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Abstract

We consider edge-colorings of complete graphs in which each color in-
duces a subgraph that does not contain an induced copy of K¢ for some
t > 3. It turns out that such colorings, if the underlying graph is suf-
ficiently large, contain spanning monochromatic k-connected subgraphs.
Furthermore, there exists a color, say blue, such that every vertex has
very few incident edges in colors other than blue.

1 Introduction

All graphs considered in this work are simple and finite with no multiedges or
loops. When it is convenient and unambiguous, we will associate a graph G with
either its vertex set V{(G) or its edge set E(G). By a coloring of a graph, we
mean an edge-coloring. More precisely, for a positive integer m. an m-coloring
of a graph G is a function ¢ : E(G) — {1.2,...,m}. Informally, an m:-coloring
is an assignment on the edges of G where each edges gets one of m possible
colors. For 1 < i < m, the graph induced on color i is the subgraph of G on
the vertex set V(G) containing only the edges having color 2. Note that an
m-coloring need not use all m colors.

Several recent works have considered variations on the following conjecture
of Bollobds and Gyérfis. '

Conjecture 1 (Bollobds and Gyarfds [1]). If n > 4(k — 1), then every 2-
coloring of K, contains « monochromatic k-connected subgraph of order at leust
n-—-2(k-1).

Such works include [4] which considers the conjecture when more colors are
available, [2] which proves the conjecture when n > 6.5k, and (3] which considers
similar results when rainbow subgraphs are forbidden. In particular, it was
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shown in [4] that such a strong result, namely a monochromatic k-connected
subgraph of order n minus a constant, is not possible when more than two
colors are allowed unless additional assumptions are introduced.

Consider a particular edge-coloring of a “small” graph. From this small
coloring, larger colorings are produced by replacing each vertex with a set of
vertices (of varying sizes) such that edges between sets are colored with the same
color as the edge hetween the original pair of vertices, and edges within the sets
are colored using some strategy (for example, all one color). For instance. the
sharpness example for Conjecture 1 begins with a 2-colored K5 in which each
color induces a triangle with two pendant edges. The four vertices of the K5
incident with the pendant edges are then each replaced by a copy of Ki_;. and
the remaining vertex is replaced hy a copy of K,_4x-1), with the edges in all
five new cliques given arbitrary 2-colorings.

A colored graph is called monochromatic-claw-free if there is no induced
K\ 3 in the graph induced on any color. More generally, we call a colored graph
monochromnatic-Sy -free if there is no induced copy of the star S; = K, , in the
graph induced on any color for ¢t > 3.

For two graphs G and H, let R(G, H) denote the minimum order of a com-
plete graph such that any 2-coloring of the edges yields either a copy of G in
one color or a copy of H in the other color. In particular, we write R(s,t) for
R(K,, K;). Similarly. we let R,,(s) denote the minimum order of a complete
graph such that any m-coloring of the edges yields a monochromatic K,. The
classical theorem of Ramsey [5] implies that R(G, H), R(s.t) and R, (s) all
exist.

It turns out that, if n is large, a monochromatic-Se-free coloring of K, will
contain a structure that is much stronger than that provided by Conjecture 1.

Proposition 1. Let m, k.t be positive integers with t > 3.

(a) For n > Ry ((t — 1)(m — 1) + k), any monochromatic-S, -free m-coloring of
Kn contains a spanning monochromatic k-connected subgraph.

(b) If m < n and every wmonochromatic-S,-free m-coloring of K,, contains a
spanning monochromatic k-connected subgraph, then every monochromatic-
Sy -free m-coloring of K, contains u spanning monochromatic k-connected
subgraph for all ' > n.

Proof. (a) Let G be a monochromatic-Si-frec m-coloring of K,. Since n >
R, ((t—1)(m —1) + k), by Ramsey’s Theorem [5], G contains a monochromatic
clique of order at least (t — 1)(m — 1) + k. Let H be the clique, say in blue, and
let v he a vertex in G\ . If v has at least ¢ non-blue edges of one color into
H, say red, then we have an induced red S;. This is a contradiction, so » has at
most ¢t — 1 edges of each color other than blue into H. This means that v must
have at least & blue edges into H. Since this is true for all v € G\ H, the blue
subgraph induces a spanning k-connected graph as desired.

(b) Note that it suffices Lo prove the result for ' = n + 1. Suppose the
hypothesis, and consider a monochromatic-S;-free m-coloring of K, 1. Then



for every choice of n vertices, there is a spanning monochromatic k-connected
subgraph. Since m < n+ 1, two such subgraphs must have the same color. Since
these subgraphs intersect on n — 1 > k vertices, their union forms a spanning
monochromatic k-connected subgraph of Kn4 as desired. O

Motivated by this result, we propose the following problem. Given m,k and
t > 3, let sm(m, k,t) be the smallest n such that every monochromatic-S;-free
m-coloring of K, contains a spanning monochromatic k-connected subgraph.

Problem 1. Given m,k and t > 3, find sm(m, k,t).
We can easily find a lower hound on sm(m,k,t).

Proposition 2. Given positive integers m.k and t > 3, sm(m, k,t) > m(t —
1)+ k.

Proof. Let n = m(t — 1) + k — 1 and consider the coloring of K, defined as
follows. Let G2, Gy, ..., Gm each be sets of { — 1 vertices, let C be a set of k—1
vertices and let G, = C U (UZ,,G;). Finally let Go be the set of the remaining
t — 1 vertices. Color all edges within G, within G¢ and between C and Gp with
color 1. The coloring is completed by coloring all edges between Go and G; with
color i for each 2 < i < m. This coloring contains no induced monochromatic
S; and has no spanning k-connected subgraph (although color 1 is spanning and
(k — 1)-connected). 0

Note that the bound on n given in Proposition 2 appears to be sharp only
when m, k and t are very small. In fact, it fails to be sharp even in one of the
most trivial cases, when m = 2, k = 3 and ¢t = 3 (see Theorem 1).

In general, we belicve that the function sm(m,k,t) is a polynomial in k¥ and
in m. Indeed, this is true when ¢ = 3 (see Proposition 3). In Section 2, we
provide results to this effect. Section 3 contains a result concerning the color
degree of vertices in large monochromatic-star-free colorings of complete graphs.

2 Monochromatic Connectivity

Proposition 3. For all positive integers m and k,
sm(m,k,3) < km +5m(m —1).

Proof. Let G be a monochromatic-claw-free coloring of K,. Let v be a vertex
of G. Il n > km + 5m(m — 1), then v has at least k+ 5(m — 1) edges in a single
color, say blue. Let A be a set of k + 5(rm — 1) neighbors of v by blue edges.

Claim 1. Euch verter of A has at most 2 edges in u single color other than blue
in G[A].

Proof. For a contradiction, assume that a vertex in A has three edges in a
different color, say red, within G[A4]. Since G is monochromatic-claw-free. we
can find a red triangle T in G[A]. This means that there is a blue induced claw
centered at v with blue edges to T, a contradiction. O
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By Claimn 1, each vertex of A has at least k — 1 + 3(m — 1) blue edges in
G[A]. Since any two non-adjacent vertices of A in blue have at least 2(k - 1 +
3(m —1)) — (k+5(m — 1) — 2) > k common blue neighbors in A, the subgraph
of G[A U {v}] induced on the blue edges is k-connected.

Suppose a vertex w € G\ G[A U {v}] is connected to at least six vertices in
A with a single color other than blue, say in red. Then among these vertices,
since there is no induced red claw centered at w, there will be a red triangle,
a contradiction. Thus, each vertex of G\ G[A U {v}] has at most 5 edges in a
single color other than blue into A. Since |A| = k + 5(m — 1), each vertex in
G\ A has at least k blue edges into G[A]. This provides the desired spanning
k-connected blue subgraph.

Theorem 1.
sm(2,2,3) =6 and sm(2,3,3)=8.

Proof. First we show that sm(2,2,3) = 6. The lower hound is provided by
Proposition 2.

Consider a coloring of Kg with at most two colors, say red and blue, such
that there is no induced monochromatic K, 3. Since R(Cy,Cy) = 6, there is a
monochromatic Cy4, say C = abed in red. If both vertices outside C have two
red edges to C, this induces a red spanning 2-connected subgraph. Hence, one
of these two vertices, say u, has at least three blue edges, to C. Since the graph
contains no monochromatic induced claw, this implies the edges au, bu. cu, du
as well as ac and bd are all blue. If we let v be the remaining vertex, then
v must have two red neighbors that are opposite vertices on C, say a and ¢,
since otherwise the blue edges will induce a spanning 2-connected subgraph. If
both bv and dv are blue, then there is an induced red claw centered at a so we
may assume bv is red. Then, regardless of the color of the edge uv, there is an
induced monochromatic claw centered at u (if uv is blue) or at v (if uv is red),
for a contradiction. This completes the proof that sm(2,2,3) = 6.

Next we show that sm(2,3,3) = 8. In this case, the lower bound from
Proposition 2 is not enough. Here, the lower bound is provided by the following
construction. It is easy to verify that the graphs in Figure 1 are complementary,
claw-free and have connectivity 2. Thus, together they provide a 2-coloring of
K, with no monochromatic claw and no 3-connected spanning subgraph.

n

e f
c b

9

Figure 1: Complementary graphs making a 2-coloring of K5.
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For the upper bound, consider a coloring of Ky with at most two colors, say
blue and red, such that there is no induced monochromatic K 3. Since we are
2-coloring K, every vertex must have at least 4 edges in one color. Thus, we
get the following two cases.

Case 1. There ezist a vertex v with at least five edges in a single color, say red.

In this case, the following claim verifies that there are only three possibilitics
(up to symmetry) shown in Figure 2.

Claim 2. Among the five neighbors of v by red edges, there exists either a red
K, a red Cs or a red bow-tie (i.e. two lriangles sharing a vertez).

Proof. Since there is no induced red claw, there is no blue triangle in N(v). If
there is also no red triangle, then the five vertices must induce both a red Cs
and a blue Cs. Otherwise, let abc be a red triangle within N(v). Assume that
there is no red K in N(v) and let d and e be the other two vertices. If de is red,
then it is casy to sce that there is either a red Cs or a red bow-tie. Otherwise,
if de is blue, then it is easy to see that we may assume ad, bd and ce are red.
We may then repeat this argument using the red triangle abd and the red edge

ce to obtain the desired result. O
v v ] [
e a d
h [+
(a) K4 C N(v). (b) Cs € N(v). (c) Bow-tie in N(v).

Figure 2: A vertex v with red degree 5.

In Subcase (a) (see Figure 2a), every vertex outside the K5 = K43 U {v}
(including @) has at least three red edges into the K5. This shows us that the
graph induced on the red edges is spanning and 3-connected.

In Subcase (b) (see Figure 2b), if both vertices outside this structure have at
least three red edges into {v} U N(v), the graph induced on the red edges would
be spanning and 3-connected. If a vertex outside this structure has a blue edge
to v, then it must have at most two blue edges to the cycle C = C5 € N(v)
and therefore at least three red edges. Thus, we may assume there is a vertex =
outside the graph pictured in Figure 2b with a red edge to v. Il = has another
two red edges to N(v), then we are done as hefore so suppose = has blue edges
to at least four vertices of N(wv). This means there is a red claw centered at v
with red edges to = and two of the vertices of C for a contradiction.
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In Subcase (c) (see Figure 2c), we may assume that adbea is a blue C,
(since otherwise we are in Subcase (b)). Let x be a vertex outside the structure
pictured in the figure. If £ has blue edges to two consecutive vertices of the Cy,
then this would imply that there is either a blue claw centered at z, or a red
claw centered at c or v. Otherwise, if say az is blue, then dz and ez are red,
but then we have a blue claw centered at a. It follows that az, bx, dx, ex must
all be red edges. Repeating the whole argument with the remaining vertex, we
obtain a 3-connected spanning subgraph on the red edges.

Case 2. All vertices have four edges in one color and three edges in the other
color.

Suppose a vertex v has four red edges. Let a, b, ¢, d be the red neighbors of v
and let e, f, g be the remaining (blue) neighbors. Since there is no induced red
claw, it is easy to see that there are two subcases, either there is a red triangle
or two independent red edges within {a, b, ¢, d}.

Subcase (a) Assume that bed is a red triangle.

To avoid an induced blue claw from a to {b, ¢, d}. we may assume that ab is
a red edge. Since b has red degrece 4, all edges between {b, v} and {e, f, g} must
be blue. To avoid a blue induced claw centered at v, the triangle efg must not
be entirely red, so assume ef is blue. Then ae is red since otherwise there would
be an induced blue claw from e to {a,b,v}. Similarly, af is red. Then we have
an induced red claw from a to {e, f,v}.

Subcase (b) Assume thal ab and cd are red edges.

Note first that there is a red edge from e to {a, b} to avoid an induced blue
claw from e to {a,b,v}. This is also true replacing e with f or g or replacing
{a, b} with {c,d}, or both. Hence, up to symmetry, there arc two possible cascs
to consider.

Subcase (b)(i) Assume that ae,ag, cf.cg are all red edges.

The edges fg and eg must be red to avoid red induced claws centered
at ¢ and a respectively. Since a,c,g all have red degree four, we get that
ac,ad, be,af, ce, by, dg are all blue edges. Then bd and e f arc also blue to avoid
induced blue claws centered at g and ». Then the blue edges contain a spanning
3-connected subgraph.

Subcase (b)(ii) Assumne that ae.af,ce,cf are all red edges.

Since a and ¢ have red degree four, we have acg is a blue triangle. This
iplies that eg and fg are blue edges to avoid induced red claws centered at e
and f respectively. Then g has blue degree at least five, a contradiction. O



3 Color Degrees

Theorem 2. Let t > 3 and m > 2 be integers and let G be a monochromatic-
S, -free m-coloring of K, withn > Ryn((m—1)(t —1)t+1). Then there ezists a
color, say blue, such that every vertez has degree at most R(t—1,t) — 1 in every
color other than blue. Furthermore, the bound on the degree is the best possible.

Proof. Supposen > Rpn((m—1)(¢t—1)¢+1). Much like the proof of Proposition 1,
by Ramsey’s Theorem [5], there exists a monochromatic clique K in G of order
at least (m — 1)(t— 1)t + 1, say in blue. Since G is monochromatic-S;-free, every
vertex in G\ K has at most ¢ — 1 edges in each other color into K. This means
that every vertex in G\ K has a total of at most (m — 1)(¢ — 1) non-blue edges
into K. Since |K| > (mm — 1)(t — 1)t + 1, every set of t vertices in G \ K shares
at least one blue neighbor in K. Furthermore, this also means that every set of
t vertices in G shares at least one blue neighbor in K.

Now suppose there exists a vertex v € G of degree at least R(t—1,¢) in some
color other than blue, say red. In the red neighborhood of », there must either
be a red clique of order ¢t — 1 or a set of ¢ vertices inducing no red edge. The
latter cannot occur since otherwise there would be a red induced S; centered
at v. This means there must be a red clique K’ of order ¢t — 1 within the red
neighborhood of v. Finally since the set of vertices K’U {v} has a common blue
neighbor w in K, but this means that w is the center of a blue induced S, for
a contradiction.

For sharpness, consider the following construction. Let G¢ be the sharpness
example for R(t—1,¢) = n;. This means that G, is a 2-colored K, -1 containing
no red K,_, and no blue K,. To this, we add a single vertex with all incident
edges colored in red. Repeating this with every other non-blue color and blue.
we obtain m — 1 copies of K,,, with each 2-colored with blue and another color.
Finally, add n — (m — 1)n, vertices with all incident edges colored in blue to
produce the m-colored complete graph G on n vertices. For a non-blue color,
say red, this coloring has a vertex of red degree R(t — 1,1) — 1 but clearly there
is no induced red S; since the red edges span n, vertices containing only red and
blue edges and with no blue K;. Also, it is clear that G contains no K, using
non-blue colors, and hence there is also no induced blue S;. 3
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