e = t —e; = max{u,v} + (k — 1)w + 1 under the
assumption that k. As k> 1 > 9#{03‘&1, then e; > 0.

Now we show that the above lower bound e; + 1 can not be increased
by an specific construction. For P N Py, by Lemma 2.2, Ny (i1, hy;ip —
2,hgsd, s+ I,n) =2 1, Ny(iy, hijie — 2,he — 1;d, hsn + I,n) > 1 and
Ny(ii, hyyia —2,hg — 2;d, hyn+1,n) > 1. Hence there exists an (ig — 2)-
dimensional subspace contained in P N P, denoted by V, such that the
number of subspace of type (i1, k1) contained in V' is equal to min{z,y, z}.
By Proposition 2.5, the number of (i, — 1)-dimensional subspaces, which
contain V' and are contained in P, equals to g + 1, and each of these
subspaces is a subspace of type (ia — 1, ha) or type (io — 1,he — 1). For
1<k < rnin{[l—f—"-‘ﬂ%‘iiﬂ}—_—l-J + 1,9 + 1}, we choose k distinct (ip — 1)-
dimensional subspaces between V' and P, say Vi,(1 < j < k). Since
Ni'(ta—1,hojig, hojd, hyn+1l,n) > 2 and Ny'(ia—1,hg —1;42, ho;d, h;n+
[,n) > 2 by Lemma 2.3, for each V;, we can choose a subspace of type
(i2, ha) denoted by P;, such that P N P; = V;. Hence, each pair of P; and
P; overlaps at the same subspace V.

Now we have showed that My (i1, hy;2, ho;d, h;n + 1, n) is k®-disjunct
but not k¢ *1.disjunct. Meanwhile we assume that M. (i;, hy;ia, ho;d, h; n+
1,n) is (k 4 1)¢* -disjunct. By the maximality of e;, we infer that

e’ <t—max{u,v}—(k+1-1)w—1<t—max{u,v}—(k—1Dw—1=e,.

Hence M (i1, h1;i2, ho; d, hyn+1,n) is not (k+1)¢ -disjunct. Consequently,
M (i1, by d2, ho;
d,h;n + 1, n) is fully k®!'-disjunct. This completes the proof. O

Theorem 3.3. Let & = M, (i1, h1;ia,ho;d,h;n +1,n) and x € R' is

k-sparse. Then the support of x can be exactly recovery from y = ®x + ¢

when k < | =2mex{uv}=2| 4 4
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Proof By Theorem 3.2, ® is a (k;e;)-disjunct and (k; e2)-inclusive ma-
trix when

1 S k S lt—maiju,ut—lj + 1,

where €, = t — max{u,v} — (k — 1)w — 1,e2 = max{u,v} + (k - )w+ 1.
According to Lemma 1.2, we get that z can be exactly recovered from
y = Pz + € when e; > ey, i€,

k< |=2mex{uw)=2) 4 g
This completes the proof. O

Now, we compare a sensing matrix formed by singular linear spaces and
a Gaussian random sensing matrix via numerical simulation. For a signal
x, we use the algorithm in [9] to solve S(z). If the recovery of support
set S(z) can be exactly recovered, we say the recovery of z is perfect. By
Theorem 3.2, we get a 27 x 39 sensing matrix formed by singular linear
spaces. Fig. 1 shows the perfect recovery percentage of this matrix and
that of a 27 x 39 random Gaussian matrix. For each sparsity, 5000 input
signals are used to compute the perfect recovery percentage. According to
the simulation results, the matrix formed by singular linear spaces can be
applied to recover signals effectively and outperforms the Gaussian matrix.

Next, Let’s recall the DeVore’s construction!!®l. DeVore provided a kind
of deterministic sensing matrix using polynomials over finite fields. For
our comparison, we consider finite field of prime power order. Let Fg
be a finite field, where ¢’ is a prime power. Given an integer 7, where
0 < r < ¢, let P, denotes the set {f(z)|8(f(z)) <r,z € Fg}. Then
there are t' := ¢'"*! such polynomials in it. Denote a null matrix by
H with ¢’ x ¢’ large, and order the positions of H lexicographically as
(0,0),(0,1),...,(¢" = 1,4’ — 2),(¢" — 1,4’ —1). We classify the construc-
tion as three steps. First, insert one to a position of every row of H by
the following way. Look = — Y(z) as a mapping of Fy — Fy, where
Y € P,z € Fy. then change the value of position (z,Y(z)) into 1. Every
row exactly has a one. Second, Transform H into a column vector vy with
s’ x 1 large, where s’ = ¢’ 2. Note that there are exactly ¢’ ones in vy; one
in the first ¢’ entries, one in the next ¢’ entries, and so on. Third, Recycle
the above two steps for all the polynomials, which belongs to P,. Hence

there are t’ := ¢’ ™1 column vectors. At last, we obtain the matrix & with
s’ x t' large.
Lemma 3.4.019 Suppose the matrix & = —1 =3}, then @' satisfies the

RIP with § = (k' — 1)r/¢’ for any k' < ¢'/r + 1.

In order to compare the upper bound values on k and %/, we will

251



—&— Singular linear space|
- | —*— Gaussian :

Perfect Recovery Percentage

Fig. 1. (Perfect recovery perc entage of a matrix formed by singular linear spaces
hspace*11.2mmand that of a random Gaussian matrix with the same size 27 x 39. For
each k, 5000 input signals are used to compute the percentage.)

make the upper bound value on k specific. Let h; +d < i, — hy, then
L o t—2v t—2v—2
max{u,v} =v,w=v—zand k < LQ(U—HJ <| So—d | + 1, where
t— v
2(v — )
d(ig—iy) t2—ha—d hz _ ggdliz—1=i1) iz —ha —d ha — 1
4 —h—d My o in—hy—d hy
q q q q
i —ha —d ho —1 i —2—hs—d ha

11—h1—dq hy 2 i1—hy1—d thq

2gdlia=1-i1) — 9gdlia—2—i1)

_ gt
q%(gh? — 1)

Q(qhz—hl = 1) Q(qiz—-'lz—!'1+h1—1 = 1)(qi2—"=2—i1+h1 = 1) :
e N N

Theorem 3.5. Suppose h; = 0,i; = d > 2, then the upper bound value
on k' is smaller than that of k when ¢ =¢' > 2.

Proof As above-mentioned, let hy = 0,i; = d > 2, then k < {_ﬁ%ﬂ =

LH—“Z‘EI'!J. By Lemma 3.4, we have k' < (“H Given ¢ = ¢' > 2. Since
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d d¢.d 2d d 2d d
¢ _9cqcq=2_4a =2 _g*-2¢" _g*-2¢°
T r = g - 2 2qd 2qd < 2(qd_ 1)
Hence, the upper bound value on k' is smaller than that of k. This com-
pletes the proof. O

We have proved that our construction is superior to the construction of
DeVore under some conditions. By changing the numbers of parameters,
we will obtain a type of different CS matrices.
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