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Abstract

Let G be a finite simple group, M be a maximal subgroup of
G and Cy, = nX be the conjugacy class of G containing g. In this
paper we discuss a new method for constructing 1-(v,k, A} designs
D = (P,B), where P = nX and B = {(M NnX)|ly € G}. The
parameters v, k, A and further properties of D are determined. We
also study codes associated with these designs.

1 Introduction

Symmetric 1-designs and binary codes obtained from the primitive per-
mutation representations (from the action on the maximal subgroups) of
the sporadic simple groups have been examined in [11], [14] and [15]. In
this paper we introduce a new method from which a large number of non-
symmetric 1-designs could be constructed. Let G be a finite simple group,
M be a maximal subgroup of G and C, = [g] = nX be the conjugacy
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class of G containing g. We construct 1-(v, k, A) designs D = (P, B), where
P =nX and B = {(MNnX)¥ly € G}. The parameters v, k, A and further
properties of D are determined. We also study codes associated with these
designs. In Sections 5, 6, and 7 we apply our method to the groups A-,
PSLy(q), and the Janko group Jj, respectively.

2 Terminology and notation

Our notation will be standard, and it is as in [2] for designs and ATLAS
(5] for groups. For the structure of groups and their maximal subgroups we
follow the ATILAS notation. Computations have been done with Magma (3,
4].

An incidence structure D = (P, B,T), with point set P, block set B and
incidence 7 is a t-(v, k, A) design, if |P| = v, every block B € B is incident
with precisely & points, and every t distinct points are together incident with
precisely A blocks. The complement of D is the structure D = (P, B, 1),
where Z = P x B — I. The dual structure of D is Dt = (B,P,T"), where
(B,P) € I" if and only if (P, B) € Z. Thus the transpose of an incidence
matrix for D is an incidence matrix for D*. We will say that the design is
symmetric if it has the same number of points and blocks, and self dual
if it is isomorphic to its dual. A t-(v, k, A) design is called self-orthogonal
if the block intersection numbers have the same parity as the block size.

The code CFr of the design D over the finite field F is the space spanned
by the incidence vectors of the blocks over F. We take F to be a prime
field F,,, in which case we write also C, for Cr, and refer to the dimension
of C, as the p-rank of D. If the point set of D is denoted by P and
the block set by B, and if Q is any subset of P, then we will denote the
incidence vector of Q by v©. Thus Cr = (v |B € B), and is a subspace
of FP, the full vector space of functions from P to F. For any code C,
the dual code C* is the orthogonal subspace under the standard inner
product. The hull of a design’s code over some field is the intersection
C N CL. If a linear code over the finite field F of order q is of length n,
dimension k, and minimum weight d, then we write [n, k,d], to represent
this information. If c is a codeword then the support of ¢, Supp(c), is the
set of non-zero coordinate positions of ¢ and the weight of ¢, written wt(c)
to be the size of the support, |Supp(c)|. A constant word in the code is
a codeword all of whose coordinate entries are either 0 or 1. The all-one
vector will be denoted by 3, and is the constant vector of weight the length
of the code. Two linear codes of the same length and over the same field
are equivalent if each can be obtained from the other by permuting the
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coordinate positions and multiplying each coordinate position by a non-
zero field element. They are isomorphic if they can be obtained from one
another by permuting the coordinate positions. An automorphism of a
code is any permutation of the coordinate positions that maps codewords
to codewords. An automorphism thus preserves each weight class of C. A
binary code with all weights divisible by 4 is said to be a doubly-even
binary code.

If G is a group and M is a G-module, the socle of M, written Soc(M),
is the largest semi-simple G-submodule of M. It is the direct sum of all
the irreducible G-submodules of M. In this paper we determine Soc(V') for
each of the relevant full-space G-modules V' = F™.

3 Group actions and permutation characters

Suppose that G is a finite group acting on a finite set Q. For a € Q, the
stabilizer of a in G is given by

Ga = {g€Gla? =a}.
Then G, < G and [G : G,] = |A|, where A is the orbit containing a.

The action of G on 2 gives a permutation representation 7 with cor-
responding permutation character x, denoted by x(G|f?). Then from ele-
mentary representation theory we deduce that

Lemma 1 (i) The action of G on Q2 is isomorphic to the action of G
on G/G,, that is on the set of all left cosets of G, in G. Hence
x(GI®) = x(G|Ga).

(1) x(GIR) = (Ig,)C, the trivial character of G4 induced to G.

(#it) For all g € G, we have x(G|)(g) = number of points in Q fized by
g.

Proof: For example see Isaacs [10] or Ali [1]. B

In fact for any subgroup H < G we have

X(GIH)(g) = Z et

where hy, ha, ..., hx are representatives of the conjugacy classes of H that
fuse to [g] = Cy in G.
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Lemma 2 Let H be a subgroup of G and let §) be the set of all conjugates
of H in G. Then we have:

(i) Gu = Ng(H) and x(G|Q?) = x(G|Ne(H).
(it) For any g in G, the number of conjugates of H in G containing g is

given by

HOINE) = 3 e = Wt : 1 Z|’§G((f))l

where the x;’s and h;’s are representatives of the conjugacy classes of
Ng(H) and H that fuse to [g] = Cy in G, respectively.

Proof:

(i)
Gu={ze€G|H* =H}={z € G|z € Ng(H)} = Ng(H).
Now the results follows from Lemma 1 (i).

(ii) The proof follows from (i) and Corollary 3.1.3 of Ganief [8] which uses
a result of Finkelstein [6]. B

Remark 1 Note that
X(GIQ)(g) = |{H : (H*)? = H?}| = |{H®|H*>"'9* = H} =
[{H®|x™ gz € No(H)}| = |{H"|g € zNg(H)z™'}| = [{H"|g € Ng(H)}|.

Corollary 3 If G is a finite simple group and M is a mazimal subgroup
of G, then the number A of conjugates of M in G containing g is given by

|Ca(9)|
x(GIM)(g Zw @l

where xy,23, ..., Xk are representatives of the conjugacy classes of M that
fuse to the class [g] = C, in G.

Proof: It follows from Lemma 2 and the fact that Ng(M) = M. It is also
a direct of application of Remark 1, since

x(GI)(g) = {M7|g € (Nc(M))*} = {M®|g e M*}|. B



4 Construction of 1-designs

In this section we assume G is a finite simple group, M a maximal subgroup
of G, nX a conjugacy class of elements of order n in G and g € nX. Thus

C, = [g) =nX and [nX| = |G : Cc(9)|.

As in Section 3 let x3s = x(G|M) be the permutation character afforded
by the action of G on £, the set of all conjugates of M in G. Clearly if g is
not conjugate to any element in M, then xa(g) = 0.

The construction of our 1-designs is based on the following theorem.

Theorem 4 Let G be a finite simple group, M a mazimal subgroup of G
and nX a conjugacy class of elements of order n in G such that M N
nX # 9. Let B = {{M NnX)¥|ly € G} and P = nX. Then we have a
1-(InX|,|M N nX|,xm(g)) design D, where g € nX. The group G acts
as an automorphism group on D, primitive on blocks and transitive (not
necessarily primitive) on points of D.

Proof: First note that
B={MYnnX|y€ G}.

We claim that MY NnX = M NnX if and only ify € M or nX = {1g}.
Clearly if y € M or nX = {lg}, then M¥NnX = M NnX. Conversely
suppose there exists y ¢ M such that MYNnX = MNnX. Then maximality
of M in G implies that G =< M,y > and hence M* NnX = M NnX for
all 2 € G. We can deduce that nX € M and hence < nX >< M. Since
< nX > is a normal subgroup of G and G is simple, we must have <
nX >= {1g}. Note that maximality of M and the fact that < nX >< M,
excludes the case < nX >=G.

From the above we deduce that
b=|B|=1Q|=[G: M].

If B € B, then

k k
1
k=|Bl=|MnnX| =) |zlml = IMI;m*

=1
where 1,22, ..., Tx are the representatives of the conjugacy classes of M
that fuse to g.

Let v = |P| = |[nX| = [G : Cg(g)]. Form the design D = (P,B,I),
with point set P, block set B and incidence Z given by xIB if and only
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if x € B. Since the number of blocks containing an element = in P is
A = xm(z) = xm(g), we have produced a 1-(v,k,)) design D, where
v=|nX|, k=|MNnX|and A = xn(g).

The action of G on blocks arises from the action of G on Q and hence
the maximality of M in G implies the primitivity. The action of G on nX,
that is on points, is equivalent to the action of G on the cosets of C(g). So
the action on points is primitive if and only if Cg(g) is 2 maximal subgroup
of G. I

Remark 2 Since in a 1-(v, k, \) design D we have kb = \v, we deduce that
xm(g) x [nX|
[G: M]

Also note that D, the complement of D, is a 1-(v,v — k,j\) design, where
A=) x rk

k=|MnnX|=

Remark 3 If A = 1, then D is a 1-(|nX|, k,1) design. Since nX is the
disjoint union of b blocks each of size k, we have Aut(D) = Si1S, = (Sk)®:
Sp. Clearly In this case for all p, we have C = Cyp(D) is [|nX|,b, k|, with
Aut(C) = Aut(D).

Remark 4 The designs D constructed by using Theorem 4 are not sym-
metric in general. In fact D is symmetric if and only if b = |B| = v =
Pl & [G: M] = |nX| & [G: M] =[G : Calg)] & IM| = [Calg)l.

5 Some 1-designs and codes from A;

Az has five conjugacy classes of maximal subgroups, which are listed in
Table 1. It has also nine conjugacy classes of elements, some of which are
listed in Table 2.

We apply the Theorem 4 to the above maximal subgroups and a few
conjugacy classes of elements of A7 to construct several non-symmetric 1-
designs. The corresponding binary codes are also constructed.

5.1 G=A7, M=A5, nX =34
5.1.1 1-(70,40,4) design

Let G = A;, M = Ag and nX = 3A. Then
b=[G:M]=T7,v=|3A] =70,k =|MN3A| = 40.



Table 1: Maximal subgroups of A7

No. Structure | Index { Order
Max|1 Ag 7 360
Max[2] | PSLo(7) 15 168
Max[3] | PSL2(7) 15 168
Max[4 S5 21 120
Max([5] | (A4 x3):2 | 35 72

Table 2: Some of the conjugacy classes of A7

nX | [nX] Cc(g) Maximal Centralizer |
2A | 105 Dg:3 No
3A | 70 | Aix3= (22 x3):3 No
3B | 280 3x3 No

Also using the character table of A7, we have xpr = x1 + x2 = la + 6a
and hence xp(g) = 1+ 3 = 4 = A, where g € 3A. We produce a non-
symmetric 1-(70, 40, 4) design D. A7 acts primitively on the 7 blocks. Since
Ca,(9) = A4 x 3 is not maximal in A7 (it sits in the maximal subgroup
(A4 x 3):2 with index 2), A7 acts imprimitvely on the 70 points. The
complement of D, D, is a 1-(70, 30, 3) design.

Computations with Magma (3, 4] shows that the full automorphism

group of D is
Aut(D) = 2%%:5; = 25 S,

with [Aut(D)| = 239.32.5.7.

5.1.2 Codes associated with the 1-(70,40,4) design

We used Magma to show that the binary code C of this design is a [70, 6, 32]2
code. The code C is self-orthogonal with the weight distribution

<0,1>,<32,35>,<40,28 > .

Our group Az acts irreducibly on C.
If W; denotes the set of all words in C of weight ¢, then

C =< W3y >=< Wy >,
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Table 3: Stabilizer of a word w; in Aut(D)

l Wi Aut(D),,
32 35  2%5:(A4 x 3):2
401 7 235:5
40(2) 21 235:(55:2)

Table 4: Stabilizer of a word w; in Aut(C)

l Wi Aut(D),,
32 35  955:(8; x 54)2

40 28 235:(Sg x 2)

so C is generated by its minimum-weight codewords. The full automor-
phism group of C is Aut(C) 2 23%:53 with |Aut(C)| = 242.32.5.7, and we
note that Aut(C) > Aut(D) and that Aut(D) is not a normal subgroup of
Aut(C).

Furthermore C1 is a [70,64,2]; code and its weight distribution has
been computed. Since the blocks of D are of even size 40, we have that 7
meets evenly every vector of C and hence 3 € C’-L._If W; denotes the set of
all codewords in C of weight i, then |W2| = 35,, |Wa| = 840, |W,| = 14035
and

Ct =< W; >,dim(< W, >= 35,dim(< Wy >= 63.

Let e;; denote the 2-cycle (4,7) in Sy, where {%,5} = Supp(ws) is the
support of a codeword wp € Wy. Then e;;(wWs) = W, and < e;;|{s, 5} =
Supp(wz), we € Wa >= 235,

Using Magma we can show that V = FJ° is decomposable into indecom-
posable G-modules of dimension 40 and 30. We also have dim(Soc(V)) = 21
and

Soc(V) =< 3 > &C & C1y4,

where C is our 6-dimensional code and C14 is an irreducible code of dimen-
sion 14,

The structures of the stabilizers of Aut(D),, and Aut(C),,, where | €
{32,40}, are listed in Tables 3 and 4.



5.2 G=A7, M =A nX=2A
5.2.1 1-(105,45,3) design
Let G = A;, M = Ag and nX = 2A. Then
b=[G: M| ="1v=|24| =105k = [M N 24| = 45.

Also using the character table of A7, we have xpr = x1 + X2 = la + 6a
and hence xpm(g) = 1 +2 = 3 = A, where g € 2A. We produce a non-
symmetric 1-(105, 45, 3) design D. A7 acts primitively on the seven blocks.
Since C4,(g) = Dg : 3 is not maximal in A7 (it sits in the maximal subgroup
(A4 x 3):2 with index 3), A7 acts imprimitively on the 105 points. The
complement of D, D, is a 1-(105,60, 4) design.

The full automorphism group of D is
Aut(D) = §3%5:5; = S3°1 Sy,

with |Aut(D)| = 292.337.5.7.

5.2.2 Codes associated with the 1-(105, 45, 3) design

Magma shows that the binary code C of this design is a [105, 7,45]2 code.
The weight distribution of C is

<0,1>,< 45,28 >, < 48,35 >, < 57,35 >, < 60,28 >, < 105,1 > .

We also have that Hull(C) is a [105, 6, 48] code and has the following weight
distribution:
<0,1>,<48,35>,<60,28 > .

Note that C = Hull(C)® < 3 >, and that our group A; acts irreducibly
on Hull(C). Also note that this result together with the result obtained
in Section 5.2.1 imply that the 6-dimensional irreducible representation of
A7 over GF(2) could be represented by two non-isomorphic codes, namely
(105, 6, 48], and [70, 6, 32]; codes.

We also have
C =< Wy >=< W57 >,

so C is generated by its minimum-weight codewords. The full automor-
phism group of C is Aut(C) = Aut(D) and its structure was given above
in Section 5.2.1.
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Using Magma we can easily show that V = F}% is decomposable into
indecomposable G-modules of dimension 1, 14, 20 and 70 (the first three
are irreducible). We also have dim(Soc(V) = 55 and that

Soc(V) =< 3 > ®C14 ® C14 ® Coo ® Hull(C),

where C = Hull(C)® < j > is our 7-dimensional code and C;4 and Cyq are
irreducible codes of dimension 14 and 20 respectively.

5.3 G =A;, M =55, nX =2A: 1-(105,25,5) design
Let G= A7, M = S5 and nX = 2A. Then
b=[G: M]=21,v=|24] =105,k = |[M N2A| = 25.

Note that both conjugacy classes of involutions of S5 fuse to 2A. Also using
the character table of A, we have xpr = x1 + x2 + x5 = la + 6a + 14a
and hence xp(g) =1+ 2+ 2 =5 = A, where g € 24. We produce a non-
symmetric 1-(105,25,5) design D. A7 acts primitively on the 21 blocks.
Since Cy,(g) = Dsg:3 is not maximal in A7 (it sits in the maximal subgroup
(A4 x 3):2 with index 3), A7 acts imprimitively on the 105 points. The
complement of D, D, is a 1-(105,80, 16) design.

5.4 G =A7;, M = PSLy(7), nX =2A: 1-(105,21,3) design
Let G = A7, M = PSLy(7) and nX = 2A. Then

b=[G: M) =15v=|24] =105,k = |M N 24| = 2.

Also using the character table of A7, we have xp = x1 + x6 = la + 14b
and hence xp(9) = 1+ 2 = 3 = A, where g € 2A. We produce a non-
symmetric 1-(105,21, 3) design D. A7 acts primitively on the 15 blocks.
Since C4,(g) = Dg : 3 is not maximal in A (it sits in the maximal subgroup
(A4 x 3):2 with index 3), A7 acts imprimitively on the 105 points. The
complement of D, D, is a 1-(105,84,12) design.

5.5 G =A;, M = PSLy(7), nX = 3B: 1-(280, 56,3) design
Let G = A7, M = PSLy(7) and nX =3B. Then
b=[G: M]=15uv=|3B| = 280,k = |M N 24| = 56.
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Also using the character table of A7, we have xpr = x1 + x6 = la + 14b
and hence xa(9) = 1+ 2 = 3 = A, where g € 3B. We produce a non-
symmetric 1-(280,56,3) design D. A; acts primitively on the 15 blocks.
Since Ca,(g) = 3 x 3 € Sylz(A7) is not maximal in A (it sits in the
maximal subgroups Ag and (A4 x 3):2 with indices 40 and 8 respectively),
A7 acts imprimitively on the 280 points. The complement of D, D, is a
1-(280, 224, 12) design.

6 Design and codes from PSLy(q)

The main aim of this section to develop a general approach to G = PSLs(g),
where M is the maximal subgroup that is the stabilizer of a point in the
natural action of degree g + 1 on the set . This is fully discussed in
Section 6.1. But we start this section by applying the results discussed in
previous sections, particularly Theorem 4, to all maximal subgroups and
conjugacy classes of elements of P.SL3(11) to construct 1- designs and their
corresponding binary codes. These are itemized below after Tables 5 and 6.
The group PSL;(11) has order 660 = 22 x 3 x 5 x 11, it has four conjugacy
classes of maximal subgroups, which are listed in the Table 5. It has also
eight conjugacy classes of elements which we list in Table 6.

Table 5: Maximal subgroups of PSL,(11)

No. Order | Index | Structure
Max|[1 55 12 F55 =11:5
Max[2 60 11 As
Max|[3 60 11 As
Max[4 12 55 Do

Table 6: Conjugacy classes of PSLy(11)

[ nX [ inX]] Cc(g) | Maximal Centralizer |
2A 55 Djo Yes
34 | 110 Zg No
5A | 132 Ls No
58 132 Zs No
6A | 110 Zg No
11A | 60 Zy, No
11B 60 Zl 1 No
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5A4: Dis 1-(132,22,2),b = 12; C is [132,11,22]5, C* is [132,121,2]y;
Aut(D) = Aut(C) = 2% : Sy,

o
=

5B: As for 5A.
114: Dis 1-(60,5,1),b = 12; C is (60,12, 5], Ct is [60, 48, 2]o;
Aut(D) = Aut(C) = (Ss)*?: S1a.
11B: As for 11A.
Max({2}

24 : Dis 1-(55,15,3),b = 11; C is [55,11,15],, C* is [55,44, 4]»;
Aut(D) = PSLy(11), Aut(C) = PSLy(11) : 2.

34 : Dis1-(110,20,2),b = 11; Cis [110, 10,20], C is [110, 100, 2]2;
Aut(D) = Aut(C) = 2% : §y,.

54 : Dis1-(132,12,1),b = 11; Cis [132,11,12), C is [132, 121, 2)s;
Aut(D) = Aut(C) = (Slg)u ¢ S1.

5B : As for 5A.
Max[3]

As for Max(2].
Max[4]

2A : Dis 1-(55,7,7),b = 55; C is [55, 35,4]5, C* is 55,20, 10]s;
Aut(D) = Aut(C) = PSLy(11) : 2.

34 : Dis 1-(110,2,1),b = 55; C is [110,55,2], C* is [110, 55, 2]2;
Aut(D) = Aut(C) = 2% : S55.

6A : As for 3A.

6.1 G = PSLy(q) of degree ¢+ 1, M =G,

Let G = PSLy(q), and let M be the stabilizer of a point in the natural
action of degree ¢ + 1 on the set Q. Let M = G,. Then it is well known
that G acts sharply 2-transitive on Q and M = Fy : Fy = Fg : Zg—1, if ¢
is even, and M = F, : Z,_F, if ¢ is odd. Since G acts 2-transitively on
Q, we have x = 1 + 1) where x is the permutation character of the action
and 9 is an irreducible character of G of degree g. Also since the action is
sharply 2-transitive, only 1g fixes three distinct elements of 2. Hence for
all 1g # g € G we have A = x(g) € {0,1,2}.
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Proposition 5 For G = PSLj(q), let M be the stabilizer of a point in
the natural action of degree ¢ + 1 on the set Q. Let M = G,;. Suppose
g € nX C G is an element firing ezactly one point, and without loss of
generality, assume g € M. Then the replication number for the associated
design isr = A = 1. We also have

(i) If q is odd then |g¢| = 1(¢? - 1), IMNg®| = J(¢—1), and D is a
1-(3(¢® — 1), (g — 1),1) design with ¢ + 1 blocks and

Aut(D) = S:}(q—l) 1841 = (-5'§(q—1))(”'1 : Sq41-

For all p, C = Cp(D) is [1(g2 — 1),q + 1, (g — 1)],, with Aut(C) =
Aut(D).

(35) If q is even then |g€| = (¢% — 1), IMNg®| =(g—1), and D is a
1-((¢2 — 1), (g — 1),1) design with g + 1 blocks and

Aut(D) = S(g-1) 18q+1 = (S(g-1))"*" : Spi1.
For allp, C = Cp(D) is [(g%~1),9+1,q-1)]p, with Aut(C) = Aut(D).

Proof: Since x(g) = 1, we deduce that 1(g) = 0. We now use the character
table and conjugacy classes of PSL2(q) (for example see [9]):

(i) For g odd, there are two types of conjugacy classes with (g
0. In both cases we have [Cg(g)] = ¢ and hence [nX| = [g€
|PSLa(q)|/qg = (g°> —1)/2. Since b= [G: M] =¢+ 1 and

g X(@) x [nX| _1x(¢*—~1)/2
(G : M] g+1

)
I

= (q_ 1)/2a

the results follow from Remark 3.

(ii) For g even, PSLy(q) = SLa(g) and there is only one conjugacy class
1 0

with ¥(g) = 0. A class representative is the matrix g = 11
with [Cq(g)| = ¢ and hence [nX| = |¢°| = |PSL2(q)l/q = (¢* - 1).
Since b={G: M]=q+1 and

_ x{g) xnX| _1x(¢®—1)

k= = =g -
(G M] ar1 b

the results follow from Remark 3. B
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If we have A = 7 = 2, and if blocks meet in at most one point, then a
graph can be defined on b vertices, where b is the number of blocks, i.e. the
index of M in G, by stipulating that the vertices labelled by the blocks b;
and b; are adjacent if b; and b; meet. Then the incidence matrix for the
design is an incidence matrix for the graph.

In the case where we get a graph, the following result from [7, Lemma]
can be used.

Result 1 ([7]) Let T = (V,E) be a regular graph with |V| = N, |E| = e
and valency v. Let G be the 1-(e,v,2) incidence design from an incidence
matriz A for T'. Then Aut(I') = Aut(G).

Note: If the graph I' is also connected, then it is an easy induction to show
that rank,(A) > |V| — 1 for all p with obvious equality when p = 2. If in
addition (as happens for some classes of graphs, see 7, 13, 12]|) the minimum
weight is the valency and the words of this weight are the scalar multiples of
the rows of the incidence matrix, then we also have Aut(C,(G)) = Aut(G).

Proposition 6 For G = PSLy(q), let M be the stabilizer of a point in
the natural action of degree ¢ + 1 on the set Q. Let M = G,. Suppose
g € nX C G is an element fizing ezactly two points, and without loss of
generality, assume g € M = G and that g € Go. Then the replication
number for the associated design ist = X = 2. We also have

(?) If g is an involution, so that ¢ =1 (mod 4), the design D is a 1-
(39(q+1),q,2) design with g+1 blocks and Aut(D) = S,4,. Further-
more Ca(D) is [3q(q +1),4, al2, Co(D) is [Sa(q+1),q +1,qlp #f p is
an odd prime, and Aut(Cy(D)) = Aut(D) = Sg4, for all p.

(i1) If g is not an involution, the design D is a 1-(q(q + 1),2q,2) design
with q + 1 blocks and Aut(D) = 2399+1) ; S, | Furthermore Co(D)
is [qg(g+1),9,2q]2, Cp(D) is [qlg+1),q+1,2q), if p is an odd prime,
and Aut(Cy(D)) = Aut(D) = 2399+1) : §_, for ail p.

Proof: A block of the design constructed will be M N g&. Notice that
from elementary considerations or using group characters we have that the
only powers of g that are conjugate to g in G are g and g—!. Since M is
transitive on Q\ {1}, g™ and (g~!)M give 2q elements in M Ng® if o(g) # 2,
and ¢ if o(g) = 2. These are all the elements in M N g€ since M; is cyclic
so if hy,hy € M; and hy = g, hy = g5 for some 21,72 € G, then h is a
power of hg, so they can only be equal or inverses of one another.
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(i)

(ii)

In this case by the above k = |M N g®| = ¢ and hence

|nX|=kx[G’M] _gx(g+1)
x(9) 2

So D is a 1-(3¢(g + 1),4,2) design with ¢ + 1 blocks. An incidence
matrix of the design is an incidence matrix of a graph on g+ 1 points
labelled by the rows of the matrix, with the vertices corresponding to
rows r; and r; being adjacent if there is a conjugate of g that fixes
both ¢ and j, giving an edge [, j]. Since G is 2-transitive, the graph
we obtain is the complete graph Kg.1.

The automorphism group of the design is the same as that of the
graph (see [7]), which is S;4,. By [12], C2(D) = [%q(q +1),4,4q)2 and
Cp(D) = [3q(g+1),q+1,4], if p is an odd prime. Further, the words
of the minimum weight g are the scalar multiples of the rows of the
incidence matrix, so Aut(Cp(D)) = Aut(D) = Sg4, for all p.

If g is not an involution, then k = |M N g€| = 2¢ and hence

kx|[G:M] 2¢x(g+1)
O

So D is a 1-(g(g+ 1), 2¢, 2) design with ¢+ 1 blocks. In the same way
we define a graph from the rows of the incidence matrix, but in this
case we have the complete directed graph.

The automorphism group of the graph and of the design is 279(g+1)
Sg4+1- Similarly to the previous case, Co(D) is [g(q + 1),9,2g]2 and
Co(D) is [g(g+1),q+1,2q], if p is an odd prime. Further, the words
of the minimum weight 2q are the scalar multiples of the rows of the
incidence matrix, so Aut(Cp(D)) = Aut(D) = 239(e+1) ; G ., for all
p-

InX| = =q(g+1).

We end this subsection by giving few examples of designs and codes
constructed, using Propositions 5 and 6, from PSLy(q) for ¢ € {16,17,19},
where M is the stabilizer of a point in the natural action of degree ¢ + 1
and g € nX C G is an element fixing exactly one or two points.

Example 1 (PSL;(16))

1.

g is an involution having cycle type 1122, r = A =1: Disal-
(255,15,1) design with 17 blocks. Here C = Cp(D) is [255,17,15],
for all p, and Aut(C) = Aut(D) = S152 517 = (S15)'" : Si7.
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2. g is an element of order 3 having cycle type 123%, r = A = 2: D
is a 1-(272,32,2) design with 17 blocks. Co(D) is (272,16, 32]; and
Cp(D) is [272,17,32], for odd p. Also for all p we have Aut(Cp(D)) =
Aut(D) = 2136 . 517.

Example 2 (PSLy(17)) (Note that 17 =1 (mod 4).)

1. g is an element of order 17 having cycle type 1117}, r = X = 1.
D is a 1-(144,8,1) design with 18 blocks. For all p, C = Cp(D) is
(144,18, 8], with Aut(C) = Aut(D) = Sg 1 S15 = (Ss)!® : Ss.

2. g is an involution having cycle type 1228, r = A = 2: D is a 1-
(153,17,2) design with 18 blocks. Co(D) is [153,17,17]; and Cp(D)
is {153,18,17), for odd p. Also for all p we have Aut(Cy(D)) =
Aut(D) = Sys.

3. g is an element of order 4 having cycle type 1244, r = A = 2: D

is a 1-(306,34,2) design with 18 blocks. C(D) is [306,17,34]2 and

Cp(D) is 306, 18, 34],, for odd p. Also for all p we have Aut(C,(D)) =
Aut(D) = 2193 ; Gy,

4. g is an element of order 8 having cycle type 1282, r = A = 2: D

is a 1-(306,34,2) design with 18 blocks. C,(D) is [306,17,34], and

Cp(D) is [306, 18, 34], for odd p. Also for all p we have Aut(Cp(D)) =
Aut('D —2153 Slg

Example 3 (PSL3(19))

1. g is an element of order 19 having cycle type 119!, r = A = 1:
D is o 1-(180,9,1) design with 20 blocks. For all p, C C (D) is
(180,20,9],, with Aut(C) = Aut(D) = Sg Sz = (S9)%° : Sy.

2. g is an element of order 3 having cycle type 123%, r = XA = 2: D
zs a 1-(380,38,2) design with 20 blocks. Cy(D) is (360,19, 38), and
Cyp(D) is [360, 20, 38], for odd p. Also for all p we have Aut(Cp(D)) =
Aut:('D) = 2190 ; Sao.

7 Some l-designs from the Janko group J;

The Janko group J; of order 23 x 3 x 5 x 7 x 11 x 19 has seven conjugacy
classes of maximal subgroups, which are listed in Table 7. It has also 15
conjugacy classes of elements some of which are listed in Table 8.
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Table 7: Maximal subgroups of J,

No. Order | Index | Structure
Max[1 660 266 | PSL(2,11)
Max[2 168 1045 2%:7:3
Max[3 120 1463 2 X As
Max[4 114 1540 19:6
Max[5 110 1596 11:10
Max(6 60 2926 Ds X DIO
Max[7 42 4180 7:6

Table 8: Some of the conjugacy classes of Jy
[ nX | [nX] | Cc(g) | Maximal Centralizer

2A | 1463 | 2 x As Yes
3A | 5852 | Dgx5 No

We apply Theorem 4 to the above maximal subgroups and a few con-
jugacy classes of elements of J; to construct several symmetric 1- designs.

7.1 G = Ji, M = PSLy(11), nX = 2A: 1-(1463,55,10)
design

Let G = J;, M = PSLy(11) and nX = 2A. Then

b=[G: M]=266,v=|24] = 1463,k = |[M N 2A| = 55.
Also using the character table of J;, we have

XM = X1+ X2 + X4 + X6 = la + 56 + 56b + 76a + T7a

and hence xar(g) =14+0+0+4+5 =10 = X, where g € 2A. We produce
a non-symmetric 1-(1463,55,10) design D. Since Cg(g) = 2 x As is also
a maximal subgroup of J;, J; acts primitively on blocks and points. The
complement of D, D, is a 1-(1463, 1408, 256) design.

72 G=J, M =2x As, nX = 2A: 1-(1463, 31, 31) design
Let G = J;, M =2 x As and nX = 2A. Then

b=[G: M| =1463,v = 24| = 1463.
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It is easy to see that M = 2 x As has three conjugacy classes of order 2,
namely 21 = z, T2 = a and 3 = 2q, that fuse to 24 with corresponding
centralizer orders 120, 8 and 8. Now by using Corollary 3 we have

_ [Celo) 120, 120, 130 _

where g € 2A. Alternatively we can use the character table of J; to find
that

XM = X1+ X2 + X3 + 2x4 + 2X6 + X9 + X10 + X11 + 2X12 + 2X15,
and
Xxm(@)=1+0+0+8+10+0+0+0+10+2=231=A.

In this case clearly £k = |[M N2A| = A = 31, and we produce a symmetric 1-
(1463, 31, 31) design D. Obviously J1 acts primitively on blocks and points.
The complement of D, D, is a 1-(1463, 1432, 1432) design.

73 G = J;, M = PSLy(11), nX = 3A: 1-(5852,110,5)
design

Let G = J,, M = PSLy(11) and nX = 3A. Then

b=[G: M]=266,v=]|34]| = 5852,k = |M N3A| = 110.
Also using the character table of J;, we have

XM =Xx1+ X2+ Xa + X6 = la + 56a + 56b + 760 + 77a

and hence xa(9) = 1+4+1—~1 =15 = A, where g € 3A. We produce a non-
symmetric 1-(5852, 110, 5) design D. Since Cg(g) = D¢ x5 is not a maximal
subgroup of Jy, J; acts pnmltlvely on 266 blocks but imprimitively on 5852
points. The complement of D, D, is a 1-(5852, 5742, 261) design.

74 G =J,, M = PSLy(11), nX = 3A: 1-(5852, 20, 5) de-
sign
Let G=J,, M =2 x As and nX = 3A. Then
b=[G: M]=1463,v = |3A4| = 5852,k = |[M N 3A| = 20.
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It is easy to see that M = 2 x A has only one conjugacy class of elements
of order 3, which fuses to 34, with the corresponding centralizer order 6.
Now by using Corollary 3 we have
[Calg)| _ 30
A= = ————————— I e 5,
where g € 3A. Alternatively we can use the character xs as in Subsection
7.2 to find that

xm(@)=1+2+2+2-240+04+0+2-2=5=2),

where g € 3A. We produce a non-symmetric 1-(5852, 20, 5) design D. Since
Cc(g) = Dg x 5 is not a maximal subgroup of J;, J; acts primitively on
the 1463 blocks but imprimitively on the 5852 points. The complement of

D, D, is a 1-(5852, 5832, 1458) design.
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