A Note on the Fair Domination in Trees

Nader Jafari Rad and Roghayyeh Qezel Sofla
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran

E-mail: n.jafarirad@gmail.com

Abstract

A dominating set in a graph G is a subset S of vertices such that any vertex not in S is adjacent to some vertex of S. The domination number, $\gamma(G)$, of G is the minimum cardinality of a dominating set. A dominating set of cardinality $\gamma(G)$ is called a $\gamma(G)$ -set. A fair dominating set in a graph G (or FD-set) is a dominating set S such that all vertices not in S are dominated by the same number of vertices from S; that is, every two vertices not in S have the same number of neighbors in S. The fair domination number, fd(G), of G is the minimum cardinality of an FD-set. A fair dominating set of G of cardinality fd(G) is called an fd(G)-set. We say that fd(G) and $\gamma(G)$ are strongly equal and denote by $fd(G) \equiv \gamma(G)$, if every $\gamma(G)$ -set is an fd(G)-set. In this paper we provide a constructive characterization of trees T with $fd(T) \equiv \gamma(T)$.

Keywords: Domination number, Fair domination number, Strong equality, Tree. **MSC 2000**: 05C69.

1 Introduction

Let G be a simple graph with vertex set V = V(G) and edge set E = E(G). For every vertex $v \in V$, the open neighborhood N(v) is the set $\{u \in V \mid uv \in E\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is $\deg_C(v) =$ $\deg(v) = |N(v)|$. If $S \subseteq V(G)$, then G[S] is the subgraph induced by S. A vertex of degree one in a tree is called a leaf, and its neighbor is called a support vertex. If v is a support vertex in a tree, then L_v will denote the set of all leaves adjacent to v. A support vertex v is called strong support vertex if $|L_v| > 1$. For $r, s \ge 1$, a double star S(r, s) is a tree with exactly two vertices that are not leaves, called the central vertices, with one adjacent to r leaves and the other to s leaves. For a vertex v in a rooted tree T, let C(v) denote the set of children of v, D(v) denote the set of descendants of v and $D[v] = D(v) \cup \{v\}$, and the depth of v, depth(v), is the largest distance from v to a vertex in D(v). The maximal subtree at v is the subtree of T induced by $D(v) \cup \{v\}$, and is denoted by T_v . The distance d(u, v) between two vertices u and v in a graph G is the minimum number of edges of a path from u to v. The diameter diam(G) of G, is $\max_{u,v \in V(G)} d(u,v)$. For terminology and notation on graph theory not given here, the reader is referred to [7].

A dominating set in a graph G is a set D of vertices such that every vertex $v \in V$ is either in D or adjacent to a vertex of D. A vertex in D is said to dominate a vertex outside D if they are adjacent in G. The domination number of G, denoted $\gamma(G)$, is the minimum cardinality of a dominating set. A dominating set of G of cardinality $\gamma(G)$ is called a $\gamma(G)$ -set. For a comprehensive study of domination parameters the reader is referred to G.

Caro et al. [1] initiated the study of fair domination in graphs. For an integer $k \geq 1$, a k-fair dominating set, abbreviated kFD-set, in G is a dominating set D such that $|N(v) \cap D| = k$ for every vertex $v \in V - D$. The k-fair domination number of G, denoted by $fd_k(G)$, is the minimum cardinality of a kFD-set. A kFD-set of G of cardinality $fd_k(G)$ is called an $fd_k(G)$ -set. A fair dominating set,

abbreviated FD-set, in G is a kFD-set for some integer $k \geq 1$. Thus a dominating set D is an FD-set in G if D = V or if $D \neq V$ and all vertices not in D are dominated by the same number of vertices from D; that is, $|N(u) \cap D| = |N(v) \cap D| > 0$ for every two vertices $u, v \in V - D$. Notice that if $G \neq \overline{K_n}$, then G contains a vertex v that is not isolated in G and the set $V - \{v\}$ is an FD-set in G. Thus a non-empty graph has an FD-set of cardinality less than its order. The fair domination number, denoted by fd(G), of a graph G that is not the empty graph is the minimum cardinality of an FD-set in G. By convention, if $G = \overline{K_n}$, it is defined fd(G) = n. Hence if G is not the empty graph, then $fd(G) = \min\{fd_k(G)\}$, where the minimum is taken over all integers k where $1 \leq k \leq |V| - 1$. An FD-set of G of cardinality fd(G) is called an fd(G)-set.

Clearly if $fd(G) = \gamma(G)$, then every fd(G)-set is also a $\gamma(G)$ -set. However not every $\gamma(G)$ -set is a fd(G)-set, even when $fd(G) = \gamma(G)$. For example in the path $P_4: v_1v_2v_3v_4$, $fd(P_4) = \gamma(P_4) = 2$, but $\{v_1, v_3\}$ is a minimum dominating set which is not an FD-set. We say that fd(G) and $\gamma(G)$ are strongly equal and denote by $fd(G) \equiv \gamma(G)$, if every $\gamma(G)$ -set is an fd(G)-set. Haynes and Slater in [5] were the first to introduce strong equality between two parameters. Also in [2] Chellali and Jafari Rad, and in [3] and [4], Haynes, Henning and Slater gave constructive characterizations of trees with strong equality between some domination parameters. Our purpose in this paper is to present a constructive characterization of trees T with $fd(T) \equiv \gamma(T)$.

2 Characterization of trees T with $fd(T) \equiv \gamma(T)$

Our aim is to present a constructive characterization of trees T with $fd(T) \equiv \gamma(T)$. For this purpose we define a family of trees as follows: Let T be the class of trees T that can be obtained from a sequence $T_1, T_2, \dots, T_k = T$ $(k \geq 1)$ of trees, where T_1 is a star $K_{1,t}$ with $t \geq 2$, and if $k \geq 2$, T_{i+1} can be obtained recursively from T_i by one of the

following operations for $1 \le i \le k-1$.

Operation \mathcal{O}_1 Assume that $w \in V(T_i)$ is a vertex contained in no $\gamma(T_i)$ -set. Then T_{i+1} is obtained from T_i by joining a leaf of a star $K_{1,r}(r \geq 2)$ to w.

Operation \mathcal{O}_2 Assume that $w \in V(T_i)$ is a support vertex such that either $\deg(w) \geq 3$ or $\deg(w) = 2$ and w belongs to every $\gamma(T_i)$ -set. Then T_{i+1} is obtained from T_i by joining the center of a star $k_{1,r}(r \geq 2)$ to w.

Lemma 1 If $fd(T_i) \equiv \gamma(T_i)$ and T_{i+1} is obtained from T_i by Operation \mathcal{O}_1 , then $fd(T_{i+1}) \equiv \gamma(T_{i+1})$.

Proof. Let y be the leaf of a star $K_{1,r}$ that is joined to w according to Operation \mathcal{O}_1 , and let x be the center of $K_{1,r}$. Let S be a $\gamma(T_i)$ -set containing all support vertices. Clearly S is an $fd(T_i)$ -set. By assumption $w \notin S$. Then $S \cup \{x\}$ is an FD-set for T_{i+1} , and so $fd(T_{i+1}) \leq fd(T_i) + 1$. Now assume that D is a $fd(T_{i+1})$ -set. Suppose that $x \notin D$. Clearly any leaf adjacent to x belongs to D. If $deg(x) \geq 3$ then $y \in D$, since deg(y) = 2. Now $(D \cap V(T_i)) \cup \{w\}$ is an FD-set for T_i implying that $fd(T_i) \leq fd(T_{i+1}) - 2$. This leads to $fd(T_i) + 2 \le fd(T_{i+1}) \le fd(T_i) + 1$, a contradiction. Thus deg(x) = 2. Let x_1 be the leaf of T_{i+1} which is adjacent to x. It is obvious that $x_1 \in D$. Assume that $y \in D$. If $w \in D$ then $D \cap V(T_i)$ is an FD-set for T_i implying that $fd(T_i) \leq fd(T_{i+1}) - 2$. This leads to $fd(T_i) + 2 \le fd(T_{i+1}) \le fd(T_i) + 1$, a contradiction. Thus $w \notin D$. Then $D \cap V(T_i)$ is a dominating set for T_i , implying that $fd(T_i) = \gamma(T_i) \leq fd(T_{i+1}) - 2$. This leads to $fd(T_i) + 2 \leq$ $fd(T_{i+1}) \leq fd(T_i) + 1$, a contradiction. We deduce that $y \notin D$. Then $w \in D$, and $D \cap V(T_i)$ is an FD-set for T_i , implying that $fd(T_i) \leq fd(T_{i+1}) - 1$. Now $D \cap V(T_i)$ is an $fd(T_i)$ -set containing w, a contradiction. We deduce that $x \in D$. If $y \notin D$ then $D \cap V(T_i)$ is an FD-set for T_i implying that $fd(T_i) \leq fd(T_{i+1}) - 1$. Thus assume that $y \in D$. If $w \in D$ then $D \cap V(T_i)$ is an FD-set for T_i implying that $fd(T_i) \leq fd(T_{i+1}) - 2 \leq fd(T_i) - 1$, a contradiction.

Thus $w \notin D$. Then $D \cap V(T_i)$ is an FD-set for $T_i - w$ implying that $fd(T_i - w) \leq fd(T_{i+1}) - 2$. But $fd(T_i - w) \geq \gamma(T_i - w) \geq \gamma(T_i) - 1 = fd(T_i) - 1$. Now $fd(T_i) - 1 \leq fd(T_i - w) \leq fd(T_{i+1}) - 2$, and so $fd(T_i) \leq fd(T_{i+1}) - 1$. We conclude that $fd(T_{i+1}) = fd(T_i) + 1$. Similarly $\gamma(T_{i+1}) = \gamma(T_i) + 1$. Now $fd(T_{i+1}) = fd(T_i) + 1 = \gamma(T_i) + 1 = \gamma(T_{i+1})$.

Next we show that $fd(T_{i+1}) \equiv \gamma(T_{i+1})$. Assume that $fd(T_{i+1}) \not\equiv$ $\gamma(T_{i+1})$. Let S_1 be a $\gamma(T_{i+1})$ -set that is not an $fd(T_{i+1})$ -set. Assume that $x \in S_1$. Suppose that $y \notin S_1$. If $w \in S_1$ then $S_1 \cap V(T_i)$ is a $\gamma(T_i)$ -set containing w, a contradiction. Thus $w \notin S_1$. Then $S_1 \cap V(T_i)$ is a $\gamma(T_i)$ -set that is not an $fd(T_i)$ -set, a contradiction. So $y \in S_1$, and we observe that $w \notin S_1$. Then $N(w) \cap S_1 = \{y\}$, and $(S_1 \cap V(T_i)) \cup \{w\}$ is a $\gamma(T_i)$ -set containing w, a contradiction. Next assume that $x \notin S_1$. Then any leaf adjacent to x belongs to S_1 . From $\gamma(T_{i+1}) = \gamma(T_i) + 1$, we obtain that $\deg(x) = 2$. Let x_1 be the leaf of T_{i+1} which is adjacent to x. Clearly $x_1 \in S_1$. If $y \notin S_1$ then $(S_1 \cap V(T_i))$ is a $\gamma(T_i)$ -set that is not an $fd(T_i)$ -set, a contradiction. Thus $y \in S_1$. If $w \in S_1$ then $S_1 \cap V(T_i)$ is a dominating set for T_i implying that $\gamma(T_i) \leq \gamma(T_{i+1}) - 2$, a contradiction. Thus $w \notin S_1$. Since $|N(w) \cap S_1| = |N(x) \cap S_1|$, we obtain that $S_1 \cap V(T_i)$ is a dominating set for T_i of cardinality less than $\gamma(T_i)$. This is a contradiction.

Lemma 2 If $fd(T_i) \equiv \gamma(T_i)$ and T_{i+1} is obtained from T_i by Operation \mathcal{O}_2 , then $fd(T_{i+1}) \equiv \gamma(T_{i+1})$.

Proof. Let x be the center of the star $K_{1,r}$ which is joined to w according to Operation \mathcal{O}_2 . Let S be a $\gamma(T_i)$ -set containing w. By assumption S is a $fd(T_i)$ -set. Then $S \cup \{x\}$ is an FD-set for T_{i+1} , and thus $fd(T_{i+1}) \leq fd(T_i) + 1$. Now let D be a $fd(T_{i+1})$ -set. Assume that $x \notin D$. Then any leaf adjacent to x belongs to D. In particular D contains all leaves of T_{i+1} . Then $D \cap V(T_i)$ is a dominating set for T_i implying that $fd(T_i) = \gamma(T_i) \leq fd(T_{i+1}) - r$. This leads to $fd(T_i) + r \leq fd(T_{i+1}) \leq fd(T_i) + 1$, a contradiction, since $r \geq 2$. Thus $x \in D$. Since w is a support vertex, and D is an FD-set, we

find that $w \in D$. Then $D \cap V(T_i)$ is an FD-set for T_i , and thus $fd(T_i) \leq fd(T_{i+1}) - 1$. Hence $fd(T_{i+1}) = fd(T_i) + 1$. Similarly $\gamma(T_{i+1}) = \gamma(T_i) + 1$. Now $fd(T_{i+1}) = fd(T_i) + 1 = \gamma(T_i) + 1 = \gamma(T_{i+1})$.

Next we show that $fd(T_{i+1}) \equiv \gamma(T_{i+1})$. Assume that $fd(T_{i+1}) \not\equiv \gamma(T_{i+1})$. Let D_1 be a $\gamma(T_{i+1})$ -set that is not $fd(T_{i+1})$ -set. Clearly we may assume that $x \in D_1$. If $w \in D_1$ then $D_1 \cap V(T_i)$ is a $\gamma(T_i)$ -set that is not an $fd(T_i)$ -set, a contradiction. Thus $w \not\in D_1$. If w is a strong support vertex then $(D_1 \cap V(T_i) - L(w)) \cup \{w\}$ is a dominating set for T_i of cardinality less than $\gamma(T_i)$, a contradiction. Thus w is not a strong support vertex. Let w_1 be the leaf adjacent to w. Clearly $w_1 \in D_1$, and $D_1 \cap V(T_i)$ is a $\gamma(T_i)$ -set. Now $D_1 \cap V(T_i)$ or $D_2 = (D_1 \cap V(T_i) - \{w_1\}) \cup \{w\}$ is a $\gamma(T_i)$ -set that is not an FD-set, a contradiction.

By a simple induction on the number of operations performed to construct a tree T, and Lemmas 1 and 2 we obtain the following.

Lemma 3 Let T be a tree. If $T \in \mathcal{T}$ then $fd(T) \equiv \gamma(T)$.

Theorem 4 Let T be a tree of order $n \geq 3$. Then $fd(T) \equiv \gamma(T)$ if and only if $T \in \mathcal{T}$.

Proof. Let T be a tree of order $n \geq 3$ with $fd(T) \equiv \gamma(T)$. We employee an induction on n to show that $T \in \mathcal{T}$. If $\operatorname{diam}(T) = 2$ then T is a star and so $T \in \mathcal{T}$. If $\operatorname{diam}(T) = 3$, then T is a double star. Let x and y be the centers of T. If $\operatorname{deg}(x) = 2$ then $\{y, x_1\}$, where x_1 is the leaf adjacent to x, is a $\gamma(T)$ -set which is not an FD-set, a contradiction. Thus $\operatorname{deg}(x) \geq 3$, and similarly $\operatorname{deg}(y) \geq 3$. Let T_0 be the component of T - xy which contains x. Clearly T_0 is a star with a unique minimum dominating set, and $T_0 \in \mathcal{T}$. Then T is obtained from T_0 by Operation \mathcal{O}_2 . Thus assume that $\operatorname{diam}(T) \geq 4$.

Let $d = \operatorname{diam}(T)$, and x_0, x_1, \dots, x_d be a diametrical path of T, where x_0 and x_d are two leaves of T. We root T at x_0 . Let S be a

 $\gamma(T)$ -set containing all support vertices. Clearly S is an fd(T)-set. We consider the following cases.

Case 1. $\deg(x_{d-1}) \geq 3$. Assume that $\deg(x_{d-2}) = 2$. If $x_{d-2} \in S$, then we may assume that $x_{d-3} \notin S$, and then $(S - \{x_{d-2}\}) \cup \{x_{d-3}\}$ is a $\gamma(T)$ -set that is not an fd(T)-set, a contradiction. Thus $x_{d-2} \notin S$. Then $x_{d-3} \notin S$. Let $T_1 = T - T_{x_{d-2}}$. Then $S \cap V(T_1)$ is an FD-set for T_1 and so $fd(T_1) \leq fd(T) - 1$. Furthermore every $fd(T_1)$ -set can be extended to a dominating set for T by adding to it the vertex x_{d-1} and so $fd(T) = \gamma(T) \le fd(T_1) + 1$. Hence $fd(T) = fd(T_1) + 1$. Similarly $\gamma(T) = \gamma(T_1) + 1$. Now we obtain that $fd(T_1) = fd(T) - 1 =$ $\gamma(T) - 1 = \gamma(T_1)$. Next we show $fd(T_1) \equiv \gamma(T_1)$. Assume that $fd(T_1) \not\equiv \gamma(T_1)$. Let S_1 be a $\gamma(T_1)$ -set that is not an $fd(T_1)$ -set. Then $S_1 \cup \{x_{d-1}\}$ is a $\gamma(T)$ -set that is not fd(T)-set, a contradiction. Hence $fd(T_1) \equiv \gamma(T_1)$. Applying the inductive hypothesis, we have that $T_1 \in \mathcal{T}$. If there is some $\gamma(T_1)$ -set containing x_{d-3} then adding x_{d-1} to it yields a $\gamma(T)$ -set which is not an fd(T)-set, a contradiction. Thus no $\gamma(T_1)$ -set contains x_{d-3} . Consequently T is obtained from T_1 by Operation \mathcal{O}_1 .

Now we assume that $\deg(x_{d-2}) \geq 3$. Suppose that x_{d-2} has a child $u \neq x_{d-1}$ with $deg(u) \geq 2$. Then $u \in S$. Since S is an FD-set and x_d is dominated by precisely one vertex of S, we obtain that $x_{d-2} \in S$. Let u_1 be a leaf adjacent to u. If deg(u) = 2, then $(S-\{u\})\cup\{u_1\}$ is a $\gamma(T)$ -set which is not an FD-set, a contradiction. So $\deg(u) \geq 3$. If x_{d-2} is not a support vertex then we observe that $x_{d-3} \notin S$, and $(S - \{x_{d-2}\}) \cup \{x_{d-3}\}$ is a $\gamma(T)$ -set which is not an FD-set, a contradiction. Thus x_{d-2} is a support vertex. Let $T_2 = T - T_{x_{d-1}}$. Then $S \cap V(T_2)$ is an FD-set for T_2 , and so $\gamma(T_2) \leq 1$ $fd(T_2) \leq fd(T) - 1$. Clearly every $\gamma(T_2)$ -set can be extended to a dominating set for T by adding x_{d-1} to it, and thus $\gamma(T) \leq \gamma(T_2) + 1$. Thus $\gamma(T) = \gamma(T_2) + 1$. Now every $fd(T_2)$ -set can be extended to a dominating set for T by adding to it the vertex x_{d-1} , and so $fd(T) = \gamma(T) \leq fd(T_2) + 1$. Hence $fd(T) = fd(T_2) + 1$. Now we obtain $fd(T_2) = fd(T) - 1 = \gamma(T) - 1 = \gamma(T_2)$. Next we show that $fd(T_2) \equiv \gamma(T_2)$. Assume that $fd(T_2) \not\equiv \gamma(T_2)$. Let D_1 be a $\gamma(T_2)$ -set that is not an $fd(T_2)$ -set. Then $D_1 \cup \{x_{d-1}\}$ is a $\gamma(T)$ -set that is

not fd(T)-set, a contradiction. Hence $fd(T_2) \equiv \gamma(T_2)$. Applying the inductive hypothesis, we have that $T_2 \in \mathcal{T}$. If $\deg_{T_2}(x_{d-2}) \geq 4$, then T is obtained from T_2 by Operation \mathcal{O}_2 . Assume that $\deg_{T_2}(x_{d-2}) = 3$. If there is a $\gamma(T_2)$ -set not containing x_{d-2} then adding to it the vertex x_{d-1} yields a $\gamma(T)$ -set which is not an FD-set, a contradiction. Thus every $\gamma(T_2)$ -set contains x_{d-2} . Consequently T is obtained from T_2 by Operation \mathcal{O}_2 . Now suppose that every child of x_{d-2} except x_{d-1} is a leaf. Clearly $x_{d-2} \in S$. As before if $T_2 = T - T_{x_{d-1}}$ then we can easily obtain that $T_2 \in \mathcal{T}$. If $\deg_{T_2}(x_{d-2}) \geq 3$ then x_{d-2} is a strong support vertex of T_2 belonging to every $\gamma(T_2)$ -set, and thus T is obtained from T_2 by Operation \mathcal{O}_2 . Thus assume that $\deg_{T_2}(x_{d-2}) = 2$. If there is a $\gamma(T_2)$ -set D_1' not containing x_{d-2} then $D_1' \cup \{x_{d-1}\}$ is a $\gamma(T)$ -set that is not an FD-set, a contradiction. Thus every $\gamma(T_2)$ -set contains x_{d-2} . Now T is obtained from T_2 by Operation \mathcal{O}_2 .

Case 2. $\deg(x_{d-1}) = 2$. Assume that $\deg(x_{d-2}) \geq 3$. If x_{d-2} has a child $v \neq x_{d-1}$ that is not a leaf, then according to Case 1 we may assume that deg(v) = 2. Then $v, x_{d-1} \in S$. Since S is an FD-set, we find that $x_{d-2} \in S$. Now $(S - \{x_{d-1}\}) \cup \{x_d\}$ is a $\gamma(T)$ -set that is not an FD-set, a contradiction. Thus any child of x_{d-2} except x_{d-1} is a leaf. Since $x_{d-2} \in S$, we obtain that $(S - \{x_{d-1}\}) \cup \{x_d\}$ is a $\gamma(T)$ -set that is not an FD-set, a contradiction. We thus assume that $deg(x_{d-2}) = 2$. If $x_{d-2} \in S$ then $(S - \{x_{d-1}\}) \cup \{x_d\}$ is a $\gamma(T)$ -set which is not an FD-set, a contradiction. Thus $x_{d-2} \notin S$. Since $|N(x_d) \cap S| = |N(x_{d-2}) \cap S|$, we find that $x_{d-3} \notin S$. Let $T_3 = T - T_{x_{d-2}}$. Then $S \cap V(T_3)$ is an FD-set for T_3 . So $fd(T_3) \leq$ fd(T) - 1. Furthermore every $fd(T_3)$ -set can be extended to an FDset for T by adding to it the vertex x_{d-1} . So $fd(T) \leq fd(T_3) + 1$. Hence $fd(T) = fd(T_3) + 1$. Similarly $\gamma(T) = \gamma(T_3) + 1$. Now we obtain $fd(T_3) = \gamma(T_3)$. Next we show $fd(T_3) \equiv \gamma(T_3)$. Assume that $fd(T_3) \not\equiv \gamma(T_3)$. Let R be a $\gamma(T_3)$ -set that is not an $fd(T_3)$ -set. Then $R \cup \{x_{d-1}\}\$ is a $\gamma(T)$ -set that is not fd(T)-set, a contradiction. Hence $fd(T_3) \equiv \gamma(T_3)$. Applying the inductive hypothesis, we have that $T_3 \in \mathcal{T}$. If there is a $\gamma(T_3)$ -set R_1 containing x_{d-3} then $R_1 \cup \{x_{d-1}\}$ is a $\gamma(T)$ -set which is not an FD-set, a contradiction.

Thus no $\gamma(T_3)$ -set contains x_{d-3} . Consequently T is obtained from T_3 by Operation \mathcal{O}_1 .

The converse follows from Lemma 3.

References

- [1] Y. Caro, A. Hansberg, M. A. Henning, Fair domination in graphs, Discrete Math. 312 (2012), 2905-2914.
- [2] M. Chellali and N. Jafari Rad, Strong equality between the Roman domination and independent Roman domination numbers in trees, Discuss. Math. Graph Theory 33 (2013), 337-346.
- [3] T. W. Haynes, M. A. Henning and P. J. Slater, Strong equality of domination parameters in trees, Discrete Math. 260 (2003), 77-87.
- [4] T. W. Haynes, M. A. Henning and P. J. Slater, Strong equality of upper domination and independence in trees, Util. Math. 59 (2001), 111-124.
- [5] T. W. Haynes and P. J. Slater, Paired-domination in graphs, Networks 32 (1998), 199–206.
- [6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc., New York, 1998.
- [7] D. B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.