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Abstract

The spread of a graph G is defined as the difference between
the largest and smallest eigenvalues of G. Using the lower bounds
obtained by Liu and Liu in [4] on the spread of a graph, we in this
note present spread conditions for some Hamiltonian properties of a
graph.
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We consider only finite undirected graphs without loops or multiple
edges. Notation and terminology not defined here follow those in [1]. For a
graph G = (V, E), we use n and e to denote its order V| and size |E|, re-
spectively. We define 0,(G) as min{d(v1)+d(v2) +... +d(v;) : {v1,v2, ..., v}
is an independent set in G}. For a subset V) of V, we define its average
degree as 3 .y, d(v)/|V1]. A cycle C in a graph G is called a Hamiltonian
cycle of G if C contains all the vertices of G. A graph G is called Hamil-
tonian if G has a Hamiltonian cycle. A path P in a graph G is called a
Hamiltonian path of G if P contains all the vertices of G. A graph G is
called traceable if G has a Hamiltonian path.

Let G be a graph G of order n. We use g1 > pg > ... > pn to denote
the eigenvalues of G. The spread, denoted S(G), of G is defined as py — ptn.
Liu and Liu in [4] obtained the following results (Proposition 3.3 on Page
2730) on the spread of a graph.
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Theorem 1. Suppose a graph G contains ¢ (¢ > 1) independent vertices,
say T, the average degree of which is dp. Then
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If equality holds between the first two expressions, then the vertex degrees
are constant on T and also on V\T and each vertex in V\T is adjacent to
the same number of vertices in T'. If equality holds between the last two
expressions, then G is bipartite with vertex parts T and V\T.

In this note, we will use Theorem 1 to present spread conditions for
Hamiltonicity and traceability of a graph. Namely, we will prove the fol-
lowing theorems.

Theorem 2. Let G be a k - connected (k > 2) graph with order n and

size e. If
20k+1 k+1
>
k+1 v n—(k+1) 2 5(G),

then G is Hamiltonian or Kg, 4.

Theorem 3. Let G be a k - connected (k > 1) graph with order n and
size e. If
20k+2 k+2
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then G is traceable or Ki, k+2.
Next, we will prove Theorem 2 and Theorem 3.

Proof of Theorem 2. Let G be a graph satisfying the conditions in
Theorem 2. If G has a Hamiltonian cycle, then the proof is finished. Now
we assume that G is not Hamiltonian. Choose a longest cycle C in G and
give an orientation on C. Since G is not Hamiltonian, there exists a vertex
zo € V(G)\V(C). By Menger’s theorem, we can find s (s > k) pairwise
disjoint (except for zo) paths Py, P, ..., P; between zo and V(C). Let u;
be the end vertex of P, on C, where 1 < i < s. We use u;'" to denote the
successor of u; along the orientation of C, where 1 < i < s. Then a standard
proof in Hamiltonian graph theory yields that S := {:z:o,u‘l",ug' yeud}is
independent (otherwise G would have cycles which are longer than C).
Relabel the vertices in S as wy, wa, ..., wet1 satisfying d(w,;) < d(wsp) <
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... € d(ws+1). It can be easily proved that
Tidw) Zitdw) o TiEdw)
k+1 — k+2 ~ 77 s+1

By Theorem 1 and the assumptions in Theorem 2, we have
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By Theorem 1 again, we have that G is a bipartite graph with vertex parts
S and V'\S such that all the vertices in S have the same degree, say a, and
all the vertices in V\S have the same degree, say b. we further have that
S is an independent set of size (k + 1) in G such that the degree sum of all
vertices in S is equal to ok+1.

davg-

Set r := |[V\S| = n— (k+1). Since G is k - connected, 7 > k. If
r > (k+1), then in V\S we can choose (k + 1) independent vertices of the
same degree b . Notice that S is an independent set of size (k+1) in G such
that the degree sum of all vertices in S is equal to o4 and all the vertices
in S have the same degree a, we have that (k + 1)b > (k + 1)a, namely,
b > a. Since both rb and (k+1)a count the number of edges between S and
V\S, we have rb = (k + 1)a. Notice further that » > (k+1) and b > a, we
must have a = b and r = (k+1). Again since G is k - connected, a = b > k.
Clearly,a=b<(k+1). Thusa=b=(k+1)ora=b=k.

If a = b = (k+1), then G is Hamiltonian, a contradiction. Ifa = b =k,
recall that every 2 - connected m - regular graph on at most 3 vertices is
Hamiltonian (see [3]), then G is Hamiltonian, a contradiction.

If r = k,then k =7 > a > k. Thus a = k. Again notice that
b = (k + 1)a, we have b = (k + 1). Hence G is Ky r41. QED

Proof of Theorem 3. Let G be a graph satisfying the conditions in
Theorem 3. If G has a Hamiltonian path, then the proof is finished. Now
we assume that G is not traceable. Choose a longest path P in G and
give an orientation on P. Let y and z be the two end vertices of P. Since
G is not traceable, there exists a vertex zo € V(G)\V(P). By Menger’s
theorem, we can find s (s > k) pairwise disjoint (except for zo) paths P,
P,, ..., P, between zo and V(P). Let u; be the end vertex of P; on P, where
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1 <i<s. Since P is a longest path in G, y # u; and z # u;, for each i
with 1 < 7 < s, otherwise G would have paths which are longer than P.
We use u;" to denote the successor of u; along the orientation of C, where
1 < i <s. Then a standard proof in Hamiltonian graph theory yields that
S = {z0,y,u],ud,...,ut} is independent (otherwise G would have paths
which are longer than P). Relabel the vertices in S as wy, wa, ..., weya
satisfying d(w,) < d(wg) < ... < d(wy42). It can be easily proved that
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By Theorem 1 and the assumptions in Theorem 3, we have
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By Theorem 1 again, we have that G is a bipartite graph with vertex parts
S and V\S such that all the vertices in S have the same degree, say a, and
all the vertices in V\S have the same degree, say b. we further have that
S is an independent set of size (k + 2) in G such that the degree sum of all
vertices in S is equal to op42.

Set 7 := |[V\S| = n — (k+2). Since G is k - connected, r > k. If
r 2> (k+2), then in V\S we can choose (k + 2) independent vertices of the
same degree b . Notice that S is an independent set of size (k+2) in G such
that the degree sum of all vertices in S is equal to ok..2 and all the vertices
in § have the same degree a, we have that (k + 2)b > (k + 2)a, namely,
b > a. Since both rb and (k + 2)a count the number of edges between S
and V\S, we have rb = (k + 2)a. Notice further that » > (k + 2) and
b > a, we must have a = b and r = (k+2). Again since G is k - connected,
a=b2>k. Clearly,a=b<(k+2). Thusa=b=(k+2)ora=b=(k+1)
ora=b=xk.

If a = b= (k+2), then G is Hamiltonian, a contradiction. If a = b =
(k + 1), recall that every connected m - regular graph on at most 3m + 3
vertices has a Hamiltonian path (see Theorem 2.5 in [2]), then G is trace-
able, a contradiction. If a = b = k, then again Theorem 2.5 in (2] implies
that G is traceable, a contradiction.

If r = (k + 1), then we have (k + 1)b = (k + 2)a, (k+ 1) 2 a > k, and
(k+2)>b>k. Thusa=(k+1) and b = (k 4+ 2). So G is traceable, a
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contradiction.

Ifr =k, then k = r > a > k. Thus a = k. Again notice that
rb = (k + 2)a, we have b = (k +2). Hence G is Kk, k+2. QED

Obviously, Theorem 2 and Theorem 3 have the following Corollary 4
and Corollary 5, respectively.

Corollary 4. Let G be a k - connected (k > 2) graph with order n and

size e. If
k+1
>
25,/n_(k+1) > 5(G),

then G is Hamiltonian or K k1.

Corollary 5. Let G be a k - connected (k > 1) graph with order n and

size e. If
/ k+2
_trTe >
2 n—(k+2) 2 5(G),

then G is traceable or Ki, i42.
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