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Abstract

A radio labeling of a simple connected graph G is a function
f : V(G) = Z* such that for every two distinct vertices u and v of
G

distance(u, v) + | f(u) — f(v)| 2 1 + diameter(G).

The radio number of a graph G is the smallest integer M for which
there exists a labeling f with f(v) < M for all v € V(G). An edge-
balanced caterpillar graph is a caterpillar graph that has an edge
so that removing this edge results in two components with an equal
number of vertices. In this paper, we determine the radio number
of particular edge-balanced caterpillars as well as improve the lower
bounds of the radio number of other edge-balanced caterpillars.
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1 Introduction

The problem that inspired radio labeling is what is called the channel as-
signment problem. This problem appears when radio frequencies are as-
signed to radio transmitters in a way that causes interference between them.
The goal of solving this problem is to determine a method to assign radio
frequencies to transmitters so that interference between transmitters is min-
imized. This problem was modeled with graph theoretic concepts by Hale
[6]. This graph theoretic approach has vertices of a simple connected graph
represent the radio transmitters and labels given to the vertices represent
the radio frequencies assigned to each transmitter. There have heen a few
different approaches to solving this problem using graph theory. Many of
these approaches have included some specific restriction on the possible
labels for vertices given their distance from one another.

Distance-2 labeling and k-radio coloring methods were discussed by
Chartrand and Zhang in [2]. Let G be a simple connected graph and let
d(u,v) denote the distance hetween vertices u and v of G. Let D be the
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diameter of G. Given k with 1 <k < D, and f: V(G) = Z* a coloring of
G, f is a k-radio coloring if

d(u,v) +|f(v) = f(v)| 2 k+1 (1)

for all distinct vertices u,v in G. The goal is then to minimize the largest
value used as a label when labeling G such that this condition is satisfied.

Distance-2 labeling is the specific k-radio coloring when k is 2. This
type of labeling forces vertices that are distance 2 apart to have different
labels and requires adjacent vertices to have labels whose absolute differ-
ence is at least 2. This type of labeling was incorporated into the channel
assignment problem because it studied restrictions between vertices that
were considered to be close or very close [5].

As Liu and Zhu discuss, however, there may be interference with trans-
mitters farther than distance 2 apart [9]. This leads to considering k-radio
colorings when k > 2. One specific type of these colorings is radio labeling
which is k-radio coloring when & = D.

The radio numbers of some tree graphs have already been determined.
In [9], Liu and Zhu found the radio number of paths. In [1], the radio
number of spire graphs, paths with one leaf vertex off of the path, was
determined. The radio numbers for m-ary trees were discussed in [7] and
general bounds for the radio number of tress are found in [8]. In [10],
Marinescu-Ghemeci determines the radio number of a very specific cater-
pillar graph. In this paper, we extend techniques used in [1] to improve
the lower bound from [8] of the radio number of certain types of caterpillar
graphs. For specific types of caterpillar graphs G, we develop an algorithm
to produce an optimal labeling of G.

2 Background and Preliminary Work

Throughout this paper let G be a simple connected graph with n vertices.
Let V(G) denote the vertex set of G and E(G) denote the edge set of G.
For a component C of G, let V(C) and E(C) denote the vertex set and edge
set of C respectively. For a given set S of vertices (or edges) of a graph,
let the order of S, denoted |S|, be the number of vertices (or edges) in S.
For two distinct vertices u and v in G, let the distance hetween v and v he
denoted by d(u,v). Let the diameter of G, the maximum distance found in
G, be denoted by D.

A radio labeling of a graph G is a k-radio labeling! f for k = D. In this
case, equation (1) is called the radio condition. The largest integer used as

1Some authors allow 0 as a label. In this paper, we do not allow 0 to be a label and
adjust all relevant results we cite accordingly.
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a label in f is called the span of f. The radio number of a graph G, denoted
rn(G), is the smallest possible span for a radio labeling of G. Equivalently,
the radio number of G is the smallest integer M for which there exists a
radio labeling f of G such that f(v) < M for all v € V(G).

In this paper, we discuss bounds for radio numbers of certain types of
tree graphs, specifically certain types of caterpillar graphs.

Definition. A caterpillar graph is a tree with n = s+ vertices vy, ..., V41,
consisting of a path vy,...,v,, named the spine of G and terminal vertices
Ug41,...,Usst Such that they are adjacent to some v; for 2 < i < s—1
which are called leg vertices. See an example in Figure 1.

v Vi, V3 Vi, Vi Vi Vo,

fose
—

[y *—o
Vi V, V3 Vg s VY; s Yo Vo

Figure 1: A Caterpillar with s = 10 vertices on the spine and ! = 7 leg
vertices.

We now develop some techniques that help in establishing a good lower
bound for the radio number of caterpillar graphs. First we establish some
terminology and notation we will use throughout the paper to help when
relating the order vertices are labeled and a particular labeling function of
a given graph G.

Definition. An ordering of the n vertices of a graph G is a bijection of the
vertices of G to the set {z;,...,Z,} Where the subscript denotes the order

the vertices are labeled.

Definition. Given an ordering z,,...,Z, of the n vertices of a graph G,
let the associated radio labeling be a function f with f(z;) = 1 and defined
inductively so that f(z;) is the smallest integer for which the radio condition
is satisfied for all pairs z; and z; with j < i.

For the rest of this paper, unless otherwise indicated, for a graph G, we
refer to z, ..., T as the ordering of the vertices of G and call the associated
radio labeling f.

Now consider the process of associating a radio labeling f to an ordering
zy,..., T, of vertices in a graph G. Since a radio labeling f is a function
from the vertices of G to the positive integers, we let f(x,) = 1. As we label
the rest of the vertices, at each step, we choose f(z;+1) to be the small-
est integer that satisfies the radio condition with all vertices =, z2,...,T;.
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When labeling z;.1, a reasonable first consideration for f(z;+) is the pos-
itive integer k such that

k=D+1+ f(z:) — d(zi, Ti1)-

Notice that if f(z;41) = k, then the radio condition between the suc-
cessively labeled vertices x; and z;4+; is an equality. However, this value
for f(xi41) might not satisfy (1) with all of the previously labeled ver-
tices z,z2,...,z;—1. Let [ be the smallest integer such that k + 1 >
D+1+ f(z;) —d(zig1,z;) forall 1< j<i—1.

For the radio condition to be satisfied for all pairs of vertices, we need
to increase the value of f(z;+1) so that f(z;41) = k + I. Since this is
needed when labeling ;4 after z;, we will use the notation J¢(z;,;11)
for I. Then when considering f(z;+,) in terms of the successively labeled
vertices z; and z;,1, we have the following:

f@iv1) = D+ 1+ f(zi) — d(zi, Tiv1) + T (@i, Tig1)-

If Js(z;,zi+1) > 0, the radio condition is satisfied with a strict inequal-
ity for the pair of vertices z; and x;+;. This need to have a strict inequality
for the radio condition between successively labeled vertices is what we will
refer to as needing jumps. This is because we need to make an increase, or
jump, in the value of f(z;41) beyond what is required when just considering
the radio condition between the successively labeled vertices z; and z;;;.
More formally, we have the following:

Definition. As in [7], for z;,...,z, an ordering of a simple connected
graph G with associated radio labeling f, the jump of f from z; to x4 is
a non-negative integer Jy(z;,xi41) such that

d(Zi, Tiv1) + f(Zie1) — f(@:) = D+ 1+ Jp(@i, 2ig1).

Definition. Given an ordering z;, ..., 2z, of the vertices of a graph G and
the a?sociated radio labeling f, we say that f requires jumps if
Yot Jr(@i zipn) 2 1.

Many of the techniques and definitions in this paper rely on Propositions
and Lemmas from ({1]. We include them here for reference with some slight
modifications to make the notation consistent with the rest of this paper.

Proposition 1. (Proposition 3 of [1]) Let G be a simple connected graph
with n vertices and let x,,...,T, be any ordering of the vertices of G with
[ the associated radio labeling. Then,

n-1 n—1
fl@a) = (n=1)(D+1) + f(z1) = Y)_dlzi,zin)) + Y Ip(zi, zivn).
i=1 i=1
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Proposition 2. (Lemma 4 of [1]) Let G be a simple connected graph with
n vertices. Then

n—1
™(G) > (n—1)(D+1)+ 1~ max z d(z:, Ti+1)
i=1
where the mazimum is taken over all possible orderings {x1,...,zn} of the

vertices of G.

From Proposition 2 we see that finding max Zt__ d(zi, Ti4+1) for a graph
G will give a lower bound for the radno number of G. As we will refer
to this occurrence of maximizing E,_ d(z;,%iy1), we have the following
definition:

Definition. We call any ordering of the vertices of a graph G for which
max Z;:ll d(z;, z;41) is achieved, where the maximum is taken over all
possible orderings of the vertices of G, a distance mazimizing ordering.

Notice that Proposition 2 gives a preliminary lower bound for the radio
number of a tree. This is the same lower bound as given by Liu in The-
orem 3 of (8] but with different notation. In Liu’s proof, she shows that
st d(u,.,.l, u;) < 2w(T) — 1 where w(T) is the weight of the tree T. The
sum Z,_ d(ui+1,u;) in [8] is equivalent to Z"_ll d(z;,z;4+1) in this pa-
per. Therefore, according to Liu’s proof, max y 1, d(:c,, Tip1) = 2w(G) -1
where the maximum is taken over all possible ordermgs of the vertices of
G. Making this substitution, exchanging variables to match this paper’s
notation, and adjusting for that fact that Liu uses O as the first label in
her labelings shows that the bound given in Theorem 3 of [8] is the same
as the bound given in Proposition 2. In this paper, we improve this bound
for particular types of caterpillar graphs.

The following lemma from [1] will be useful in techniques we develop to
determine the value of 3., d(z;, z;41) for particular graphs.

Lemma 1. (Lemma 6 of [1]) Let G be a graph with vertices vy, ...,v, and
edges ey, ....,e;. Let x1,...,zn be an ordering of G. Let P; be a fized
shortest path from z; to zj41. Let nz(e;) be the number of paths P; that
contain the edge e;. Then the following hold:

1. Each edge can appear in any path P; at most once.

2. Let {e,l,...,efr} be the set of all the edges incident to zx. Then
naz(ef)+. ..+nz(e¥) is even unless k = 1 or k = n in which case the
sum is odd.
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3. Suppose e; is an edge so that removing it from the graph gives a graph
with two components denoted A and B. Furthermore assume that if
z; and x;4) are both contained in the same component, then so is P;.
Then n.(e;) < 2min{|V(4)|,|V(B)|}-

4. Let {e;,,...,e;.} be a set of edges so that no two of them are ever
contained in the same P;. Thennz(e;,) + ... + nz(e;,) <n—1.

Remark 1. Let G be a graph with vertices vy, ...,v, and edges ey, ...,en.
Let N(e;) be the mazimal value of ngy(e;) for all possible ordemngs T1,...%p
allowable under the conditions of Lemma 1. Then max ) [ d(xnx,.,.l) <
ZJ —1 N(e;) where the mazimum is taken over all possible ordermgs of the
vertices of G.

Remark 2. Note that from (2) of Lemma 1, for a specific ordering z,,...,z,
of the vertices of G, there needs to be at least one edge e; in G such that
nz(e;) is odd.

When G is a tree, paths are unique. Thus, for the rest of this paper, we
will use the following notation.
Notation. Let G be a tree with vertices v, ..., v, and edges ey, ...,e,—1. Let
Ty,...,Tn be an ordering of G. Let P; be the unique path from z; to z;4,.
Let nz(e;) be the number of paths P; that contain the edge e;.

Since this paper focuses on radio labeling certain trees, the next three
propositions follow from Lemma 1 when G is a tree.

Proposition 3. Let G be a tree with edges e),...,e,.1 and an ordering
Zi,...,ZTn of its vertices. Let A; and B; denote the two components of G
that result from the removal of edge e; from G. Then

_fn-1 if min{|V (401, [V(Bo)l} = 3
Ne = {2m1n{|V(A)| IV(B)[} else. ?

Proof. When G is a tree, removing one edge will result in a disconnected
graph of two components and removing more than one edge will result in
a disconnected graph with three or more components.

Thus, in a tree, removing just one edge, e; will result in two disjoint
components, A; and B;. Then for a given edge e; of G, (3) of Lemma 1
gives that nz(e;) < 2min{|V(4;)|, |[V(B;)|}. Also, (4) of Lemma 1 shows
that N(e;) < n —1 for all edges e;. It follows that the maximum possible
value for n,(e;) for all possible orderings z,,...,z, and edges ¢; is

N(es) = n-—1 if min{|V(4),|V(B:)|} = %
& 2min{|V (4|, |V(B:)|]} else '
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Proposition 4. Let G be a tree with edges ey,...,en—1 and z,,...,Z, an
ordering on the vertices of G. If there is only one i such that n(e;) is odd,
then z, and x,, are both incident to e;.

Proof. Let {e} ,..., e} } be the set of edges incident to z; and {e},,...,e} }
be the set of edges incident to z,. Suppose by way of contradiction that z,
and z,, are not adjacent. This means that {e} ,...,e] }N{e},,..., €} } =0.
Also, by (2) of Lemma 1, }";_, no(e},) and 3"z, nz(e},) must both be
odd which means that both {e},...,e] } and {e},,...,e7 } have at least
one edge such that n.(e) is odd. Since these two sets have no common
members, this means there are at least two edges e in G such that n.(e)
is odd, a contradiction to our assumption. Therefore, z; and z, are hoth
incident to the edge e; such that N(e;) is odd. O

In this paper, we are considering particular types of trees. The following
proposition provides a way to describe Z::ll d(z;,Ti41) for a tree G and
ordering z1,...,Tn in terms of the nz(e;) values for the edges e; of G.

Proposition 5. Let G be a tree with ordering x,...,z, and associated
radio labeling f. Let ey, ea,...,en_1 be the edges of G. Then

St A, Tig1) = Ty na(es).

Proof. Consider the path P; between z; and z;,;. Suppose this path is
of length k. Since the length of this path is the shortest length of a path
between z; and z;41, it follows that d(zj,z;41) = k. Thus, d(zj,z;41)
contributes k to the total 37! d(2;,T;4+1)-

Also, since there are k edges in P;, this path contributes 1 to the n.(e;)
value for each of the k edges e; in the path. Therefore, P; contributes k to
the total sum 377 n(es).

Since the above arguments are true for each j, 1 < j < n -1, it follows
that
z;:ll d(zj, Tj41) = Z::xl ne(e:). a

Note that for a tree graph G, Proposition 5 implies that to find a dis-
tance maximizing ordering, we need to maximize }_ . E(c) "z (€)-

The following definition for trees in general will help us specify the type
of caterpillar we will consider for this paper.

Definition. For a tree G on n vertices with edges e;,...,e,—1, a center
edge, e, is an edge with largest N(e;) value.

Note that the removal of a center edge results in a disconnected graph
with two components which we will denote as A and B.
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3 Caterpillar Preliminaries

There are four main categories of caterpillar graphs in terms of the center
edge definition. There could be one center edge e, where N(e.) is odd,
there could be one center edge e, where N(e.) is even, there could bhe two
center edges, or there could be more than two center edges. Notice that
the only way for a caterpillar graph to have more than two center edges is
if the caterpillar is a star graph, whose radio number has heen determined
in [4].

In this paper, we focus on a particular type of caterpillar graph that
has one center edge.

Definition. A caterpillar is edge-balanced if there is an edge so that re-
moving this edge results in exactly two components with an equal number
of vertices.

To better understand the structure of edge-balanced caterpillars, we
have the following result.

Proposition 6. Let G be a tree with n vertices and one center edge e..
The value of N(e.) is odd if and only if n is even and |[V(A)| = |V(B)| = %.

Proof. First suppose N(e.) is odd. Let A and B be the components of G
after the removal of e.. Suppose by way of contradiction that |V (A)| #
{V(B)|. Without loss of generality, suppose |V(A)| > |V(B)|. Notice that
|V(B)| < . From Proposition 3, N(e.) = 2|V(B)| which is even, contra-
dicting the assumption that N(e.) is odd. Therefore, |V(A)| = § = |V(B)].

Now suppose e, is the only center edge and |V(A)| = § = |V(B)|. Since
|[V(A)] = & = |V(B)|, min{|V(4)|,|V(B)|} = §. Thus by Proposition 3,
N(e;) = n — 1 which is odd. O

Remark 3. In terms of the center edge definition, an edge-balanced cater-
pillar is a caterpillar with an even number of vertices and one center edge
where N (e.) is odd.

Notation. Let G be an edge-balanced caterpillar with n vertices. Name the
vertices of G as follows: The vertices of the spine will be denoted uy, ..., u,
(note that D = s — 1). If there are t leg vertices adjacent to u,, we will
denote them I!_,,...,It_, if they are to the left of the center edge and
11,1, ..., 0t if they are to the right. See Figure 2.
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Figure 2: An edge-balanced caterpillar with nine vertices on each side of
the center edge e..

Note that the distance between any two vertices on opposite sides of the
center edge is given by the absolute difference of their subscripts.

For an edge-balanced caterpillar G, let u., and u., be the vertices on
the spine of G incident to e.. This means 1 < ¢, < ¢y < s with g +1 = ¢.
Notice that this means we refer to A as the component to the left of the
center edge and B as the component to the right of the center edge.

Now we use ideas from Section 2 along with the structure of edge-
balanced caterpxllars to determine when Y .. 11 ny(e;) is maximized for a
specific ordering z1,...,Zn.

Proposition 7. Let G be an edge-balanced caterpiliar with n vertices. Let
Ty,...,ZT, be an ordering of the vertices of G. Let ey, es,...,e,— be the
edges of G. Then the sum 3 1o} nz(e;) is mazimized when na(e;) = N(e:)
for all e; € E(G). Furthermore, when this mazimized sum occurs, there is
only one edge in E(G) such that n.(€) is odd and this edge is e..

Proof. By Proposition 3, the only time N(e) is odd for some edge e in a
tree is when N(e) = n—1. By Propositions 6 and 3 and since G is an edge-
balanced caterpillar, N(e;) = n — 1. Note that N(e) for all other edges
of G is even. Remark 2 indicates that for a particular ordering xy,...,Z,,
there must be at least one edge e with n (e) odd. Since N(e.) is odd,
S 77! na(e;) is maximized when n(e;) = N(e;) for all e; € E(G) for a
particular ordering zi,...,Zn.

Thus, by the above argument it is seen that when 377} nx(e,) is max-

imized, there is only one edge with an odd n;(e) value and this edge is
ec. O

Corollary 1. Let G be an edge-balanced caterpillar with edges ey, ..., eqn—1.
Letz,,...,xn be a distance mazimizing ordering of the vertices of G. Then
the vertices x; and x, are adjacent and {z1,z,} = {uc,, Uc, }-

Proof. By Proposition 5, Z;:ll d(zi, zis1) = Zl_l nm(e,) Since z1,...,ZTn
is a distance maximizing ordering, this means Z,=1 n.(e;) is maximized.
By Proposition 7, there is only one edge such that n,(e;) is odd and that
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edge is e.. Proposition 4 shows that z; and z,, are adjacent such that both
are incident to e.. It follows that {z1,zn} = {uc,,uc, }- O

Corollary 2. Let zy,...,z, be a distance mazimizing ordering of the ver-
tices of an edge-balanced caterpillar G. Vertices that are successive in
the ordering alternate between component A and component B, i.e. for
1<i<n-1, ifz; is in component A, then z;,, is in component B and
if ; is in component B, then x;;, is in component A.

Proof. By Proposition 5, 77} d(zi,2i+1) = iy nz(e:). Proposition 7

shows that z::ll nz(e;) is maximized when nz(e;) = N{e;) for all i. From
Proposition 3, n(ec) = n — 1. This means there are n — 1 paths P; from
z; to ;41 that include the edge e.. Since there are only n — 1 paths P;
from z; to z;41, this means every path from z; to ;41 includes the edge
ec. Since e, divides G into components A and B, this shows that if z; is in
A, then z;4, is in B and vice versa. O

4 Algorithm for Edge-Balanced Caterpillars

In this section, we propose an algorithm for ordering the vertices of an edge-
balanced caterpillar to provide an optimal radio labeling of that caterpillar.

Consider Table 1. We will construct this type of table to help us deter-
mine an ordering for a radio labeling of an edge-balanced caterpillar. For
a particular edge-balanced caterpillar G, a table can he constructed in the
same manner as Table 1 where the numbers 1 through n are placed into
the cells as shown in Table 1. The last number placed in the table is n — 2.
Notice that n — 2 will be in the first column or the fourth column. We
will use this table to divide the vertices of G into four groups to help in
determining a distance maximizing labeling. We will consider this process
for two isomorphic drawings of edge-balanced caterpillars.

As described in (3], two graphs that only differ in how they are drawn
and vertices named are called isomorphic graphs. Given an edge-balanced
caterpillar G, let H be defined by the isomorphism ¢ : V(G) — V(H) such
that

¢(u;) = Gig_s41  if u; is on the spine of G
o(lF) = Z:':—i+1 if ¥ is a leg of G

where vertices denoted with a tilde are vertices of H.

Note that informally ¢ flips the graph G so that the leftmost spine
vertex is now the rightmost spine vertex and vice versa.

Figure 3 shows the edge-balanced caterpillar G from Figure 2 as well as
the graph H given by the above isomorphism ¢.
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Group 1 Group 2
Column 1 Column 2 Column 3 Column 4

2 1 n—1 n

6 3

8 7 5 4

12 9

4 13 1T 10

18 15

20 19 17 16
j+3 . 3 .
7+5 j+4 T+2 j+l

Table 1: Grid for Edge-Balanced Caterpillars.

! 2 1 1 1 1
A L L L L) L,
G o—e v: ‘I—C ® I I I *—o
. u u oy U us’ru'/ U U, U, U, U,
ec
1T N 1 T 2’2
A A N ¢, 1
H: o—e - ' S \/ -@ o
~ o~ A~ s d L L d ~ Ny L d s d -~ A~
u, 2 Uy Uy U ue’[‘u7 U U, Uy, U, U,

e

c

Figure 3: T'wo isomorphic drawings of an edge-balanced caterpillar.

We will use two copies of Table 1 to determine an ordering of the vertices
of G and an ordering of the vertices of H using the algorithm below.

Algorithm 1. Consider an edge-balanced caterpillar G with n vertices.
Construct a table like Table 1 with » numbered cells.
Place the names of the vertices of G in the table as follows:

e In Column 1, consecutively insert vertices to the left of the center
edge, starting with u; keeping the subscripts in non-decreasing order
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where spine vertices are inserted before leg vertices with the same
subscripts.

e In Column 2, consecutively insert vertices from the right side of the
center edge starting with u., keeping the subscripts in non-decreasing
order and inserting leg vertices before spine vertices with the same
subscript.

e In Column 3, consecutively insert vertices to the right of the center
edge starting with u, keeping the subscripts in non-increasing order
where spine vertices are inserted hefore leg vertices with the same
subscript.

e In Column 4, Consecutively insert vertices to the left of the center
edge, starting with u., keeping the subscripts in non-increasing order
and inserting leg vertices before spine vertices with the same sub-
script.

Following Algorithm 1 for both drawings G and H of an edge-balanced
caterpillar provides two filled in tables. For each table, when the table
has been completely filled in, each vertex of the caterpillar is contained in
exactly one numbered cell of the table.

Applying the process of Algorithm 1 to the caterpillars in Figure 3 gives
Tables 2 and 3.

Group 1 Group 2
Column 1 Column 2 Column 3 Column 4
ux 2 uy 1 U2 17 Ue 18
ug 6 U111 3
1 g | us T 5| 4
l% 12 1 U0 9 1
= - 4 13 | = 1 10
Ug 15 ug 16

Table 2: Table for the G drawing of the edge-balanced caterpillar of Figure
2 given by Algorithm 1.

Note that all the vertices to the right of the center edge are in Columns
2 and 3 while vertices to the left of the center edge are in Columns 1 and
4. Since the center edge divides G (or H) into two components with 3
vertices each, this means that the total number of vertices in the middle
two columns is § and the total number of vertices in the outside columns
is 3.
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Group 1 Group 2
Column 1 Column 2 Column 3 Column 4
Uy 2 Uy 1| 40 17 | ue 18
iy 6 | - U1 3| .
l% 8 Usg 7 lql 3 Us 4
i3 12 | 5 i1y 0 =
3 14 lo 13 10 11 s 10
Yo 151 & 16

Table 3: Table for the H drawing of the edge-balanced caterpillar of Figure
2 given by Algorithm 1.

The numbers in the cells of the table with the names of the vertices
are the subscripts ¢ for the ordering of the vertices of G (or H) given by
Algorithm 1. These orderings and grouping of the vertices is seen in Figure
4,

Column 1 Column 4 Column 2 Column 3
X Xs
I I -®
Xis Xy X; X4
H: [o—@- J - &—I \/ *- .i
K: Xo Xip/ X6 Xe Xig [ X0 X5 [Xis Xy X3 X7
Column 1 Column 4 Column 2 Column 3

Figure 4: The ordering given by Algorithm 1 for the graphs in Figure 3.
The vertices are grouped together based on the columns of Tables 2 and 3
in which the vertices are placed.

The idea of this algorithm is to alternate labeling a vertex in component
A with labeling a vertex in component B. Furthermore, for a vertex z; in
the group of Column 1 vertices, the vertices z,_; and z;+ alternate between
being in Column 2 or 3 of the table. [Analogously, for z; in Column 3,
z;_y and z;4; are in Columns 1 or 4.] This is done to ensure that one of
d(z;,z;—1) or d(z;, z;41) is relatively small for the given graph. This helps
reduce the number of jumps needed in the associated labeling.
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We want to determine an ordering of the vertices of G whose associated
radio labeling’s span is the radio number of G. We introduce the following
definitions and notation to help us determine when Algorithm 1 gives such
an ordering.

Notation. Let 21,...,2, be an ordering of the vertices of G. For a fixed
i let o, Bz, be the vertices z;_; and ;1) with the names chosen so that
d(z;,0z,) < d(zi,Br,). Note: for i = 1, consider z2 as a,, and for i = n,
consider z,_; as a,.

Definition. In a caterpillar G with an ordering z,,...,z, of its vertices,
1if oz, is a leg

for a given i, let t,. =
& ’ e 0 otherwise.

Let G be an edge-balanced caterpillar and H be the isomorphic drawing
of G given by ¢. Let y1,...,yn be the ordering of the vertices of G given
by Algorithm 1 and let ¢, ..., ¥ be the ordering of the vertices of H given
by Algorithm 1.

Definition. An edge-balanced caterpillar is a jumpless caterpillar if the
following conditions hold for the ordering given by Algorithm 1 of at least
one of the graph representations G or H:

1. The distance between any pair of vertices that are in horizontally
adjacent cells in Group 1 (respectively Group 2) is at most Q}’—l +1t
where ¢ is 1 if the vertex in Column 2 (respectively Column 4) is a
leg vertex and 0 otherwise.

2. d(yn-2,Yn-3) < %‘i +ia,, , (or d(Gn—2,Tn-3) < Qéﬂ + tag"_z)

Remark 4. If an edge-balanced caterpillar G is a jumpless caterpillar,
we will represent it so that the corresponding ordering from Algorithm 1
satisfies the conditions in the definition of a jumpless caterpillar. Note that
we may need to use the drawing H for this.

For ease of notation, for the rest of this paper, we let y1,¥2,...,%n
represent the ordering of the vertices of an edge-balanced caterpillar as
given by Algorithm 1 and refer to this as the ordering given by Algorithm
1 even if using the H drawing of the graph.

Notice that the orderings given in Tables 2 and 3 satisfy the conditions
of a jumpless caterpillar. Thus, the graph G of Figure 2 is a jumpless
caterpillar.

Proposition 8. Let G be an edge-balanced caterpillar with y,,...,yn the
ordering of vertices given by Algorithm 1. Then this ordering is a distance
mazimizing ordering.
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Proof. First note that the structure of an edge-balanced caterpillar G means
that e. divides G into two components, each with & vertices. Thus, N(e.) =
n— 1.

Under Algorithm 1, y; and y, are adjacent and both are incident to e..
It can be checked that the pattern of Algorithm 1, which alternates labeling
a vertex in A and then a vertex in B, causes n,(e) = N(e) for all edges in
G.

Thus, by Proposition 7, Z::xl ny(e;) is maximized and therefore, by
Proposition 5, Z:’__:ll d(yi,yiy1) s maximized. Thus, y,...,yx is a distance
maximizing ordering of G. a

The following lemma tells how the location of y; and o, in Table 1 are
related which will be incorporated in the proofs of upcoming theorems.

Lemma 2. Let G be an edge-balanced caterpillar. Let yi—1,vi,yi+1 be a
triple of vertices under the ordering given by Algorithm 1, with {yi—1,¥i+1} =
(Ot By} such that d(y, oy,) < (i, By.). When s & {1, Ynnsn, the
following statements are true:

o Ify; is entered in Column 1 of Table 1, then o, is entered in Column
2 of Table 1.

o Ify; is entered in Column 2 of Table 1, then o, is entered in Column
1 of Table 1. In particular, ay, = yiq1.

o Ify; is entered in Column 3 of Table 1, then o, is entered in Column
4 of Table 1.

o Ify; is entered in Column 4 of Table 1, then o, is entered in Column
3 of Table 1. In particular, oy, = yiy1.

Also, ayy, =2, y,_, = Yn-3, and oy, = Yn_;.

In particular, a,, is elways in a cell that is horizontally adjacent to the
cell for y; where both ay, and y; are in Group 1 or both are in Group 2 of
Table 1.

Proof. First, we consider the case when ¥; € {y1,yn—2,¥n}
Case I: Suppose y; is in Column 1 of Table 1.

Then, by the structure of the table, y;_1,y:s+1 are in Columns 2 and 3
of Table 1. Let {u,v} = {a,, By, } with © in Column 2 and v in Column 3.
Under the process of Algorithm 1, d(y;,u) < d(y;,v). When the inequality
is strict, ay, is the vertex in Column 2.

If d(y:, u) = d(yi,v), either both v and v are leg vertices or u is a leg
vertex and v is on the spine of G. Note that either way, a leg vertex is in
Column 2. By convention, let ay, be that leg vertex in Column 2.
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Case II: Suppose y; is in Column 2 of Table 1.

Then, by the structure of the table, both y;_; and y;4+, are in Column
1. Therefore, ay, is in Column 1.

In particular, by Algorithm 1, d(yi-1,¥:) > d(¥i, ¥i+1) When ¥i_1,viq1
are in Column 1 and y; is in Column 2 of Table 1. The distances are equal
when both y;_; and y;,.; are leg vertices or y;_; is on the spine of G and
yi+1 is a leg vertex. Thus, by convention, when the distances are equal, let
ay, be the leg vertex entered into the i + 1 cell of Table 1.

Case III: Suppose y; is in Column 3 of Table 1.

The proof is analogous to the proof of Case I.
Case I'V: Suppose y; is in Column 4 of Table 1.

The proof is analogous to the proof of Case II.

Now we consider the case when y; is in {y1,yn—2,Yn}-

When y; = 1, then it is not part of a triple of vertices y;—1, ¥i, ¥is1.
In this case, as before, consider y; as ay,. Note that a,, is in Column 1
of Table 1. Analogously, when y; = y, then it is not part of a triple of
vertices ¥;i—1, i, ¥i+1. In this case, consider y,_; as ay,. Note that oy, is
in Column 3 of Table 1.

When y; = yn—2, y; is in Column 1 or Column 4 of Table 1. If y,_»
is in Column 4, then both y,_3 and y,—; are in Column 3. If y,_5 is in
Column 1, then either both y,—3 and y,_; are in Column 3 or y,_3 is in
Column 2 and y,—; is in Column 3. In each case, by the process of Algo-
rithm 1, d(uc,, Yn—3) < d(uc,,Yn—1). In the case where the distances are
equal, ¥, 3 is a leg vertex and y,— is on the spine. In that case, we choose
Q. _, = Yn-3, the leg vertex. Therefore, oy, _, is yn—3 in all cases.

In all of the above cases, it can be checked that y; and a,, are in
horizontally adjacent cells in Group 1 of Table 1 or in horizontally adjacent
cells in Group 2 of Table 1. O

We will use the following definition in the proof of the next theorem
which defines a labeling that uses the ordering of the vertices given by
Algorithm 1. The theorem also shows that this labeling is the radio labeling
associated with the ordering given by Algorithm 1 when G is jumpless.

Definition. For a caterpillar G, let m; := d(z;, as,;) — (—D—g—l- +ta, ), if the
quantity is positive and zero otherwise.

Theorem 1. Let G be an edge-balanced caterpillar with orderingyy,y2,...,Un
of vertices as given by Algorithm 1. Define a labeling g such that g(y,) =1
and g(yi+1) = D +1 = d(yi, yiv1) + 9(y:) forall i, 1 <i<n-—-1. IfGis
a jumpless caterpillar, then g is a radio labeling of G and is therefore the
associated radio labeling to the ordering given by Algorithm 1.
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Proof. We begin by showing that m; = 0 for all <.
We start by considering when y; € {¥1,Yn-2,¥n}- Then we have the
following cases:
Case I: Consider a vertex in Column 1 or Column 3 of Table 1 as y; in a
triple of vertices y;_1, ¥i, ¥i+1. By Lemma 2, a,, and y; are in horizontally
adjacent cells in Group 1 or in Group 2 of Table 1. Since G is a jumpless
caterpillar, this means d(yi, ay,) < %"—1 + ta, . Thus, m; = 0 for all y;
when y; is in Columns 1 or 3 of Table 1.
Case II: Consider a vertex in Column 2 or Column 4 of Table 1 as y; in a
triple of vertices y;—1, ¥i, ¥i+1. Then we consider the following two cases:
Subcase A: Suppose y; is on the spine of G. Notice that both y;_; and
¥i+1 are in cells that are horizontally adjacent to the cell for y; such that
all three vertices are in Group 1 or all three are in Group 2 of Table 1. Due
to this and the fact that G is a jumpless caterpillar, d(y;, yi—1) < %ﬂ +0
and d(yi, ¥i+1) < ZF2 + 0. Note that this means d(y;, oy, ) < -%ﬂ

1. Suppose ay, is on the spine of G. Then m; = d(y;, ay,) — (2;—1 +
0) < &£ — (24 +0) = 0 so by definition of m;, it follows that m1 =0.

2 Suppose ay; is a leg vertex. Then m; = d(y;, oy, ) — ( i<
% (D"’1 + 1) = —1 so by definition of m;, m; = 0.

Therefore, when y; is on the spine of G, it follows that m; = 0.
Subcase B: Suppose y; is a leg vertex of G. Notice that both y;_;
and y;,; are in cells that are horizontally adjacent to the cell for y; such
that all three vertices are in Group 1 or all three vertices are in Group 2 of
Table 1. Due to thlS and the definition of G being a jumpless caterpillar,
tIi)(y,,y,_l) < L2l 411 and d(yi, yi+1) < 2 2L 41, This means d(y;, ay;) <
241
2 1. Suppose hoth y;_; and y;4+) are on the spine of G. Then, t,, =0.
Thus, m; = d(y;, o) — %"—1-. Suppose by way of contradiction that m; # 0.
The only time this would occur is if d(y:, ay,) = 2L + 1. If this were the
case, notice that both d(y;,y:i—1) = -%"—1 + 1 and d(y:,yi41) = Q—éﬂ +1
because if one were smaller, then d(y:, a,,) would be smaller. However,
by Algorithm 1, y;; and y;;; are in the same component of G. This
contradicts the fact that in a caterpillar, there is a unique vertex on the
spine in component A (or component B) that is distance -D—éu + 1 from y;.
Therefore, if both y;_; and y;41 are on the spine, m; = 0.

2. Suppose at least one of y;_1 or y;41 is a leg vertex. Notice that
ifta, =1, thenm; < 2 +1- (—"’— + 1) shows that m; = 0. Also, if
d(y,,ay,) <& 41m < Dl _ (Bl 4, ) which implies that m; = 0.

Suppose by contradiction that tam =0 and d(y;, ay‘.) = -D—;—l + 1. This
would mean that oy, is on the spine and d(yi—1,¥:) = = d(yi, Yi+1)
because otherwise d(y;,a,,) < 2+ + 1. This contradlcts the convention
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found in Lemma 2 that says if d(yi—1,¥:) = d(¥i, ¥i+1) and one of y;—y, ¥i41
is a leg, then let a,, be the leg vertex.
Therefore in all instances where at least one of y;_, y;+1 is a leg, m; = 0.

We now consider when y; € {y1,¥n—2,¥n}-

When y; = vy, it is not part of a triple of vertices vy;—1,yi, ¥i+1, As
before, we consider y; as a,,. By Algorithm 1, y; is on the spine of G
and y; and y, are in horizontally adjacent cells in Group 1 of Table 1.
Since Gis jumpless this means d(y1,0y,) = d(y1,y2) < & +0. Thus,

d(ylaayl)_( +0)<"i' ’L_O

Usmg an analogous argument, we see that my, = 0.

Now consider when y,—2 in the triple of vertices yn—3, Yn—2, ¥n—1. From
Lemma 2, we know that ¢y,,_, = yn—3. Thus, from condition (2) of the def-
inition of G being a jumpless caterpillar, m,_2 = d(yn—2, 0y, _,) — ( —D—éﬂ +
ta,,ﬂ_z) < %Ii + tay"_2 - (2‘%:; + tavn_z) =0

Therefore, when G is a jumpless caterpillar, m; = 0 for all <. Notice
that this means d(y;, o,) < 2 +1t,, for1<i<n.

Now, consider the labeling g such that g(y;) =1 and g(yi4y) =D+1 -
d(yi, yit+1) + g9(y:) for 1 € i < n—1. We claim g is a radio labeling of G.

By the definition of g, the radio condition is satisfied for any pair of
vertices y;, Yi+1-

We will next verify the radio condition for pairs of vertices y;_1, yit1-
Notice that

d(ayuﬂy.-) = d(yi’ ﬂy.') - d(yii ay.-) + Say,

where sq, = 0 if ay, is on the spine of G and Sa,, = 2if oy, is a leg vertex.
From the definition of g it follows that,

d(yi, ) +19(yi) — 9(ay,)| = D +1 and
d(yi, 51/.-) + lg(w:) — g(ﬂ‘y.’) =D+1.
Consider the case when g(oy,) < g(v:) < g(By,). (The other case is

proven similarly.) We start with the left hand side of (1) for the vertices
oy, and B,, and make a series of substitutions as follows:

d(ay.' ’ ﬂy.‘) + g(ﬁy.) - g(all.')

= d(ys, By;) — d(¥ir ;) + Sy, + 9(By.) — 9(¥:) + 9(ys) — 9(e,)
= d(yi’By.-) - d(yi’ayi) + say, +D+1- d(ﬂynyi) +D+1- d(ayuyi)
= 2D + 2 — 2d(yi, ay,) + Sa,,
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22D+2—2(¥+t0u,) +Salﬁ

=2D+2-D—1=2te, +5a,
=D+1.

Therefore the radio condition is satisfied for vertices y;.; and y;y;.

To show the radio condition is satisfied for pairs of vertices y; and y;
where j = i + k for k > 3, we first notice the following. By the definition
of g, g(yi+1) — 9(v:) = D + 1 — d(¥i, ¥i+1)- Also, from the fact that G
is a jumpless caterpillar, for all pairs of vertices y; and y;y; that are in
horizontally adjacent cells with both vertices in Group 1 or both vertices
in Group 2 of Table 1, d(yi,yi+1) < %ﬂ + 1. Thus, for y; and y;4; in
horizontally adjacent cells both in Group 1 or both in Group 2 of Table 1,
we have that

9(yi+1) — 9(v:) = D +1 - d(yi, yit1)
D+1 )

2D+1—<—2——+1

D-1
==_- 2
. @)
Now consider the pair of vertices y; and y; where j = ¢ + k for some
positive integer k > 3. Then

9(y5) — 9(yi) = 9(yi+3) — 9(vi)

= g(yi+3) — 9(Yi+2) + 9(yi+2) — 9(¥i+1) + 9(¥is1) — 9(vi)- (3)

From Algorithm 1, two of the label differences for a pair of successively
labeled vertices in (3) correspond to vertices that are in horizontally adja-
cent cells of Table 1 in Group 1 or horizontally adjacent cells in Group 2.
For those two pairs, we get a bound from (2). The other label difference is
at least 1 because all labels are unique. Thus, (2) and (3) give

o(ys) —g(w:) > 2+ Bt +1=1D.

Also, since d(y;, y;) > 1, it follows that g(y;) — g(v:) + d(yi, ;) > D+ 1.
Thus, the radio condition is satisfied for y; and y; whenever |i — j| > 3.

Therefore, g is a radio labeling of G. o

Corollary 3. Let G be an edge-balanced caterpillar. If G is a jumpless
caterpillar, then rn(G) = g(yn)-

287



Proof. From Proposition 8, the ordering ¥1,...,yn given by Algorithm 1
is a distance maximizing ordering of G. From Theorem 1, we know that
since G is a jumpless caterpillar, g is a radio labeling. By how the labeling
g in Theorem 1 was defined, g(yi+1) — 9(v:) = D + 1 — d(y:,yi41) for
1 <i<n-1. Summing these n — 1 equations and solving for g(y,) gives
9(yn) =(n—-1)(D+1)+1—max Z::ll d(yi, Yi+1). From Proposition 2, it
follows that rn(G) = g(ya). a

A technique used in the proof of Theorem 1 is useful when considering
characteristics of a distance maximizing ordering of an edge-balanced cater-
pillar that does not require jumps. We include this in the next proposition.

Proposition 9. Let G be an edge-balanced caterpillar. Let z,,...,z, be a
distance mazimizing ordering of the vertices of G such that the associated
radio labeling f does not require jumps. Then for every i, d(z;,az,) <
Ll 4, .

Proof. First we consider when 2 < ¢ < n—1. Since f does not require jumps,
Z:’____ll J¢(xi, zi4+1) = 0 which means that J¢(z;,zi41) =0for1 <i<n-1.
From this we have,
|f(z:) — flag,)| =D+ 1 —d(ziaz,) and
If(mt) - f(gz,)l =D+1- d(xia 6:!:{)‘
Notice that d(az,,Bz,) = d(zi, Bz,) — d(zi,@z,) + Sa,, Where so, =0
if &z, is on the spine of G and s,, =2 if oy, is a leg vertex.
Consider the radio condition for z;_; and z;4;:

f(xis1) = f(@) + f(z:) = flzim1) = D+1-d(ziz1,zis1)
= 2D + 2 —d(xi,00,) — d(2i, Bz;) = D+1—d(oz,B:)
=D+1 2 d(xia a:z,-) + d(:l:,', :Bz;) - d(a-'cn ﬁ:s)
=>D+1 > d(ziaz,)+d(zi,B:,)
'—[d(xi: .BI.') - d(xia aI,‘) + sua:;}
=D+1 > 2d(xiyaz.~) = Sa.,
= ;;-L Z d(xiyaxi)
= —D2L1 tia,, 2 dziog,) (4)

Now consider when i = 1. By convention, o, = z;. Suppose by
contradiction that d(z,,z2) = d(z,az,) > Q%'l +ta,, = %"—1.

Since z1, ..., T, is a distance maximizing ordering, by Corollary 1, z, €
{tc.rUe, }- Suppose 1 = uc, (the proof is analogous when z; = u.,). It
follows from Corollary 2 that xo € B and z3 € A. By the structure of an
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edge-balanced caterpillar, for v # u.,, € 4 and v # u,, € B, d(u,v) >
d(uc,,v). It follows that d(z2,z;) = d(x2,uc,) < d(z2,x3) which means
that z; = a,,. Also, by the structure of G, z, = u,, is on the spine of G
80 to,, = 0. Therefore, by (4), d(z2,71) < %"—1-, which is a contraction to

our assumption. Therefore, d(z;,az,) < %‘l'—l + ta,, -

A similar argument can be used to show that d(z,,cs,) < % +
ta, - a
For an edge-balanced caterpillar G with z;,...,z, an ordering of its

vertices, the occurrence of a vertex x; being considered as a; in relation
to a vertex z; is important in the arguments of the next theorem. Consider
z; for 3 < i < n —2. This vertex is labeled after z;_; and before z;4;.
Then z; is in two triples of successively labeled vertices such that z; is
not the middle vertex of the triple, namely, the triples {z;_2,z;—1,z;} and
{zi,Ti+1,Ziv2}. Therefore, it is possible that z; is az,_, and/or a;,,,. By
definition, z2 is a,, but z2 could also be oy, since it is part of the triple
{z2,z3,24}. Similarly, z,,..1 = ag, and could also be a,,,_, since it is part
of the triple {z,_3,Zn—2,Zn-1}. This leads to the following definition.

Definition. In a caterpillar G with an ordering of vertices x,,...,Z,, for
1 < i < n, if z; is considered as o5, , or ag,,,, then z; is called an alpha
vertezr.

For the specific cases of z; and z,, we define alpha vertices as follows:
e z; is an alpha vertex if z) = ag,.
® 1, is an alpha vertex if z,, = o, _,.

Notice that a vertex z;, 3 < i < n—2, could be an alpha vertex for zero,
one, or two vertices; a vertex z; for ¢ = 2,n — 1 could be an alpha vertex
for one or two vertices; and z; and z, can be an alpha vertex for zero or
one vertex.

We will use the above definition to make arguments based on how many
times certain vertices are considered to be alpha vertices under a given
ordering of vertices of a caterpillar G in the proof of the next theorem. This
theorem improves the lower bound of the radio number of edge-balanced
caterpillars that are not jumpless. We prove this by first showing that the
bound from Proposition 2 would be increased if an ordering of the vertices is
not distance maximizing. Then we show that the radio labeling associated
to the distance maximizing ordering of Algorithm 1 requires jumps when
G is not jumpless. Finally, we show that no other distance maximizing
ordering has associated radio labeling that does not require jumps. We
do this by supposing one exists and then reach a contradiction based on
the structure of G being jumpless and comparison to the ordering y1,...yn
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from Algorithm 1. This requires us to consider various cases hased on the
structure of G.

Since the arguments in the proof of this theorem can be complicated,
we include an example of a graph from one of the situations following the
proof.

Theorem 2. Let G be an edge-balanced caterpillar with n vertices. If G is
not a jumpless caterpillar, then

(G) 2 (n—1)(D+1) + 1 — max(X7 d(zi, ig1)) + 1

where the mazimum is taken over all possible orderings of the vertices of

G.

Proof. First we consider an ordering z,...,z, of the vertices of G that
is not a distance maximizing ordering. It follows that E:’;ll d(zi, zi41) <
max (Z;’;ll d(:z:,-,:c,-H)) — 1 where the maximum is taken over all possible

orderings of the vertices of G. Thus, the bound follows from Proposition 1.
Next, we consider the ordering y ..., yn of the vertices of G given by
Algorithm 1. By Proposition 8, this is a distance maximizing ordering. We
will show that the associated radio labeling to this ordering as well as to
any other distance maximizing ordering of the vertices of G requires jumps.
By the hypothesis, G is not a jumpless caterpillar. Then for the ordering
Y1,-- -, Yn Of the vertices of G given by Algorithm 1, either

(i) there exists a pair of vertices in horizontally adjacent cells of Group
1 (or Group 2) of the table given by Algorithm 1 such that their
distance is greater than 2% F1 4t where ¢ is 1 if the vertex in Column
2 (or Column 4) is a leg vertex and 0 otherwise, or

(ll) d(yn—Q) yn—3) > ’Ddgp_l + tav

n=2"

Let h be the associated radio labeling to the ordering y,...,yx.
Case I: Suppose condition (i) is satisfied.

Consider the vertex of this pair that is in Column 1 (or Column 3) as y;
for some i # n—2. By Lemma 2, ay is in Column 2 (or Column 4) and thus
it follows that d(y;, ay,) > ——'"— . The ordering v, ..., yn is a distance
maximizing ordering of the vertlces of G and thus by the contrapositive of
Proposition 9, the associated radio labeling requires jumps. Thus, h(y,) >
(n=1)(D + 1) + h(y1) — (X7 dws, yis1)) + 1.

Suppose by contradiction that there exists another distance maximizing
ordering z,...,Z, of the vertices of G with associated radio labeling f such
that f does not require jumps. From Proposition 9, this means that for all
j, d(xj,a:zj) < _D_-2Ll + tQ.-cJ» .
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Suppose z, is the same vertex as y, From the above assumptions,
d(yi, ay,) > 23 +ta, and d(z;,0z;) < < Bt +ta¢ where a;; # ay,. This
means that d(z,, az;) < d(yi, o, )-

Claim: If the pair of vertices is {y1,y2} or {¥n—1,¥n}, by the structure
of an edge-balanced caterpillar, no such a,, exists.

Proof of Claim: Consider when ¢ = 2. Then y; = u; is in Column 1 and
Y1 = @y, = U, is in Column 2. Also, d(y2,ay,) > £FL. Notice that z;,
which is the same vertex as ys, is in component A. Since z;,...,Z, is a
distance maximizing ordering of the vertices of G, by Corollary 2, z;_, and
zj4+1 are in component B. However, by the structure of an edge-balanced
caterpillar, every vertex w # u,, in component B is such that d(u;,w) >
d(uy,uc,) which means d(z;,w) > d(z;,ue,) = d(y2,ay,). Therefore, it is
not possible to have d(z;,0,) < d(y2, 0, ). Thus d(z;,az;) > 24 + ta.,
and f requires jumps. A similar argument shows that no such a, exists
when i = n — 1 and thus the claim has been proven.

By the above claim, if the pair of vertices satisfying condition (i) is
{y1,92} or {yn—1,¥Yn}, we have already reached a contradiction to the as-
sumption that f does not require jumps.

Now we consider when ¢ # 2,7 — 1 and look at the following cases to
reach a contradiction to the assumption that f does not require jumps.

Subcase A: d(z;,0.;) < d(yi, o)

Since the arguments for y; in Column 1 or y; in Column 3 of Table 1 are
analogous, we give the argument only once. We suppose y; is in Column 1
for this proof.

Let & be the set of all vertices that are entered into cells above the cell
for oy, in Column 2 of Table 1. Let % be the set of all vertices that are
entered into cells above the cell for y; in Column 1 of Table 1.

Claim: a,; is in &.

Proof of Claim: Under Algorithm 1, vertices are entered into Column 2 of
Table 1 so that the subscripts of the vertices are in non-decreasing order
and leg vertices are entered before spine vertices with the same subscript.
A vertex v is entered in the table above a,, means d(u.,,v) < d(uc,,oy,).
Since d(zj, az;) < d(yi, ory,), it follows that d(az;, uc, ) < d(ay,, ue,). Thus,
g, €4 and we have proven the claim.

We consider two possible situations depending on where y; is located in
Table 1. Consider arbitrary entries into Columns 1 and 2 of Table 1: cells
m, m+1,m+ 2 where m and m + 2 denote cells in Column 1 whose entries
have their associated alpha vertex in the m + 1 cell of Column 2.

1. y; is in the m entry of Table 1 (meaning that m = 7 in this case).

By the structure of Table 1, we see that |%| = 2|#/| — 1.

Now consider the elements in &. In a distance maximizing ordering of
the vertices of G, every element in & except for u., could be an alpha vertex

291



for two vertices in component A. The vertex u., can be an alpha vertex for
only one vertex in component A. Thus, in general, the possible number of
uses of vertices in & as alpha vertices under a distance maximizing ordering
is 2|#| — 1.

For the distance maximizing ordering zi, ..., Zn, vertex az; has already
been used as an alpha vertex for one vertex of component A. Therefore,
there are 2|27| — 2 remaining possible number of uses of vertices in & as
alpha vertices under the ordering z;,...,z,. Since |8| = 2|#| -1 >
2|«/| — 2, we conclude that there exists at least one vertex zj in & such
that a;, is not in & but is in component B.

By nature of how the sets & and % were formed,

d(ue,, ay,) < d(ug,,az,) and

d(yi, uc,) < d(Tks Ue, ). (5)

Since d(zk, az, ) = d(Tk, tc, ) +d(Uc, , Uc, ) + d(tcy, @z, ) and d(yi, oy, ) =
d(yi, ue, ) + d(uc,, ue, ) + d(uc,, @y, ), whenever at least one of the inequal-
ities of (5) is strict, d(xk, 0z, ) > d(yi, ;). By hypothesis, it follows that
d(Tk, 0z, ) > dyi, oy,) > 2 +1 which implies that d(zx, oz, ) > 2 +1.
By contrapositive of Proposition 9, this means the associated radio labeling
f for the ordering zi,...,z, requires jumps, contradicting the assumption.

To consider when the inequalities of (5) are both equalities, we notice
that o, ¢ o means that a,, is entered in Column 2 below a,, is ay,,
or is entered into Column 3 of Table 1. Also, recall that leg vertices are
entered into Column 2 before spine vertices with the same subscript.

Note that if o, = oy, then since d(zk, @z, ) = d(yi, oy;) > %"—1+tav‘_ =
2.}'1 +1%q,, » by the contrapositive of Proposition 9, f requires jumps, which
is a contradiction to the assumption.

Now suppose oz, # ay,. Since d(uc,,ay;) = d(uc,, @z, ), the vertices a,,
and a,, have the same subscript in the original edge-balanced caterpillar
notation. Therefore, either hoth a., and oy, are leg vertices or a5, is a
vertex on the spine of G while o, is a leg vertex.

Since ay, is a leg vertex, ta, =1 and thus d(y;, oy,) > 9—3’—1 + 1. Since
d(yi, @y, ) = d(2k, 0z, ), it follows that d(zk, 0z, ) > 2 +1 > 28 ¢, .
Therefore, by the contrapositive of Proposition 9, the associated radio la-
beling f for the ordering z1, . .., . requires jumps, which is a contradiction
to the assumption.

2. y; is in the m + 2 entry of the table (meaning ¢ = m + 2 in this
case).

By the structure of Table 1, we see that || = 2|/|. Notice that & has
the vertex entered in cell m which is why the set # in this case has one
more element than the set & of Case I: Subcase A:1.
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By the same arguments as in Case I: Subcase A:1, a;; € &/. Since
the set o is the same as in that case, we use the same argument to see
that the number of possible uses of vertices in & as alpha vertices that
have not been used yet under the ordering z;,...,z, is 2|2/| — 2. Since
|B| = 2|o| > 2|| — 2, we conclude that there exists at least one vertex
xk in B such that a,, is not in & but is in component B.

The same arguments as in Case I: Subcase A:1 show that f requires a
jump which is a contradiction to the assumption.

Subcase B: d(z;,az;) = d(yi, o, )-

Note that the only way this can happen is if o, is a vertex on the
spine of G, o, is a leg vertex, and d(z;,0,;) = -’%—1- + 1 = d(yi, ay,).
Also, this means that a,, and a.; have the same subscript in the original
edge-balanced caterpillar notation.

As before, since the arguments for y; in Column 1 or y; in Column 3 of
Table 1 are analogous, we give the argument only once. We suppose y; is
in Column 1 for this proof.

From Lemma 2, we know oy, is entered into Column 2 of Table 1. Let
& be the set of all vertices that are entered into cells above the cell for a,,
in Column 2 of Table 1 by Algorithm 1. Let % be the set of all vertices
that are entered into cells above the cell for y; in Column 1 of Table 1 by
Algorithm 1.

Algorithm 1 inserts leg vertices into Column 2 before spine vertices with
the same subscript in the edge-balanced caterpillar notation. Thus, since
ag, is a leg vertex and a,, is on the spine of G, it follows that o, € &.
The proof now follows the proof of Case I: Subcase A.

In all of the above cases, we have shown that when G is not a jumpless
caterpillar such that condition (i) above is satisfied, the labeling associated
with an arbitrary distance maximizing ordering requires jumps which is a
contradiction to our assumption. Therefore, from Propositions 1 and 2 and
the definition of a labeling requiring jumps, we have that

n-1
rm(G) 2 (n—1)(D +1) + 1 — max (Z d(wi,xi+1)) +1.

i=1

where the maximum is taken over all possible orderings of the vertices of G.

Case II: Suppose condition (ii) is satisfied.

By Lemma 2 a,,_, = yn—3. Condition (ii) shows that d(yn_2, %y, _,) >
23’—1 +ta,, _,- By Proposition 8, yi1,...,¥n is a distance maximizing order-
ing of the vertices of G and thus by the contrapositive of Proposition 9, the
associated radio labeling requires jumps. Thus, h(y,) > (n — 1)(D+ 1) +

h(y1) — (Z:;_ll d(yi,yiv1)) + 1.
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Let z),...,z, be an arbitrary distance maximizing ordering of the ver-
tices of G. Suppose by contradiction that the associated radio labeling f
does not require jumps. From Proposition 9, this means that for all j,
d(xjy a.‘t,‘) S Qé'tl‘ + ta.—:j .

Suppose z; is the same vertex as yn_2. From the above assumptions,
A(Yn-2,0y,_,) > B +1,, , and d(zj, ;) < BH +tq, . This means
d(xjv arj) < d(Yn-2, Qy,_» ).

Now we consider the following cases to find a contradiction to the as-
sumption that f does not require jumps.

Subcase A: d(z;,0z;) < d(yYn—2,Qy,_,)-

1. yn_o is in Column 1 of Table 1.
Notice that yn—3 = ay,,_, could be in Column 2 or Column 3 of Table

2

1.
a) yn—3 is in Column 2 of Table 1.

This means that for cells m,m + 1,m + 2 where m and m + 2 are in
Column 1 and m + 1 is in Column 2 of Table 1, y,_2 is in the m + 2 entry.
Therefore, the proof of the case is the same argument as Case I: Subcase
A:2 with y,_2 as y;.

b) yn—3 is in Column 3 of Table 1.

Let o be the set of all vertices entered into cells in Column 2 of Table
1 by Algorithm 1. Let 2 be the set of all vertices entered into cells above
the cell for y,_2 in Column 1 of Table 1. Note that |4| = 2|&/| — 1.

Claim: o is in &.

Proof of Claim: Since d(x;, az;) < d(Yn-2,y,_,), it follows that d(u.,, ;)
< d(uc,, ay,_,). In Algorithm 1, vertices are entered into Column 3 in non-
increasing order which implies that all vertices v in Column 3 are such that
d(ue,,v) 2 d(ue,,y,_,). Since ay,_, is the last vertex entered into Col-
umn 3 and d(ue,, @z;) < d(ue,, y,_,), it follows that oy, is in Column 2
of Table 1. Therefore, a;; is in & and the claim has been proven.

In a distance maximizing ordering of G, every element in & except for
u,, could be an alpha vertex for two vertices in component A. The vertex
u,, can be an alpha vertex for only one vertex in component A. Thus, in
general, the possible number of uses of vertices in & as alpha vertices under
a distance maximizing ordering is 2|&/| — 1.

In the distance maximizing ordering z1, ..., ., the vertex a,, has al-
ready been used as an alpha vertex for one vertex in component A. There-
fore, the remaining possible number of uses of vertices in &/ as alpha vertices
under the ordering x;,...,2, is 2|2/| —2. Since |28| = 2|2| -1 > 2|« | -2,
we conclude that there exists at least one vertex zx in & such that o, is
not in & but is in component B. By nature of how the sets & and % were
formed,

d(ucy, ay, _,) < d(uc,, @z, ) and
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d(yn—% U, ) < d(xky U, ) (6)

Since d(yn—-2,y,_,) = d(Yn-2,%c,) + d(tc,,Uc,) + d(tc,, 0y, _,) and
d(zk,az,) = d(zk,uc,) + d(uc,,ue,) + d(uc,, 0z, ), whenever one of the
above inequalities is strict, d(yn—2,y,_,) < d(zk,0z,). Thus, if one of
the inequalities of (6) is strict, we have that d(zx, oz, ) > d(Yn-2,ay,_,) 2
D—‘-'z'—l + 1 which implies that d(zy,az,) > Qg’—l + ta., - Therefore, by the
contrapositive of Proposition 9, the associated radio labeling f requires
jumps which is a contradiction to our assumption.

Now consider when both of the inequalities of (6) are equalities. Then
d(zk, 0z, ) = d(Yn—2,0,_,). Since az, ¢ &, a;, is either the same vertex
as ay,_, or is entered in Column 3 of Table 1 and in a cell above the cell
for yn_3 = ay,_,.

Note that if a;, = oy, _,, then since d(zx,az,) = d(yn-2,04,_,) >
%‘i +to,,_, = %"—1- + ta,,, by the contrapositive of Proposition 9, f
requires jumps, which is a contradiction to the assumption.

Now, suppose az, # 0y, _,. Since d(ay, _;,uc,) = d(az,,Ue,), the ver-
tices ay,_, and az, have the same subscript in the original edge-balanced
caterpillar notation. Also, since a, is in Column 3 of Table 1 in a cell
above the cell for ay,_,, this means that either both o, and o, _, are
leg vertices or a,_, is a leg vertex and o, is on the spine of G. Since
Qy,_, is a leg vertex, o, , =1 and thus d(yp—_2,0y, ,) > —Q,}l- + 1.
Since d(yn-2, 0y, _,) = d(zk, 0z, ), it follows that d(zx, s, ) > Qgi +1>
%’i + ta,, - Therefore, by the contrapositive of Proposition 9, the associ-
ated radio labeling f for the ordering z1,...,z, requires jumps, which is a
contradiction to the assumption.

2. Yn_2 is in Column 4 of Table 1.

To use similar arguments as in the previous cases, we notice that y,—2 =
Qy, -

We now consider the following two cases.

a) Suppose oy, _, is on the spine of G, yn_7 is a leg vertex, and
d(Yn—2,0y,_,) = ZEL + 1.

To use similar arguments as those found in Case I, we want to find an-
other pair of vertices y;, o, with y; in Column 1 or 3 such that d(y;, o) >
Qzﬂ + ta,,. Note that in this particular case, this strict inequality is not
satisfied for i =n — 3.

Claim: d(yn—-7,0y,_,) > 25 +ta, ..

Proof of Claim: Notice that y,_7 is a vertex entered in the cell directly
above y,,_3 in Table 1. Also, yn_s is the vertex in the cell directly above
Yn—2 in Table 1. By Lemma 2, y,,_g = ay, _,.

Recall that Algorithm 1 enters vertices into Column 3 of Table 1 so that
the subscripts of the vertices are non-increasing and leg vertices are inserted
after spine vertices with the same subscript. Since yn_3 is on the spine of
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G and the last entry in Column 3, it follows that the subscript for y,_~ is
exactly one more than the subscript of y,_3. This means d(u.,,yn-7) =
d(ucwyn—3) +1

Also, Algorithm 1 enters vertices into Column 4 of Table 1 so that the
subscripts of the vertices are non-increasing and leg vertices are inserted
before spine vertices with the same subscript. Since y,_» is a leg vertex
and is the last entry in Column 4, either

e yn_g is a leg vertex with the same subscript as y,_, which means
that d(yn-s, te,) = d(Yn—2, Uc, ), OF

¢ y,—_s is on the spine of G where its subscript is exactly one more than
the subscript of y,—2 which means that d(yn—s,uc,) = d(yn—2,uc, ) —
1.

Then we get the following bounds for d(yn—s, yn—7).
If y._g is a leg vertex, ¢ =1 and

avn—'f
d(yn—Bv ucu) + d(ucu ’ ucb) + d(ucb ) '!/n—7)
d(Yn-2,Ue,) + d(Uc,, Ue,) + d(Uc,,Yn-3) + 1
d(Yn-2,Yn-3) +1

il 4o

D41

> 3 +tita,, .-

d(yn-8a yn-7)

il

If yn—s is on the spine of G, tn, _, =0 and

d(yn—8, Ue,) + d(Uc, , Ue, ) + d(Uc,,, Yn-7)
d(yn—m uc“) -1+ d(uc,,y 'U'cb) + d(ucw Yn-3) +1
d(yn-—2a yn—3)

o

D

_éﬂ + to‘!’n-? "

d(yn—B 3 yn-7)

nu

\%

Therefore, d(yn—7,0y,_,) > %"—1 + ta,,_, and the claim has been
proven.

Let z,,, be the same vertex as y,,—7. By the assumption that f does not
require jumps and Proposition 9, d(z,,0r,, ) < -Dzi +ta,,, -

If yn_g is aleg vertex, d(zm, o, ) < %ﬂ+1 < -D2¢1+2 = d(Yn—-71Yan_,)-
The proof now follows the proof of Case I: Subcase A:2 where n — 7 = i
and m = j.

If yn—s is on the spine of G, d(z;m,0z,.) < Qéﬂ +1 = d(yn-7,Ya, _+)-
When this is a strict inequality, the proof now follows the proof of Case I:
Subcase A:2 with n —7 = ¢ and m = j. If this is an equality, the proof now
follows the proof of Case I: Subcase B withn — 7 =17 and m =j.

b) Suppose it is not the case that all of the following conditions
are true:
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® oy, _, is on the spine of G
® y,_o is a leg vertex, and
o d(Yn-2,0, ;) = I_J'tl' +1.

In this case, d{yn—3,0y,_;) > 241 ta,, ,- Let zm be the same
vertex as yn,—3. By assumption, f does not requlre jumps and therefore
d(zm, 0, ) < -—‘-"— +to, . We can now use an analogous argument to that
of Case I: Subcase Alif d(Tm,0z,,) < d(yn-3,0y,_,) by considering the
original y,_3 as y; in a triple of vertices. If d(zm,az,,) = d(Yn-3,y,._5);
the proof is analogous to the proof of Case I: Subcase B. From these argu-
ments, we conclude that f would also require jumps, which is a contradic-
tion.

Subcase B: d(z;,az;) = d(yn-2,y,_,)-

Note that the only way this can happen is when d(z;,a;;) = il =
d(yn—2,Qy, _,) Where oy, _, = yYn_3 is on the spine of G and o, 1s a leg
vertex.

1. yn_2 is in Column 1 of Table 1.
@) Yn-3 is in Column 2 of Table 1.

The proof of this case is the same as that of Case I: Subcase B with
i=n-—2.

b) yn—3 is in Column 3 of Table 1.

Let & be the set of all vertices entered into cells in Column 2 of Table
1 by Algorithm 1. Let 2 be the set of all vertices entered into cells ahove
the cell for y,_2 in Column 1 of Table 1. Note that |8} = 2|#/| — 1.

Claim: a;; is in &.

Proof of Claim: Algorithm 1 inserts leg vertices into Column 3 after spine
vertices with the same subscript. Since y,_3 is on the spine of G and is
the last vertex entered in Column 3 of Table 1, it follows that since ., is
a leg vertex with the same subscript as yn—3, it is in Column 2 of Table 1.
Therefore, o, is in & and the claim has been proven.

By the same argument as in the proof of Case II: Subcase A:1h, we
conclude that there exists a vertex zx € & such that a,, ¢ &. The same
argument holds when at least one of the inequalities of (6) is strict to show
that f require jumps.

Claim: In this case, it is not possible for both inequalities of (6) to be

equal.
Proof of Claim: Suppose by contradiction that both inequalities of (6) are
equalities. Algorithm 1 inserts leg vertices into Column 3 of Table 1 after
spine vertices with the same subscript. The last vertex entered into Column
3 is yn_3 which is on the spine of G. Since y,_3 and a;, have the same
subscript in the edge-balanced caterpillar notation, a,, is in & which is a
contradiction and thus the claim has been proven.
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2. yn-2 is in Column 4 of Table 1.

From Lemma 2, it follows that y,_3 is in Column 3. If y,_, is a leg
vertex, the proof is the same as the proof of Case II: Subcase A:2b. If y,_»
is on the spine of G, then d(yn—3,0y,_;) > %"—l +ta, _,. Now we reach a
contradiction like in the proof of Case II: Subcase A: 2a.

In all of the above cases, we have shown that when G is not a jumpless
caterpillar such that condition (ii) above is satisfied, the labeling associated
with an arbitrary distance maximizing ordering requires jumps which is a
contradiction to the assumption. Therefore, from Propositions 1 and 2 and
the definition of a labeling requiring jumps, we have that

n-1
m(G) > (n—1)(D+1) + 1 — max (Z d(zi,.—c,-ﬂ)) +1.

i=1

where the maximum is taken over all possible orderings of the vertices of

G.
a

Example 1. To help visualize the idea of some of the arguments found in
the proof of Theorem 2, we consider the example graph found in Figure 5.

tzl tzz C tlol llzl

G | LS S

° ° ° °
by v u u u v, u, v, U Uy, u, u,

Figure 5: An edge-balanced caterpillar.

The graph G in this figure is edge-balanced. However, it can be checked
that both G and H representations of this graph are not jumpless.

Table 4 shows the table given by Algorithm 1 for this graph and Figure
6 gives the graph with the ordering y1,...,yn of the vertices given by this
algorithm.
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Group 1 Group 2
Column 1 Column 2 Column 3 Column 4
(751 2 uz 1 U112 15 Us 16
u2 6 1%2 3
11 g us [ v 5 4
l% 12 Uio 9
s Ty B = —7 ] “ 10

Table 4: Table given by Algorithm 1 for the graph G of Figure 5.

Y Y Yu Ys

A L’ e, ¢, L,
G: *—e v. L r\l’c ® I——-O—I—c
u u, u u, u Yy, v, U Yy Y, u,; u,
Y2 Ys Yo Yo Y5 Yie Vi Y Y Yo Yo Yis

Figure 6: An edge-balanced caterpillar with the ordering given by Algo-
rithm 1.

Notice that D = 11 and y;3 = ug is on the spine of G. Thus, for the pair
of vertices y12 and ;3 in horizontally adjacent cells of Group 1 of Table 4,
t =0 and d(yi2,%13) =7 > 23'-1- + t. This shows that G is not jumpless

such that it falls into Case I of Theorem 2.

Consider the ordering z,,...,%, shown in Figure 7.
X X X1 X
Ys Yi: Yu Y;
1 2 1 1
voog N Lo L
G: —e .\/.o \Lc . I
g9 v u u u v u, u Yy, U, u,; u,
y: y6 yl-‘ le yS Y'6 yl Y7 y!} y9 Y‘ YI‘
X3 X X, X3 Xis X X Xy Xy Xg Xg X,

Figure 7: An edge-balanced caterpillar with ordering y;, ..

Algorithm 1 and another ordering z1,...,Zs.

., Yn s given by

It can be checked that zi,...,Z. is a distance maximizing ordering.
Notice that z;; is the same vertex as y12. Also, 212 = a,,, and d(z11,712) <
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d(y12,v13)- Thus this graph gives an example of Case I Subcase A of the
proof of Theorem 2.

From looking at Table 4, we see that & = {u7,us} and B = {u;,us, 1}
Notice that one example of the z; vertex described in the proof is zs. This
is because zs is in B, a,, is in & and d(zs,0,) =9 > 2.}1 +ta.,-

5 Bounds for the Radio Number of Other
Edge-Balanced Caterpillars

In Section 4, we determined a specific labeling that gives the radio num-
ber of edge-balanced caterpillars that are jumpless caterpillars. However,
not all edge-balanced caterpillars are jumpless caterpillars. In Section 5.1,
we establish some definitions and propositions to help improve the lower
bound of the radio number of some other edge-balanced caterpillars. Then,
in Section 5.2, we determine an improved lower bound for the radio num-
ber of the caterpillars discussed in Section 5.1. Finally, Section 5.3 gives
conclusions from the results of these sections.

5.1 Preliminaries

To help improve the lower bounds of some edge-balanced caterpillars, we
have the following definition:

Definition. In an edge-balanced caterpillar G with n vertices and diameter
D, a vertex v, is a problem vertez if one of the following conditions hold:

(i) v« € 4 and d(v, ue,) > 2£2 or
(ii) v. € B and d(v,,uc,) > 2F2.

As some of the following results will rely on characteristics of caterpillars
based on where legs are located on the caterpillar, we use the following
notation for the rest of the paper.

Notation. Let G be an edge-balanced caterpillar. Let a be the number of
legs in compcnent A and let b be the number of legs in component B.

Remark 5. For an edge-balanced caterpillar, |V (A)| = |V(B)|. Without
loss of generality, let a > b.

The next results are useful in categorizing edge-balanced caterpillar
graphs based on the the relationship of the values for a and b. This helps
to determine which types of edge-balanced caterpillars have an improved
lower bound due to a problem vertex.
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Proposition 10. Let G be an edge-balanced caterpillar. If a > b, then
there ezists at least one problem vertez.

Proof. Since G is an edge-balanced caterpillar, G has one center edge and
N(e.) is odd. Then there are Me—;ﬁ =: w vertices in A and w vertices in
B. This means there are w — a vertices on the spine of G in A and w — b
vertices on the spine of G in B. Thus the number of vertices on the spine
of G is w —a + w — b and therefore D = 2w — a — b — 1. Note that there
exists a vertex u € B such that d(uc,,u) = w - b.
Consider
D+2  2w-a-b+1
2 2
2w—-b-b+1
2
2w—-2b+1
2

1

Case I: D is odd.

Since D is odd, D = 2k + 1 for some integer k. Then (7) becomes
k+1+3 <w-b+43. Since k+1 < w—b and both of those quantities are
integers, it follows that k+1+-21- < w—b. Therefore, -D-gﬁ < w—b=d(uc,,u)
and u is a problem vertex.

Case II: D is even.

Since D is even, D = 2k for some integer k. Then (7) becomes k£ + 1 <

w—b+-21-. Since k+1 and w—b are both integers, it follows that k+1 < w—b.

This means 242 < w — b = d(u,,v) and thus u is a problem vertex. O

Proposition 11. Let G be an edge-balanced caterpillar with n vertices. If
D is even, then a # b.

Proof. Recall that G has one center edge with N(e.) odd and so by Propo-

sition 6 n is even.

Suppose by contradiction that @ = b. By Proposition 6, |V(A)| =
|V(B)]. Let w := ﬂe;—)"'—l = |V(A)| = |V(B)|. There are w — a vertices on
the spine in A and w—b vertices on the spine in B. So, there are w—a+w—b
vertices on the spine of G. Thus, D =w—-a4+w-b—-1=2w—-2a—-1
which is odd, a contradiction to the assumption. Therefore, when D is
even, a # b. a

5.2 Improved Bounds

We now use results from Section 5.1 to improve the lower hound for the
radio number of certain edge-balanced caterpillars.
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Proposition 12. Let G be an edge-balanced caterpillar with a problem
vertez v.. Then G is not a jumpless caterpillar.

Proof. Without loss of generality, assume v, € B. Note that u., cannot be
a problem vertex so ., 7 V..

Use Algorithm 1 to place the vertices of G into Table 1. From Proposi-
tion 8, the corresponding ordering 1, ..., yn is distance maximizing. Since
this is a distance maximizing ordering, by Propositions 5 and 7, e, is the
only edge with ny(e) odd. By Corollary 1, {uc,,uc, } = {¥1,¥n}. Since u,
is not a problem vertex, v, is not the first or last labeled vertex. Thus,
v, = y; for some triple of vertices y;—1, ¥i, Yi+1.

By definition of being a problem vertex, d(v.,uc,) > 22:L2_ Also, by the
structure of an edge-balanced caterpillar, d(u.,,v.) < d(u.,,us). There-
fore,

d(ue, ,us) > due,,v.) D; 2 %
= d(uc,, us) > D; 1. (8)

The ordering of vertices of G given by Algorithm 1 has y,—; = u,
and yn = uc,. Also, y,—1 is entered into Column 3 and y, is entered into
Column 4 of Table 1 such that y,,—; and y, are in horizontally adjacent cells.
Thus, by Lemma 2, y, = ay,_,. Since u;, = &y, _, is on the spine of G,

ta,, , =0. By (8), d(yn-1,04,_,) > 2.}1- = 9—3‘—‘+ta,,"_,. This contradicts
condition (1) of the definition of a jumpless caterpillar. Therefore, G is not
a jumpless caterpillar. O

Corollary 4. Let G be an edge-balanced caterpillar with n vertices. Suppose
G is such that a #b. Then

™m(G)2(n-1)(D+1)+1- ma,x(Z:;:l1 d(ziyTig)) +1

where the mazimum is taken over all possible orderings of the vertices of

G.

Proof. As in Remark 5, we assume without loss of generality that a > b.
From Proposition 10, G has a problem vertex. So, by Proposition 12, G
is not a jumpless caterpillar. Therefore, the bound follows from Theorem
2. O

5.3 Conclusions about Edge-Balanced Caterpillars

Corollary 4 establishes a way to determine when the bound for the radio
number given by Proposition 2 is increased for an edge-balanced caterpillar
G based on the structure of G.
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The results of Corollary 4 and Proposition 11 indicate that edge-balanced
caterpillars with the potential to have radio labelings that require no jumps
are such that D is odd and a = b.

When there is exactly one leg adjacent to each vertex on the spine expect
for u; and wug, this is a thorn graph. The radio number of this particular
thorn graph has been determined in [10].

In other cases when D is odd and a = b, one can enter the vertices of G
into Table 1 using Algorithm 1 to determine if G is a jumpless caterpillar.
If it is, then the span of the labeling associated with the ordering given by
Algorithm 1 is the radio number of G.

Appendix

Theorem 2 in Section 4 improved the lower bound for the radio number of
edge-balanced caterpillars that are not jumpless caterpillars. In some cases,
the proof assumed n > 8. Recall that for an edge-balanced caterpillar, n is
even. Thus, we only need to check for edge-balanced caterpillar graphs for
n = 2,4, and 6. The following graphs in Figure 8 show all the edge-balanced
caterpillars such that n < 8. Most of these are jumpless caterpillars and
thus would not be considered in Theorem 2. In all the cases shown below,
whether the caterpillar is jumpless or not, the radio number of these graphs
is known either from previous results or from work in this paper.

The graph (a) in Figure 8 is the path P». This is a complete graph
whose radio number is known: rn(FP;) = 2. The graphs (b) and (c) are
paths Py and Ps. The radio numbers for these paths were determined in {9]:
rn(Pys) = 6 and rn(Ps) = 14. The graphs (d) and (e) are spire graphs, S 2
and Sg 4. The radio number of S 2 was determined in {1]: 7n(Ss2) = 12.
The spire Sg,4 can be redrawn as Sg 2. Thus, 77(Ss,4) = 12. Finally, it can
be checked that the graph (f) of Figure 8 is a jumpless caterpillar. Thus,
using Algorithm 1 from Section 4, the radio number of graph (f) is 8.
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Figure 8: Edge-Balanced Caterpillars with n < 8.
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