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Abstract

It is known that an ordered p-labeling of a bipartite graph G
with n edges yields a cyclic G-decomposition of Kanz41 for every
positive integer 2. We extend the concept of an ordered p-labeling
to bipartite digraphs and show that an ordered directed p-labeling
of a bipartite digraph D with n arcs yields a cyclic D-decomposition
of K., for every positive integer z. We also find several classes of
bipartite digraphs that admit an ordered directed p-labeling.

1 Introduction

If a and b are integers we denote {a,a + 1,...,b} by [a,b] (if a > b, then
[a,b] = 0). Let N denote the set of nonnegative integers and Z,, the group
of integers modulo m. For a graph (or digraph) H, let V(H) and E(H)
denote the vertex set of H and the edge (or arc) set of H, respectively. The
order and the size of a (di-)graph H are |V(H)| and |E(H)|, respectively.
If we let V(K,,) = [0,m — 1], we define the length of the edge {4,7} in Km,
where V(K,,) = [0,m — 1], to be min{|j —i|,m — |j —i|}.

Let V(Km) = Zm, and let G be a subgraph of K,,. By rotating G, we
mean applying the permutation i — ¢ +1 to V(G). Let H and G be graphs
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such that G is a subgraph of H. A G-decomposition of H is a set A =
{G1,Ga,...,G,} of pairwise edge-disjoint subgraphs of H each of which is
isomorphic to G and such that E(H) = |J]_, E(G:). A G-decomposition
of K, is also known as a (K, G)-design. A (K,,,G)-design A is cyclic
if rotating is an automorphism of A. The study of graph decompositions
is generally known as the study of graph designs, or G-designs. For recent
surveys on G-designs, see [1] and [5).

Let G be a graph with n edges. A primary question in the study of graph
designs is, “For what values of m does there exist a (K, G)-design?” For
most studied graphs G, it is the case that if m = 1 (mod 2n), then there
exists a (K, G)-design. A common approach to finding these designs is
through the use of graph labelings which are defined in the next section.

Similar concepts to the ones defined above for undirected graphs can
be defined for digraphs. First, we introduce additional notation. For an
undirected graph G, let G* denote the digraph obtained from G by replacing
each edge {u,v} € E(G) with the arcs (u,v) and (v,u). Let V(K}) =
[0,m — 1]. The length of the arc (i,j) is j —iif j > ¢, and it is m + j — i,
otherwise. Note that E(K,) consists of m arcs of length ¢ for each i €
1,m—-1].

Let V(K:) = Z,, and let D be a subgraph of K. By rotating D, we
mean applying the permutation i — i+1 to V(D). Moreover in this case, if
J €N, then D + j is the digraph obtained from D by successively rotating
D a total of j times. Note that rotating an arc does not change its length.
Also note that D + j is isomorphic to D for every j € N.

Let H and D be digraphs such that D is a subgraph of H. A D-
decomposition of H is a set A = {D,, D3, ..., D,} of pairwise arc-disjoint
subgraphs of H each of which is isomorphic to D and such that E(H) =
Ui-1 E(D;). A D-decomposition of K}, is also known as a (K,, D)-design.
A (K;,, D)-design A is cyclic if rotating is an automorphism of A.

Let D be a digraph with n arcs. As with undirected graphs, one can
ask, “For what values of m does there exist a (K7,, D)-design?” It is the
case that if m = 1 (mod n), then there exists a (K},, D)-design. Not
surprisingly, an approach to finding these designs is through the use of
digraph labelings.

2 Labelings

Alex Rosa introduced graph labelings in [15] as a means of tackling graph
decomposition problems. In particular, Rosa’s labelings of a graph G with
n edges yield cyclic G-decompositions of K2,+1 and, in one special case,
cyclic G-decompositions of Ko,,41 for every positive integer z. Others
have since introduced variations on Rosa’s labelings that lead to additional
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cyclic graph decompositions. Such labelings have been termed Rosa-type
labelings because of the influence of Rosa’s seminal article on the topic [15].
We summarize some of these labelings in the next subsection and then
introduce a Rosa-type labeling for bipartite digraphs.

2.1 Labelings of undirected graphs

A labeling of a graph G is an injective function h: V(G) — N. In [15], Rosa
introduced a hierarchy of graph labelings. In {7], the concept of ordered
labelings was introduced. Because of their relevance to our current work,
we emphasize concepts from these two manuscripts. Let G be a graph
with n edges and no isolated vertices and let f be a labeling of G. Let
f(V(G)) = {f(u): u € V(G)}. Define a function f: E(G) = Z* by f(e) =
|f(u) — f(v)|, where e = {u,v} € E(G). We refer to f(e) as the label of e.
Let f(E(G)) = {f(e): e € E(G)}. Consider the following conditions:

(£1) f(V(G)) < [0,2n],
(€2) F(V(G)) < [0,n],

(€3) f(E(®)) = {z1,%2,...,Zn}, where for each i € [1,n] either z; =i or
T;=2n+1-—1,

(¢4) F(E(G)) = [1,n].
If in addition G is bipartite with bipartition {A, B} of V(G) consider also

(€5) for each {a,b} € E(G) with a € A and b € B, we have f(a) < f(b),

(¢6) there exists an integer A such that f(a) < Aforalla € A and f(b) > A
for all b € B.

Then a labeling satisfying conditions
(€1) and (€3) is called a p-labeling;
(€1) and (£4) is called a o-labeling,;
(€2) and (€4) is called a S-labeling.

A B-labeling is necessarily a o-labeling which in turn is a p-labeling. Sup-
pose G is bipartite. If a p-, o-, or B-labeling of G satisfies condition (£5),
then the labeling is ordered and is denoted by p*, o, or 8+, respectively. If
in addition (£6) is satisfied, the labeling is uniformly ordered and is denoted
by pt+, ott, or 1+, respectively.

A B-labeling is better known as a graceful labeling and a uniformly
ordered B-labeling is an a-labeling as introduced in {15]. See (6] for a
survey of these Rosa-type labelings. A dynamic survey on general graph
labelings is maintained by Gallian [9].
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As stated earlier, labelings have applications in the study of cyclic graph
decompositions. The first results in this area were obtained in [15], which
included the following theorems.

Theorem 2.1 (Rosa [15]). Let G be a graph with n edges. There ezxists o
cyclic G-decomposition of Kan+1 if and only if G admits a p-labeling.

Theorem 2.2 (Rosa [15]). Let G be a bipartite graph with n edges that
admits an a-labeling. Then there exists a cyclic G-decomposition of Kapzi1
foralzeZ*.

Since Theorem 2.2 gives rise to an infinite family of cyclic decompo-
sitions, an a-labeling of a graph is preferable to Rosa’s other labelings.
However, there are many classes of bipartite graphs (see [15]) which do not
admit a-labelings. In [7], El-Zanati, Vanden Eynden, and Punnim showed
that a pt-labeling of a bipartite graph G with n edges suffices for the exis-
tence of cyclic G-decompositions of Konz+1. In contrast to a-labelings, it is
conjectured by El-Zanati and Vanden Eynden (see [6]) that every bipartite
graph admits a p*-labeling.

Theorem 2.3 (El-Zanati, Vanden Eynden, and Punnim [7]). Let G be a
bipartite graph with n edges that admits a p*-labeling. Then there exisis a
cyclic G-decomposition of Kopyy1 for allz € ZF.

Before we proceed to labelings of digraphs, we note that a p-labeling of
a graph G with n edges is an embedding of G in K541 so as to have one
edge of G of each length. Then rotating G a total of 2n times yields the
cyclic (Kan4+1, G)-design. This idea extends in a natural way to embeddings
of digraphs with n arcs (and no more than n + 1 vertices) in K ;. Hence
the concept of a directed p-labeling extends naturally, too.

2.2 Labelings of digraphs

Let D be a digraph with n arcs and at most n+1 vertices. Let f: V(D) —
[0, n] be an injective function. Define a function f : E(D) — [1,n] as follows:
F((a,5)) = £(b) — f(a), if F(b) > f(a), and F((a,b) = n+ 1+ f(b) —
f(a), otherwise. We call f a directed p-labeling of D if {f((a,b)): (a,b) €
E(D)} = (1,n]. Thus, a directed p-labeling of D is an embedding of D in
K3, such that there is exactly one arc in D of length i for each i € [1,n].
The concept of a directed p-labeling was first introduced (as an exten-
sion of graceful labelings) in 1985 by Bloom and Hsu [3]. They called the
labeling a digraceful labeling. The concept was investigated further in 2008
by Marr (13] and in 2009 by Kaplan, Lev, and Roditty in {12]. Several
other authors have investigated the same concept as graceful labelings of
digraphs (see [9] and [8] for summaries of various results on the topic).
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As far as the authors are aware, the connection between digraceful label-
ings and cyclic digraph decompositions was first noted by Kaplan et. al [12],
where they proved the directed version of Theorem 2.1. In the following
statement of their result, the notation and terminology have been adapted
to better suit this paper.

Theorem 2.4 (Kaplan, Lev, and Roditty [12]). Let D be a digraph with
n arcs and at most n + 1 vertices. There exists a cyclic D-decomposition
of K3, if and only if D admits a directed p-labeling.

As with Theorem 2.1, Theorem 2.4 yields only one cyclic design. How-
ever, the concept of an ordered directed p-labeling extends to bipartite
digraphs yielding an infinite number of cyclic digraph designs.

Let D be a bipartite digraph with n arcs and at most n+1 vertices. Let
{A, B} be a bipartition of V(D). A directed p-labeling f of D is ordered if
f(a) < f(b) for each arc in E(D) with end vertices @ € A and b € B. An
ordered directed p-labeling is also called a directed p* -labeling. An example
of an ordered directed p-labeling can be seen in Figure 1. The following
theorem extends Theorem 2.3 to digraphs.

Theorem 2.5. Let D be a bipartite digraph with n arcs that admits a
directed p* -labeling. Then there ezists a cyclic D-decomposition of K.,
forallz € Zt.

Proof. Let D have vertex bipartition {A, B} and let f be a directed p*-
labeling of D such that f(a) < f(b) for each arc in E(D) with end vertices
a € Aand b€ B. Since f is a directed p*-labeling, we have that {f(e): e €
E(D)} = [1,n]; hence, each arc in D receives a distinct length.

Let z be a positive integer. If z = 1, then Theorem 2.4 applies. Thus
we may assume that z > 2. Let By, By, ..., B; be = vertex-disjoint copies
of B. The vertex in B; that corresponds to b € B will be denoted b;. For
each i € [1,z], let D; be a copy of D with vertex bipartition {4, B;}. Let
D'=D,uDyU---UD,.

Define the labeling f': V(D') — [0,nz] as follows:

oy [ fa) fv=a€A,
f(v)_{f(b)+(i~1)n ifv=2"; € B;.

The arcs in D’ are of two types: either directed away from A or to-
wards A. It is clear that an arc e € D directed away from A generates the
following set of = arc lengths in D": {f(e), f(e) + n,..., f(e) + (z — 1)n}.
Notice that the arc lengths in D’ generated by an arc e € D directed to-
wards A form the same set, since for each i € [1, z], the length of e = (b;,a)
is

ne + 1+ f(a) = f(b) = (i = n = f(e) + (z — i)n.
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Now, let z € [1,nz]. We will show that some arc in E(D’) has length z.
There exist unique integers g and r, with0 < g <r—1and 1 < r < n, such
that z = ng+r. Let e be the arc in E(D) such that f(e) = r. If e = (u,v)
with u € A and v € B, let €441 denote the arc (u,vg41) in E(D’). Then,

f'(eqe1) = F'(vgs1) = F'(u) = f(v) +qn — f(u) = qn + f(e) = =.

If e = (v,u) with v € A and v € B, let e;_, denote the arc (vz—q,u) in
E(D'). Then,

f’(ex—q) =nz+1+ [f’(u) - f’(vz—q)]
=z + 1+ f(w) - [f () + (z — g - 1)n]
=n+1+ f(u)— f(v) +ngq
= f(e) + ng

= Zz.

In either case, z is the length of some arc in E(D'). Since |E(D')| = nz,
the labeling f’ is a directed p-labeling of D’. By Theorem 2.4, there is

a cyclic D'-decomposition of K, ,,. This gives us the desired cyclic D-
decomposition of K}, ;. |

Figure 1 demonstrates how Theorem 2.5 works with a particular digraph
with 5 arcs.

0 1 0 1 0 1 0 1

5 3 5 3 10 8 15 13
Figure 1: A directed p*-labeling of a bipartite digraph D with 5 arcs and three
starters for a cyclic D-decomposition of Kjg.

We now briefly turn our attention to a few collected results on directed
p- and p*-labelings of some classes of bipartite digraphs. Let P, denote the
path on n vertices. Define the directed path on n vertices, denoted DP,, to
be the digraph obtained from an orientation on P, in which the indegree
and outdegree are equal for each non-leaf vertex. Similarly, let DC,, denote
the directed cycle on n vertices which is obtained from an orientation on
a cycle on n vertices such that the indegree and outdegree of every vertex
are both 1. Define the anti-directed cycle on n vertices, denoted AC,, to
be the digraph obtained from an orientation on a cycle on n vertices which
does not have DP; as a subgraph. It was shown in [4] that DP, admits a
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directed p-labeling if and only if n is even. For an even positive integer n,

the labeling provic}ed for DP, with consecutive vertices agp,@1,...,8n—1 is
8(a;) = (—1)**1 . &1 (mod n). This labeling actually produces a directed
pt-labeling of DP,.

Orientations of the n-star, K », are studied in [13}, and it is shown that
an orientation of K ,, admits a directed p-labeling if and only if either (i) n
is odd or (ii) n is even and the indegree of the center is even. The labelings
constructed use 0 as the label on the center vertex and are therefore directed
pT-labelings of the orientation of K ».

We can use certain labelings of an undirected graph along with a care-
fully chosen orientation to obtain a directed p*-labeling of the resulting
digraph. This is formalized in the following theorem, the proof of which is
straightforward and is hence omitted.

Theorem 2.6. Let G be an undirected bipartite graph with vertez biparti-
tion {A,B}. If f is a B+ -labeling of G where f(a) < f(b) for every edge
{a,b} € E(G) witha € A and b € B, then f is a directed p*-labeling of
the digraph obtained from G by either orienting every edge from A to B or
orienting every edge from B to A.

It is also easy to see the following.

Theorem 2.7. Let G be an undirected graph. If f is a B-labeling of G,
then f is a directed p-labeling of G*. Moreover, if G is bipartite and f is
ordered, then f is a directed p*-labeling of G*.

There exist many classes of bipartite graphs that admit o-labelings
(see [9]). Since an a-labeling is necessarily a Bt-labeling, the above re-
sults apply to a large number of graphs. For example, it is known from [15]
that C,, admits an a-labeling if and only if n = 0 (mod 4). It follows from
Theorem 2.6 that if m > 1, then ACy,, admits a directed p*-labeling. It
is also known that if G with n = 0 (mod 4) edges is the vertex-disjoint
union of up to three even cycles (but not C4 U C4UC}), then G admits an
a-labeling (see [9]). Furthermore, there exists an a-labeling of Cy that
gives rise to a directed p*-labeling of DCy,,. This is shown in Section 3.
(While the labeling is not identified as an a-labeling, we leave it to the
reader to check.) However, it is not true that every a-labeling of Cy,, gives
rise to a directed p*-labeling of DCyy,. Figure 2 shows an o-labeling of
Cj2 which is not a directed p*-labeling of DC)s.

Digraceful labelings of the unions of directed cycles were studied in [3],
where the following result was obtained. Let G be a digraph which consists
of a vertex-disjoint union of ¢ directed cycles, all of which are on n vertices.
Then G admits a directed p-labeling if (i) ¢t = 1 and n is even, (ii) ¢ = 2, or
(iii) n € {2,6}. Moreover, G has no directed p-labeling if ¢tn is odd.
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12 1 7 8 10 9

Figure 2: An a-labeling of Ci2 which is not a directed p*-labeling of DC2.

3 Some digraphs that admit directed p*-labelings

In this section, we show that every directed even cycle admits a directed
p*-labeling. We also find all bipartite digraphs on up to 4 vertices that
admit directed p*-labelings.

3.1 Directed p*-labelings of directed even cycles

Theorem 3.1. For every even positive integer n, the directed cycle DC,
admits a directed p*-labeling.

Proof. Letn = 2k where k € Z*. Let DCy have vertex set {vy, vs, ..., vk}
and arc set {(vi,vi41): 1 < i < 2k — 1} U {(vek,v1)}. Also, let A =
{va,v4,...,v2k} and B = {vy,vs,...,v2k—1}. Then {4, B} is a bipartition
of V(DCgk)

Consider a labeling f: V(DCsy) — [0, 2k] defined by

i/2 -1 if v; € A,
flui)=¢2k—(i—-1)/2 ifv; € Band i<k,
2k—(i-1)/2-1 ifv,e Bandi > k.

It is easy to check that this function is injective with f(a) < f(b) for any
a € A and b € B, and thus f is ordered.

We next consider the set of arc lengths that f induces on E(DCy;). For
all arcs with a tail in B, we have

{2k+1+ (i +1)/2-1) = (2k— (1 —1)/2): i0dd, i < k}
{1,3,...,k—=1} ifkiseven,

={i: 1 "<k =
{i: iodd, i <k} {{1,3,,..,];} if k is odd,
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and
{2k +1+((i+1)/2-1) - (2k—(:—1)/2—1): iodd, k <i <2k -1}
={i+1:io0dd, k<i<2k—1}

{k+2,k+4,...,2k} ifkiseven,
{k+3,k+5,...,2k} ifkisodd.

For all arcs with a tail in A\ {va}, we have
{(2k - ((i +1)=1)/2) — (i/2—-1): ieven, i <k—1}
={2 —i+1:ieven, i< k-—1}

_J{k+3,k+5,...,2k -1} if kis even,

T l{k+2,k+4,...,2k—1} if kis odd,

and

{(2k—(G+1)-1)/2-1) - (i/2—1): ieven, k—1< i< 2k -2}

={2k—1i:ieven, k—1<i<2k—2}

_J{2,4,...,k} ifkiseven,
T 1{2,4,...,k} ifkisodd.

Finally, the remaining arc (vok,v1) has length (2k) — (k—1) =k +1, and
thus, regardless of the parity of k, we have exactly one arc of length ¢ for
each ¢ € [1, 2k]. [ ]

Examples of the described labeling in the above proof can be seen in
Figure 3. In light of Theorem 2.5, we have the following corollary.

Corollary 3.2. For every even positive integer n, there exists a cyclic
DC,,-decomposition of K}, for all x € Z*.

0 1 2 3 0 1 2 3 4
8 7 5 4 10 9 8 6 5
DCy DCho

Figure 3: Directed p*-labelings of directed even cycles.
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3.2 Digraphs of small order

According to the reference book An Atlas of Graphs [14], there are 51 non-
isomorphic bipartite digraphs on up to 4 vertices and no isolated vertices.
Of the 51, there are exactly 38 which admit directed p*-labelings (see
Table 1). None of the remaining 13 bipartite digraphs admits a directed
p-labeling (see Table 2). We referenced these digraphs in the same way
they are referenced in [14].

Table 1: The bipartite digraphs of order at most 4 that admit a
directed p*-labeling.

D3 Da D7 D10
0 0

0 1 O

o———o o 1
1 2 1 2
Di1 D13 D16
2 2 0
0 110 1 23

D33
0 2 0 2
3 1 3 1

4 Concluding remarks and acknowledgements

Directed p*-labelings of a digraph D with n arcs lead to cyclic (K}, D)-
designs for every positive integer z. Other authors have studied (K}, D)-
designs although not necessarily cyclic ones. We note three results that are
relevant to this work. In [11], Hartman and Mendelsohn find necessary and
sufficient conditions for the existence of a (K, D)-design for each subgraph
D of K3. In [10], necessary and sufficient conditions for the existence of
a (K}, D)-design for each orientation D of C;. Necessary and sufficient
conditions for the existence of directed cycle decompositions of K are
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Table 1 (continued): The bipartite digraphs of order at most 4 that
admit a directed p*-labeling.
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Table 1 (continued): The bipartite digraphs of order at most 4 that

admit a directed p*-labeling.

D184

D217

Table 2: The bipartite digraphs of order at most 4 that do not admit
a directed p-labeling.

D9 D27 D32 D37
o ° o<>o
o—>o o—>o
D39 D50 D52 D59
o——9 >
®
D60 D64 D99 D137
o——>—9 >

D150
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found in [2].

This research is supported by grant number A1063038 from the Divi-
sion of Mathematical Sciences at the National Science Foundation. This
work was done while the third and fifth authors were participants in REU
Site: Mathematics Research Ezperience for Pre-service and for In-service
Teachers at Illinois State University.
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