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ABSTRACT. If T is a tree on n vertices, n > 3, and if G is a con-
nected graph such that d (u) + d(v) + d(u,v) > 2n for every pair of
distinct vertices of G, it has been conjectured that G must have a
non-separating copy of 7. In this note, we prove this result for the
special case in which d (u) +d (v) + d (u,v) > 2n + 2 for every pair of
distinct vertices of G, and improve this slightly for trees of diameter
at least four and for some trees of diameter three.

Introduction and Definitions. All graphs in the article are finite and
have no loops and no multiple edges. An n-tree is a tree with n vertices.
The vertex set of G is V (G) and the edge set is E(G). If G is a graph,
and X C V(G), the subgraph of G induced by X, written G [X], is the
subgraph H with V(H) = X and E(H) = {ww € E(G):u,v € X}. The
complete graph on m vertices is K. The complete bipartite graph with k
vertices in one color class and m in the other is K ,,. The distance between
two vertices z,y € V (G) is the length (number of edges) of a shortest path
from z to y and is denoted d¢ (z,y). The diameter of G is the maximum
distance taken over all pairs of vertices of G. The number of edges of G
incident with the vertex z is the degree of z, dg (z). An end-vertex or
leaf of a graph is a vertex of degree one. We assume the reader has some
familiarity with separable graphs, and decomposition of graphs into blocks
and cut-vertices. For graph theoretic terms not defined in this paper see
(10].

A connected graph G with at least two vertices is k-cohesive if for every
pair of distinct vertices u,v, d (u) + d(v) + d(u,v) > k. Suppose, for ex-
ample, that G is connected, with cut vertex b, and that G has exactly two
blocks H; and H, with H; and H, isomorphic as rooted graphs (rooted at
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b). Then, H; (and, of course, Hy) would satisfy somewhat weaker condi-
tions. Specifically, for any pair of distinct vertices v and v in V (H;) — {b},
d(u) + d(v) + d(u,v) > k, and for any vertex u, v € V (H;) — {b},
2d (u) + 2d (u,b) 2 k. (The second condition follows from looking at the
vertex v’ € V (H,;) — {b}, with «’ corresponding to u under an isomor-
phism).

This discussion motivates the following definitions. For a graph G and
a vertex b € V (G), the pair (G, b) will be called a rooted graph, and b will
be called the root of G. We call the rooted graph (G, b) weakly k-cohesive
if G is a connected graph, b € V (G), G has at least three vertices and for
every pair of distinct vertices u, v, with u,v # b, d (u) +d (v) +d (u,v) 2 k.
Note that if G is k-cohesive, k > 4, then (G,b) is weakly k-cohesive for
any b € V (G). On the other hand, if (G,b) is a weakly k-cohesive graph,
it is possible for G to have a vertex w of low degree near b. Now, if H
is a separable graph with exactly one cut-vertex b’ and each block (Hj, b’)
isomorphic (as a rooted graph) to (G,b), it is possible that H is not k-
cohesive, since the needed inequality may not be satisfied by two images
of w. However, at this point, our definition of weakly k-cohesive seems
reasonable and a little less complicated than also requiring the condition
2d (u) + 2d (u,b) > k, for any vertex u, u € V (H;) — {b}.

Lovasz {7] proved that if G is 5-cohesive, then G has a non-separating
copy of the 2-tree. Locke [5] conjectured that if G is (2n)-cohesive, n > 3,
then G has a non-separating copy of the path with n vertices. This was
proven by Locke, Tracy, Voss [6]. In [3], this conjecture is extended to
n-trees, and a slightly weaker version is proven for trees of diameter at
most four. Mader (8, 9] demonstrates conditions under which a k-connected
graph has a copy of a specified tree whose deletion results in a k-connected
graph. Diwan and Tholiya [4] prove that if T' is an n-tree, n > 1, and if
the minimum degree of a connected graph G is at least n, then G has a
non-separating copy of T. This latter result leads one to believe that the
following conjecture may hold.

Conjecture 1. If (G, b) is weakly (2n)-cohesive, n > 4, and if T is a tree
with n vertices, then G — b contains a copy T of Tp such that G — V (T) is
connected.

We begin with some preliminary results on weakly-k-cohesive graphs.
Let T be an n-tree and (G, b) be a weakly-(2n)-cohesive graph. We say
that T separates (G, b) if for every copy Tp of T with Ty C G—b, G-V (Tp)
is disconnected.

70



Let f (T') denote the minimum positive integer m such that every weakly-
m-cohesive graph (G, b) contains a non-separating copy of T. We consider
the following variant of Conjecture 1.

Conjecture 2. For any n-tree, n 2> 3, f (T) = 2n.

In [1] it is recorded that this author has shown f (T") < 4n for any n-tree.
Using (4], we shall show that f(T) < 2n + 2, for all n-trees, and improve
this slightly to show that f (T) < 2n+1, for all n-trees of diameter at least

four.

We assume throughout that m > 2n and n > 4. We shall also assume
that T is an n-tree which separates the weakly-m-cohesive graph (G,b)
and, subject to this, that G is as small as possible.

Lemma 1. G has a copy of T avoiding b.

Proof. Label the vertices of T = {g1,92,...,gn} with g; an end-vertex
of T and T [{q1,42,---,9s}) connected. Let u € V(G) — {b} with d(u)
minimum. Define o (q1) = u. We proceed by induction. Suppose that
a(q), a(gz), -.-, a(gs) have been chosen, where 1 < s < n. The vertex
gs+1 is adjacent to some vertex g; in T, with 1 < j < s. Let £ denote the
distance in T from q; to g;, let P denote the path in T from ¢; to g;, and let
B denote the number of neighbors of a (g;) in the set {a(g): g € V (P)}.
Then, d¢ (a(q1),a(g;)) <€+ 1-5.

If d (u) > n, then d(a(g;)) = n, and

IN (a(g;)) — {a@(q1) @ (g2) - x(gs), b} 2 1,
and we may choose o (gs41) € N (a(g;)) — {a(q1),@(g2),--.,a(gs),b}.

If d(u) < n—1, then

d{a(g;)) 2 2n—dg(a(q),a(g) —de(a(q))
z 2n-(¢+1-P)—de(a(q))
> n—{+8.

But, a(g;) is joined to at most (s — 1) — (¢ — B) vertices which are of
{a(q1) o (q2),---,(gs)}- Thus, a(g;) is joined to at least (n — £+ B) —
((s —1) = (£ — B)) = n—s+1 > 1 vertices not in {a (q1) , @ (g2) ,- .- , @ (gs) }-
Ehus, we may choose o (gs+1) € N ((g;)) — {a(@1) @ (g2) ..., (gs) , b}-
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1
Lemma 2. If u € V (G) — {b}, then d¢ (u) > 3 (m - 5).

Proof. Let u be a vertex of minimum degree in G, subjeci to u # b, and
let v € N (u), with v # b if possible. Suppose that d (u) < 3 (m —6).

Now, if v = b, then d(u) = 1. Let w be chosen with d (u,w) = 2. Then,
d(w) 2m—d(u) —d(u,w) =m—3 2 5. Thus, G — u has at least three
vertices and (G — u, b) is weakly (2n)-cohesive, and by our assumption that
(G,b) is minimal, (G — u,b) must have a non-separating copy of T. But
then (G, b) must have a non-separating copy of T. Thus, we may assume
that v # b. Since v # b,

1
d(v) 2m—d(u,v) —d(u) 2m—1—-%(m—6)= §(m+4).
Let H he a component of G — {u,v}. If there is more than one choice
for H, select H so that b ¢ V(H). If b € V (H), set b = b, and note
that [IN(v)NV (H)| =d(v)-12 -21-(m+2) >n. If b ¢ V(H), select any

vertex b’ € N (v) NV (H). If b € V (H), there is only one component H of
G —-{u,v},and |V(H)| 2d(v)~1>n. If b¢ V(H), then d(u,b’) < 2,

d) 2 m—d(u) —d(u,b) > %(m+2), and dg (V') 2 n — 1. Thus, in
either case, H has at least three vertices.

We now establish that (H,b') is weakly m-cohesive. For any pair of
vertices z,y € V (H), dy (z,y) 2 de (z,y).

Ifr,ye V(H) - N ({u,v}) — {v'}, then
dy (z) +du (y) + du (z,y) = de(z) +de (y) +du (z,y)

2 dg () +de () +de (z,y)
2 m.

Ifxe V(H)NN ({u,v}) — {¥'}, then

dy () dg (z) — [N (z) N {u,v}|

(m —dg (u) — dg (u,2)) — [N (z) N {u,v}]

m—dg(u) -3

m — % (m—6) -3

1

Em

dg (u) + 3.

VvV WV I

1 \Y

A\
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Thus, if z,y € V (H)NN ({u,v})—{b'}, then dy (z)+dy (y)+du (z,y) 2
m+ 1.

Finally, suppose that z € V (H) N N ({u,v}) — {¢'} and y € V (H)
N ({u,v}) — {¢'}. Let 8 = |N (z) 0 {u,v}|. Then, d¢(y,u) < du (y,7)
3 - B, and dy (z) = dg (z) — B. Thus

+ 1

(dg (z) — B) + dg (y) + du (y, 2)

de (z) —B+de (y) +dc (y,u) -3+ 8
dg (z) +de (y) +dc (y,u) -3

(dg (u) +3) +dg (y) +dg (y,u) -3
dg (u) + dg (y) + dg (v, u)

m.

dy (z) +du (¥) + du (v, 7)

Vil v i wv i

Therefore, (H,b') is weakly m-cohesive, and by minimality of (G,b), H
has non-separating copy To of T'.

Since Ty avoids b, we need only show that Ty is non-separating in G.
But, G — V (H) is connected, and H — V (Tp) is connected. We need only
show that there is an edge from v to V(H) — V (Tp). If b ¢ V (H), the
edge vb’ is an edge from v to V(H) — V (Tp). If b € V (H), there are

dv)—12 l(m+2) > n+1 edges from v to V (H). At most n of these
edges are from v to V (Tp), leaving at least one from v to V (H) — V (Tp).
Thus Tp is non-separating copy of T, avoiding b, contradicting the choice

of (G, b). Therefore, d (u) > -;- (m—5). B

The result of Diwan and Tholiya [4] allows us to show that we may
restrict our attention to m < 2n + 3.

Lemma 3. For some vertex u € V (G} — {b}, d¢ (u) < n.

Proof. Suppose that for every vertex u € V (G)—{b}, dg (u) > n. We con-
struct a new graph H from n disjoint copies (G, bx) of (G, b), by identifying
the vertices by, ba, .. ., by, calling the new vertex ¢. Then H has minimum
degree at least n, and therefore, by [4], has a non-separating copy To of T.
But, then, ¢ ¢ V (Tp), and Tp must lie completely in Gi — bi for some k.
Now, Tp is a non-separating copy of T in (G, bi), contradicting the choice
of (G,b). Therefore, dg (u) < n, for some vertex u € V (G) — {b}. B
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Corollary 1. If u € V (G) — {b}, with dg (u) minimum, then n — 2

S(m=5)<do(u)<n-1

Proof. By Lemma 3, dg (u) < n—1, and by Lemma 2, dg (u) > n—2. B
An immediate consequence of Corollary 1 is that Conjecture 1 holds

under the slight strengthening of the cohesiveness condition, since m >
2n + 4 would violate Corollary 1.

Corollary 2. For any n-tree T1, f(T}) € 2n + 4.

The next Lemma [1, 3] is not used in establishing the results for the case
2n +1 < m < 2n + 3, but may be useful in narrowing the possibilities for
the case m = 2n.

Lemma 4 [1,3]. G is 2-connected.

Proof. Suppose that G is separable. Let B be any end-block of G, with
cut-vertex &', and with b ¢ V (B) — {¢'}. By Lemma 2, every vertex of
B — b’ has degree at least n — 2 > 2 in G, and thus B has at least three
vertices. For vertices z,y € V (B) — {¥'},

dp (z) +dp (y) +dp (y,z) = de (z) + de (y) + dg (y,7) 2 2n.

Thus, (B, b’) is weakly (2n)-cohesive, with v (B) < v (G), contradicting the
minimality of (G, b). Therefore, G must be 2-connected. B

The next lemma is obvious, but perhaps useful.

Lemma 5. Let uv be an edge of G — b. Then, max {dg (u),d¢ (v)} > n
and min {dg (v),dg (v)} 2n—-2. B

In the next series of lemmas, we examine the possibilities of vertices of
degree n —2 or n — 1 in G. The proof of the Lemma 6 closely follows a
portion of the proof of Lemma 2.

Lemma 6. Suppose that £ € {0,1}, m > 2n + ¢, and u € V (G) — {b},
with dg (u) = n — 2+ €. Let H = G — u. Then, for any pair of distinct
vertices z,y € V (H) — {b}, dy (z) + dfy (y) + dy (z,y) = m. Also, any
v € Ng (u) - {b} has dy (v) = n.

Proof. Let z,y € V(H) — {b}, with z # y.
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If z,y ¢ Ng (u)a then dy (.’t) +dy (y) +dy (x’y) 2 de (.’Z:) +dg (y) +
dg (z,y) 2 m.

Ifz € Ng(u), thendg (z) 2m—(n—-2+&)-1=m-n+1-{ 2n+l 2>
dg (u) + 3 — €. Note that dy (z) > n as claimed. Now, if z,y € N¢ (u),
then dy (z) +dy (y) +du (z,y) 22(m—n—-E+12m+1-£2m.

Finally, if £ € Ng (u) and y ¢ Ng (u), then

(de (z) = 1) +dg (y) + du (z,y)

(dg (u) +2 =€) + dg (y) + da (z,9)

dg (u) +2 - €+ dg (y) + (de (v,9) — 1)
m+1—-€2m.

dy (z) +dy (y) +du (z,v)

VvV WV WV i

Thus, in all cases, dy (z) +dyu (y) + du (z,y) 2 m.

Lemma 7. Suppose that m > 2n+¢, £ € {0,1}, and that u € V (G) — {b},
with dg (u) = n—2+¢€. Then, H = G—u has exactly one component, (H, b)
is weakly-m-cohesive and has a non-separating copy of T'. Furthermore, for
any non-separating copy Tp of T in (H,b), Ng (u) € V (Tp). In particular,
b¢ Ng (u).

Proof. By Lemma 4, H = G —u is connected and by Lemma 6 some vertex
of H has degree at least n > 4. Thus, by Lemma 6, (H,b) is weakly-m-
cohesive. Furthermore, if w € Ng (u) — V (To), then G- V (H) = {u} is
connected, H — V (Tp) is connected, and uvw € E (G — V (Tp)). Hence, To
is a non-separating copy of T in (G,b). Therefore, Ng (u) C V (To), and
since b¢ V (Tp), b¢ Ng(uv)

Lemma 8. Suppose m > 2n + 1. Then, there is no vertex u € V (G) - {b}
with dg (u) =n — 1.

Proof. Suppose that u € V (G)—{b} with dg (v) = n—1. Then, H = G-u
is connected, (H, b) is weakly m-cohesive, (H,b) has a non-separating copy
To of T, and N (u) € V (To).

Let w € V (Ty) — Ng (u). Note that Ng (u) U {w} = V (To) and, hence,
dg (u,w) = 2. Thus, dg (w) > m—dg (u)—dg (u,w) =m—(n— 1)-22n.
Therefore, there is an edge from w to G-V (Tp) — {u}. Let T} = (To — w)U
{u}u{uv : wv € E (To)} = T and note that T} is a non-separating copy of T
in (G, b). Hence, there can be no vertex u € V (G)—{b} with d¢ (u) =n-1.
|
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If m > 2n + 2, then Lemma 2 would force every vertex u € V (G) — {b}

to have dg (u) > -2—11——%2—:—5—)

— {b} to have dg (u) < n — 1, we have the following corollary.

=n-1 and Lemma 3 forces some u €

Corollary 3. For any n-tree Ty, f(T1) <2n+2. B

We can do slightly more, if we restrict the possibilities for T. We begin
with an observation about the non-neighbors of u in a copy of T separating
u from the rest of G.

Lemma 9. Suppose that u € V(G) — {b} with dg(u) = n — 2. Let
Q be a non-separating copy of T in (G — u,b). Then, for every vertex
y € V (Q), there is some vertex in Ng (y) — Ng (u) and some edge from y

to V(G) -V (Q) — {u}.
Proof. For any y € V (Q) — Ng (u), note that dg (u,y) € {2,3}.

Ifde(u,y) =2, thendeg(y) 2m—-de(u)-22m—-(n-2)-22
But u ¢ Ng (y) and, hence, there is an edge from y to G V(Q) - {u}

If dg (u,y) = 3, then dg (y) 2 m—dg (u) — —(n-2)-32n-1.
But u ¢ Ng (y) and |Ng (u) N Ng (y)| = 0. Hence, there is an edge from y
to G -V (Q) — {u}.

Finally, for any y € Ng (u), note that dg(y) > m —dg(u) — 1 2
m—(n—2)—12>n+1. Again, there is an edge from y to G-V (Q) — {u}.

Now, suppose that for some vertex y € V (Q), Ng (y) € Ng (u). Then,
= (Q-y)U{u} U {uv:yv e E(Q)} is a non-separating copy of T in
(G,b). B

Lemma 10. Suppose m > 2n + 1, and suppose that u € V (G) — {b} with
dg (u) = n — 2. Let Q be a non-separating copy of T in (G — u,b). Then,
the diameter of T is at most three. Furthermore, if T has diameter three,
then the two central vertices of T each have degree at least three.

Proof. Let W = V (Q) — Ng (u). Note that [W| =2 and Ng (u) C V (Q).
For each y € V (Q), there is some vertex in No(y) — Ng(u) € W. In
particular, for every leaf y of @, the sole neighbor of y in Q must be in W.

Now, suppose that T has diameter at least k > 4, and let y;, y2 be leaves
of Q with dg (y1,¥2) = k. Let z; € Ng (y;) and note that W = {z;, z5}.
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But then, there is no vertex in WNNg (z1). Hence, the diameter of T must
be at most three.

Now, suppose that T has diameter three, and thus Q has diameter three.
Let the central vertices of Q be ¢;,c2, where dg (¢1) > n and dg (c2) = 2,
and note that W = {c¢;,c2}. Then, (@ —c1)U{uv:v € Ng (u)} is a non-
separating copy of T in (G,b), contradicting the choice of (G,b). Hence,
dQ (Cj) = 3, ] = 1,2 n

We gather the above results.

Corollary 4. Let n > 4. For any n-tree T, f (T') < 2n + 2. For any n-tree
T with diameter (T) > 4, or with diameter (T') = 3 if T has a vertex of
degree 2, f(T) < 2n+1.

Lemma 11. Suppose m > 2n + 1, and suppose that u € V (G) — {b} with
d¢ (u) = n — 2. Then, for each v € Ng (u), there is some w € Ng (u)
with vw € E (G). Furthermore, if n is odd, there is some v € Ng (u) with
|Ng (u) N Ng (v)| = 2.

Proof. Suppose that there is some v € Ng (u) such that the edge wv
is in no triangle. Let H = G — {u,v} and X = Ng ({¢,v}). Then, for
ze€ X,dy(z)2m-n—-132n. So, for r,y € X with z # y, dy (z) +
dy () +dy (z,y) 22(m-n—-1)+1=m+ (m—2n—1) > m. Also, for
zeX,yeV(H)-X,dy (z)+du (y)+du (z,9) 2 (dg (v) + 2) +da (v) +
(de (uv,y) —2) 2 m.

As in previous lemmas, we may reduce quickly to the case in which H is
connected, and thus (H, b) is weakly m-generated. Thus, (H,b) has a non-
separating copy To of T. But, dg (v) 2 n + 2, and hence v has a neighbor
in H — V (Ty) and Tp is a non-separating copy of T in (G,b), violating
the conditions on (G,b). Therefore, every vertex in G [N (u)] has degree
at least one. If |N (u)| = n — 2 is odd, some vertex of G [N (u)] has even
degree and this degree must be at least two. Hl

(The remark on the parity of n in Lemma 11 was provided by [2].)
A tree of diameter three has two centers, and the degrees of these two

vertices determine the tree up to isomorphism. Let (¢;,%) denote the tree
Q of diameter three with centers c; and cg such that dg (c;) = ¢ and

dQ (Cg) =tis.
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Lemma 12. [2] Suppose that m > 2n + 1, that T = (¢;,t,), with centers
c; and ¢, and that u € V (G) — {b} with dg (u) = n — 2. Then, for each
v € Ng (u), |[Ng (u) N Ng (v)| € min {t;,{2} — 3.

Proof. Suppose that there is some v € Ng(u) — {b} such that there
is some X C |Ng (u)N Ng (v)] with |X| = ¢, — 2. Let Q be a non-
separating copy of T in (G —u,b). Again, Ng(u) = V(Q) — {c1,¢c2},
where cy,c; are the centers of Q. We know that ve; € E(Q), for some
j € {e1,¢2}. Then, (V(Q) —{ca—;}) U {u} U{vz:z € XU {u,c;}} U
{uy:y € V(Q) — X — {c1,c2}} is a non-separating copy of T in (G,b).
[ ]

We also note that by Lemma 11, for v € Ng (u), |Ng (u) N Ng (v)| > 1,
and thus min {¢;,t2} > 3 + |Ng (u) N Ng (v)|. Hence, Corollary 4 can be
slightly strengthened by adding the following for trees of diameter three.

Corollary 5. Suppose that m 2> 2n + 1, that T & (t,,t), with centers ¢,
and ¢, and that u € V (G) — {b} with dg (u) = n—2. Then, min {¢;,t2} >
4, if n is even, and min {¢,,¢2} > 5, if n is odd.

We use [c, X] to represent the tree with vertex set {¢} U X, and edge set
{cx:z € X}. The following observation gives some additional hope that
for a tree T} of diameter two, we might hope to prove that f(T}) < 2n+1.

Lemma 13. [2] Suppose that m > 2n + 1, that T & K, ,_;, and that
u € V(G) — {b} with dg(v) = n — 2. Then, for each v € Ng(u),
|NG (u) N Ng (‘U)| <n-—

Proof. Suppose Q is a non-separating copy of Kj »_; in (G — {u},b), and
that v € N¢ (u) with [Ng (u) N Ng (v)| 2 n — 3. Then, Ng (u) N Ng (v) =
Ng (u) — {v}. Note that W = V(Q) — N¢ (v) = {w,c}, where c is the
center of Q. Then, [v, V(Q) U {u,v} — {w}] is a non-separating copy of T
in (G,b). B

We summarize the results obtained in the next corollary.

Corollary 6. If Q is a tree on n vertices, with n > 3, then 2n < f(Q) <
2n + 1 if any of the following conditions hold:

(7) diameter (Q) > 4;

(#) diameter (Q) = 3, and Q = (k,n — k), k € {2,3};

(ii2) diameter (Q) = 3, and Q = (4,n — 4), and = is odd; or

(tv) diameter (Q) = 2, and n € {3,4, 5}.
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If Q is a path on n vertices, with n > 3, then f (Q) = 2n.

In all other cases, if Q is a tree on n vertices, with n > 3, then 2n <
f<m+2 1

The smallest diameter three trees for which we have not established that
f(Q) £2|V(Q)| +1 are (4,4) , (4,6) and (5,5).
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