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Abstract

For graphs G and H, Ramsey number R(G, H) is the smallest nat-
ural number n such that no (G, H)-free graph on n vertices ex-
ists. In 1981, Burr [5] proved the general lower bound R(G,H) >
(n — 1)(x(H) — 1) + o(H), where G is a connected graph of or-
der n, x(H) denotes the chromatic number of H and o(H) is its
chromatic surplus, namely, the minimum cardinality of a color class
taken over all proper colorings of H with x(H) colors. A connected
graph G of order n is called good with respect to H, H-good, if
R(G,H) = (n—1)(x(H) — 1) + o(H). The notation tK represents
a graph with ¢ identical copies of complete graph K. In this note,
we discuss the goodness of cycle Cn with respect to tKm for m,¢ > 2
and sufficiently large n. Furthermore, it is also provided the Ramsey
number R(G,tK,,), where G is a disjoint union of cycles.

Keywords: (G, H)-free, H-good, complete graph, cycle, Ramsey

number.

1 Introduction

We consider that all graphs in this paper are finite, undirected and
simple. Let G and H be two graphs, where H is a subgraph of G, we define
G — H as a graph obtained from G by deleting the vertices of H and all
edges incident to them. Let ¢ be a natural number and G; be a connected
graph with the vertex set V; and the edge set E; for every ¢ = 1,2,...,1.
The disjoint union of graphs, U§=1 G;, has the vertex set U:=1 V; and the
edge set U:zl E;. Furthermore, if each G; is isomorphic to a connected
graph G then we denote by tG the disjoint union of ¢ copies of G.
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For graphs G and H, Ramsey number R(G, H) is the minimum n such
that in every coloring of the edges of the complete graph K, with two
colors, say red and blue, there is a red copy of G or a blue copy of H. A
graph F is called (G, H)-free if F' contains no subgraph isomorphic to G
and its complement F contains no subgraph isomorphic to H. The Ramsey
number R(G, H) can be equivalently defined as the smallest natural number
n such that no (G, H)-free graph on n vertices exists.

Determining R(G, H) is a notoriously hard problem. Burr [6] showed
that the problem of determining whether R(G,H) < n for a given n is
NP-hard. Furthermore in Shaeffer [14] one can find a rare natural example
of a problem higher than NP-hard in the polynomial hierarchy of com-
putational complexity theory, that is, Ramsey arrowing is [[5-complete.
The few known values of R(G, H) are collected in the dynamic survey of
Radziszowski [13)].

Burr [5] proved the general lower bound
R(G,H) 2 (n - 1)(x(H) — 1) + o(H), (1)

where G is a connected graph on n vertices, x(H) denotes the chromatic
number of H and o(H) is its chromatic surplus, namely, the minimum
cardinality of a color class taken over all proper colorings of H with x(H)
colors. Motivated by this inequality, the graph G is said to be H-good if
equality holds in (1). In particular, Chvéatal [9] proved that trees are Kp,-
good and Sudarsana et al. [18] showed that path P, is good with respect
to 2K, and more recent result can be found in [20].

Faudree and Schelp (10] conjectured that C,, is K;,—good for n > m > 3,
except for n = m = 3. The conjecture has been verified for n > m2 — 2
(Bondy and Erdés [{4]), for m = 3 (Chartrand and Schuster [7]), m = 4
(Yang, Huang and Zhang {16]), m = 5 (Bollobds, Jayawardene, Yang,
Huang, Rousseau and Zhang [3]), m = 6 (Schiermeyer [15]) and m = 7
(Chen, Cheng and Zhang [8]). More recently, Nikiforov [12] proved the
conjecture for all m > 3 and n > 4m + 2. Other result concerning the
goodness of graphs with the chromatic surplus one can be found in Lin et
al. [11] and Sudarsana et al. [22]. However, the goodness of cycle C,, with
respect to tK,, is still open.

In this paper, we establish the goodness of cycle C,, with respect to
tK,, for m,t > 2 and sufficiently large n. This is an extending result of
Sudarsana in [23].
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2 Known Results

For the proof of our new result, Theorem 2, we use the following results.

Lemma 1 (Sudarsana et al. [18]) Letn andt be positive integers. Then,

_ n+t—1, t< L!ZLJ;
R(P,,tK3) = { 2a4+[3]1-1, t>1{5]

Theorem 1 (Nikiforov [12]) Let m > 3 be an integer. If n > 4m + 2
then R(Cp, Km) =(n—1)(m—-1)+ 1.

3 The Main Result

The following theorem deals with the goodness of cycle Cy, with respect
to t identical copies of complete graphs, tK,.

Theorem 2 Let t,m > 2 be integers and g(t,m) = t((tm — 2)(m — 1) +
1)+ 1. If n > g(t,m) then R(Cp,tKm) = (n —1)(m — 1) +t.

By extending previous results of Baskoro et al. (1], Stahl [17], Bielak [2]
and Sudarsana et al. [19], Sudarsana et al. [21] recently proved a formula
for R(G, H) when every connected component of G is not necessary an H-
good graph. This result motivates the study of general families of H-good
graphs. In particular, Theorem 2 provides the following computation of
R(G,tK) when G is a set of disjoint cycles.

Corollary 1 Let m,t > 2 be integers and g(t,m) = t((tm — 2)(m — 1) +
1)+ 1. Let G ~ ¥, liCn,, where l; > 1 and each Cy, is a cycle of order
n;.

Ifny > ne > ... = ng > g(t,m) then

R(G,tKn) = Jmax {(ni —(m-2)+ iljnj} +t-1 (2)
<ig =

Firstly, by similar way with the proof of Lemma 1 in [18] we obtain the
main result for case m = 2 as follows.
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Lemma 2 Letn >3 andt > 1 be integers. Then,
R(Cm‘K2)-{ %+[3]-1, t>

Next we show the following weaker form of our main result for case
t=2.

[3];
[3)-

Lemma 3 Letm > 2 be an integer. Ifn > 4(m—1)243 then R(C,,2K,,) =
(n=-1)(m-1)+2.

Proof. We obtain the lower bound R(Cy,2K ) 2 (n—1)(m —1) + 2 from
the fact that (m — 1)K,,_1 U K is a (Cn, 2K, )-free graph on (n — 1)(m —
1) + 1 vertices. Let us next show the upper bound.

For m = 2 the statement follows from Lemma 2. Assume that the lemma
is true for m — 1, that is, if F is a graph of order n > (n — 1)(m — 2) + 2,
then F contains C,, or F contains 2K,,_;. We shall show that the lemma
is also valid for m.

Set m > 3 and let F be an arbitrary graph on (n - 1)(m — 1) + 2
vertices. We will show that F' contains C, or F contains 2K,,. Note
that if m > 3 then n > 4(m — 1)2 4+ 3 > 4m + 2. By Theorem 1, we
have a copy of C,, in F or a copy of K,, in F. If F contains C, then we
are done. Thus we may assume that I contains K,,. Observe that the
subgraph F — K,, of F has (n — 2)(m — 1) + 1 vertices. Since m > 3, we
have n — 1 > 4(m — 1)2 + 2 > 4m + 2. By Theorem 1, F — K,, contains
Cn—1 or the complement of F — K, contains K,,. If the complement of
F — K, contains K,, then we obtain a copy of 2K, in F and hence we
are done. Therefore, F has a cycle C,,—;. Thus the subgraph FF — C,_; of
F has (n —1)(m — 2) + 2 vertices. By the induction hypothesis, F — C,_,
contains C), or the complement of F'— Cp,_; contains 2K,,,_,. If F—C,,_,
contains C, then we are done. Hence we may assume that F' contains a
cycle Cp,_) with vertex set, say c1,¢2,...,¢n—1 and edges c;c;4; (subscripts
modulo (n~—1)), and that F contains 2K,,_;. It is clear that the subgraphs
Cr-1 and 2K,,_; have no vertices in common.

Assume that F contains no C,. We will show that F contains 2K,,. Let
us consider the relation between the vertices in A = {¢;,¢2,...,cn—1} and
in B =V (2K,_1). Suppose that the neighborhood N4(u) in A of a vertex
u € B satisfies [Na(u)NV(Cpn-1)| 2 2m —1. Let ¢i,c; € Na(u)NV(Crn_1)
with 7 < j. Note that j —i > 1 since otherwise we can extend C,_; to a
cycle of length n containing u. If ¢;4+; and c;4, are adjacent in F then we
also have the cycle {ciucjcj—1...Ciy1¢41¢j42...ca1€1C2 ... ¢;} of length



nin F. If ciy1cj+1 is not an edge for every pair ¢;,¢; € Na(u) N V(Cn-1)
then {cit1 : ¢ € Na(u) N V(Cno1)} U{ u} is a set of 2m independent
vertices in F so that F contains 2K,,. Hence, for each u € B we have
[Na(u) NV (Cn-1)| £ 2m — 2. Therefore,

>(n—1)-4(m-1)% 3)

4\ U Matw

u€B

Since n > 4(m — 1)? + 3, it follows that there are at least 2 vertices in
A which are adjacent to no vertex in B and hence F contains 2K,. This
completes the proof of lemma. O

We are now ready to prove our main result.

Proof of Theorem 2. The lower bound R(C,,tKpn) > (n—1)(m—1)+1
follows from the fact that (m — 1)K,—; U K, is a (Cn,tK)-free graph
of order (n—1)(m—-1)+t—1.

To prove the upper bound R(Cp,tKm) < (n — 1}{(m — 1) 4+t we use
inductions on t and m. For t = 2, we have R(Cy,,2Kp) = (n—1)(m—1)+2
from Lemma 3. Hence, the assertion holds for n > g(2,m) = 4(m—1)?+3.
In what follows we assume that the theorem is true for n > g(t — 1,m),
that is R(Cp, (t = DKp) < (n—1)(m-1)+t—1.

From Lemma 2, we have R(C,,tK2) = n+t —1 for n > 2t. Note
that if ¢ > 2 then n > g(t,2) > 2t. Therefore, the theorem holds for
m = 2. In what follows we also assume m > 3 and the theorem is true for
n > g(t,m — 1), that is R(Cr,tKm-1) S (n —1)(m - 2) + ¢.

We will show that the theorem is also valid for n > g(t,m). Let F
be an arbitrary graph on (n — 1)(m — 1) + t vertices. We shall show that
F contains Cp, or F contains tK,,. Note that if ¢ > 2 and m > 3 then
n > g(t,m) > 4m + 2. So Theorem 1 now guarantees that F' contains
C, or F contains K,,. If F contains C, then we are done. Thus we
may assume that F contains K. Since the subgraph F — K. of F has
(n—2)(m — 1)+t —1 vertices and n — 1 > g(t,m) — 1 > g(t — 1,m),
by the induction hypothesis on t we know that F' — K. contains Cn_1
or the complement of F — K, contains (t — 1)K. If the complement of
F —K,, contains (t — 1)K, then we have a tK,, in F and hence the proof
is done. Therefore, F has a cycle Cn—;. Thus the subgraph F' — Cr_
of F has (n — 1)(m — 2) + t vertices. Note that, since ¢t > 2, we have
n > g(t,m) > g(t,m — 1). By the induction hypothesis on m, we know
that F —C,_, contains C, or the complement of F—C,,_; contains tKm_1.
If F — C,_, contains C, then we are done. Hence we may assume that
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F contains a cycle C,,_; with vertex set, say ¢i1,cg,...,cn—1 and edges
¢icit1 (subscripts modulo (n — 1)), and that F contains ¢ disjoint copies
K} _,K2_,,..,K! _, of the complete graph with m — 1 vertices. It is
clear that the subgraphs C,_; and tK,,—; have no vertices in common.

Assume that F contains no C,. We will show that F contains tK,,. Let
us consider the relation between the vertices in A = {¢;, ¢z, ...,¢,-1} and in
B=V(K}_|)UV(K2_,)U...UV(K:_,). Suppose that the neighborhood
N4(u) in A of a vertex u € B satisfies |[Ng(u) N V(Cp_1)| > tm — 1. Let
ciy¢j € Na(u)NV(Cpr_1) with i < j. Note that j—i > 1 since otherwise we
can extend C,_; to a cycle of length n containing u. If ¢;11¢;j4 is an edge in
F then we also have the cycle {c;ucjcj_i ... ciy16j41¢542 . .. 10162 . . . ¢i}
of length n in F. If ¢;11¢j41 is not an edge for every pair ¢;,¢; € Na(u) N
V(Cn-1) then {cit1 : ci € Na(u) NV (Crn-1)} U {u} is a set of tm indepen-
dent vertices in F so that F contains tK,,. Hence, for each u € B we have
|INa(u) N V(Cr-1)| < tm — 2. Therefore,

> (n—1) — t(tm — 2)(m - 1). (4)

4\ U Maw

u€EB

Since n 2 g(t, m), it follows that there are at least ¢ vertices in A which
are adjacent to no vertex in B and hence F contains tK,,. The proof of
Theorem 2 is now complete. O
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