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Abstract

A dominating set in a graph G is a subset S of vertices
such that any vertex not in S is adjacent to some vertex of S.
The domination number, ¥(G), of G is the minimum cardinal-
ity of a dominating set. A dominating set of cardinality v(G)
is called a v(G)-set. A fair dominating set in a graph G (or
FD-set) is a dominating set S such that all vertices not in S
are dominated by the same number of vertices from S; that is,
every two vertices not in S have the same number of neighbors
in S. The fair domination number, fd(G), of G is the mini-
mum cardinality of an FD-set. A fair dominating set of G of
cardinality fd(G) is called an fd(G)-set. We say that fd(G)
and v(G) are strongly equal and denote by fd(G) = v(G), if
every v(G)-set is an fd(G)-set. In this paper we provide a
constructive characterization of trees T with fd(T) = v(T).
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1 Introduction

Let G be a simple graph with vertex set V = V(G) and edge set
E = E(G). For every vertex v € V, the open neighborhood N (v) is
the set {u € V | uv € E} and the closed neighborhood of v is the
set N[v] = N(v) U {v}. The degree of a vertex v € V is degg(v) =
deg(v) = [N(v)|. If S € V(G), then G|[S] is the subgraph induced by
S. A vertex of degree one in a tree is called a leaf, and its neighbor is
called a support vertez. If v is a support vertex in a tree, then L, will
denote the set of all leaves adjacent to v. A support vertex v is called
strong support vertez if |L,| > 1. For r, s > 1, a double star S(r, s) is
a tree with exactly two vertices that are not leaves, called the central
vertices, with one adjacent to r leaves and the other to s leaves. For
a vertex v in a rooted tree T', let C(v) denote the set of children of v,
D(v) denote the set of descendants of v and D[v] = D(v) U {v}, and
the depth of v, depth(v), is the largest distance from v to a vertex
in D(v). The mazimal subtree at v is the subtree of T induced by
D(v) U {v}, and is denoted by T,. The distance d(u,v) between two
vertices u and v in a graph G is the minimum number of edges of a
path from u to v. The diameter diam(G) of G, is max, ,ev(g) d(u, v).
For terminology and notation on graph theory not given here, the
reader is referred to [7].

A dominating set in a graph G is a set D of vertices such that every
vertex v € V is either in D or adjacent to a vertex of D. A vertex
in D is said to dominate a vertex outside D if they are adjacent in
G. The domination number of G, denoted v(G), is the minimum
cardinality of a dominating set. A dominating set of G of cardinality
v(G) is called a y(G)-set. For a comprehensive study of domination
parameters the reader is referred to [6].

Caro et al. (1] initiated the study of fair domination in graphs.
For an integer k > 1, a k-fair dominating set, abbreviated kFD-set,
in G is a dominating set D such that |N(v) N D| = k for every
vertex v € V — D. The k-fair domination number of G, denoted by
fdi(G), is the minimum cardinality of a kFD-set. A kFD-set of G
of cardinality fdi(G) is called an fdi(G)-set. A fair dominating set,
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abbreviated FD-set, in G is a kFD-set for some integer k > 1. Thus
a dominating set D is an FD-set in G if D = V or if D # V and
all vertices not in D are dominated by the same number of vertices
from D; that is, [N(u) N D| = |[N(v) N D| > 0 for every two vertices
u,v € V — D. Notice that if G # K,., then G contains a vertex v
that is not isolated in G and the set V — {v} is an FD-set in G. Thus
a non-empty graph has an FD-set of cardinality less than its order.
The fair domination number, denoted by fd(G), of a graph G that is
not the empty graph is the minimum cardinality of an FD-set in G.
By convention, if G = K,, it is defined fd(G) = n. Hence if G is not
the empty graph, then fd(G) = min{fd,(G)}, where the minimum
is taken over all integers k where 1 < k < |V| — 1. An FD-set of G
of cardinality fd(G) is called an fd(G)-set.

Clearly if fd(G) = v(G), then every fd(G)-set is also a v(G)-set.
However not every v(G)-set is a fd(G)-set, even when fd(G) = v(G).
For example in the path P; : vivousvs, fd(Py) = vy(Py) = 2, but
{v1,v3} is a minimum dominating set which is not an FD-set. We say
that fd(G) and v(G) are strongly equal and denote by fd(G) = v(G),
if every v(G)-set is an fd(G)-set. Haynes and Slater in [5] were
the first to introduce strong equality between two parameters. Also
in [2] Chellali and Jafari Rad, and in [3] and [4], Haynes, Henning
and Slater gave constructive characterizations of trees with strong
equality between some domination parameters. Our purpose in this
paper is to present a constructive characterization of trees T' with

fd(T) =~(T).

2 Characterization of trees T with
fd(T) =~(T)

Our aim is to present a constructive characterization of trees T' with
fd(T) = 4(T). For this purpose we define a family of trees as follows:
Let 7 be the class of trees T that can be obtained from a sequence
T, T, -+, T =T (k > 1) of trees, where T} is a star Ky with ¢ > 2,
and if k > 2, T;41 can be obtained recursively from T; by one of the
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following operations for 1 <¢ < k — 1.

Operation O; Assume that w € V(T;) is a vertex contained in no
v(T;)-set. Then T;4; is obtained from T; by joining a leaf of a star
Ky (r>2)tow.

Operation O, Assume that w € V(T;) is a support vertex such
that either deg(w) > 3 or deg(w) = 2 and w belongs to every v(T;)-
set. Then T;;, is obtained from T; by joining the center of a star
ki+(r > 2) tow.

Lemma 1 If fd(T;) = v(T;) and T;41 is obtained from T; by Oper-
ation Oy, then fd(Ti11) = v(Tiv1).

Proof. Let y be the leaf of a star K, that is joined to w accord-
ing to Operation O;, and let = be the center of K;,. Let S be a
v(T;)-set containing all support vertices. Clearly S is an fd(T;)-set.
By assumption w € S. Then S U {z} is an FD-set for T;,;, and
so fd(Ti4+1) £ fd(T:;) + 1. Now assume that D is a fd(Ti41)-set.
Suppose that x ¢ D. Clearly any leaf adjacent to x belongs to D. If
deg(z) > 3 then y € D, since deg(y) = 2. Now (DN V(T;)) U {w}
is an FD-set for T; implying that fd(T;) < fd(Ti+1) — 2. This leads
to fd(T;) + 2 < fd(Tiy1) < fd(T:) + 1, a contradiction. Thus
deg(z) = 2. Let z; be the leaf of T;y; which is adjacent to z. It
is obvious that z; € D. Assume that y € D. If w € D then
D NV(T;) is an FD-set for T; implying that fd(T;) < fd(Ti+1) — 2.
This leads to fd(T;) + 2 < fd(Ti+1) < fd(T;) + 1, a contradiction.
Thus w ¢ D. Then DN V(T;) is a dominating set for T}, implying
that fd(T;) = v(Ti) £ fd(Ti+1) — 2. This leads to fd(T;) + 2 <
fd(Ti+1) < fd(T;) + 1, a contradiction. We deduce that y ¢ D.
Then w € D, and D NV(T;) is an FD-set for T;, implying that
fd(Ty) < fd(Tiy1) — 1. Now D NV(T;) is an fd(T;)-set containing
w, a contradiction. We deduce that z € D. If y € D then DNV(T;)
is an FD-set for T; implying that fd(7;) < fd(Ti+1) — 1. Thus as-
sume that y € D. If w € D then DN V(T;) is an FD-set for T;
implying that fd(T;) < fd(Ti+1) — 2 < fd(Ti) — 1, a contradiction.
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Thus w ¢ D. Then DN V(T;) is an FD-set for T; — w implying that
fA(Ti—w) < fd(Tipr)—2. But fd(Ti—w) > v(Ti—w) 2 ¥(T)—1=
fd(T:) — 1. Now fd(T;) =1 < fd(Ti — w) < fd(Tiy1) — 2, and so
fd(T;) < fd(Ti41)—1. We conclude that fd(Ti;1) = fd(Ti)+1. Sim-
ilarly 7(Tiq1) = ¥(T3) + 1. Now fd(Ti1) = fd(T) +1=(T3) +1=
Y(Tis1)-

Next we show that fd(Ti+1) = ¥(Ti+1). Assume that fd(Tiy1) #
¥(Ti+1). Let Sy be a y(T;41)-set that is not an fd(Ti41)-set. Assume
that £ € S;. Suppose that y ¢ S1. If w € S; then Sy N V(T})
is a (T;)-set containing w, a contradiction. Thus w ¢ S;. Then
S NV(T;) is a v(T;)-set that is not an fd(T;)-set, a contradiction.
So y € 81, and we observe that w ¢ S;. Then N(w) N 1 = {y},
and (S; N V(T;)) U {w} is a v(T;)-set containing w, a contradiction.
Next assume that z & S;. Then any leaf adjacent to z belongs to
S1. From 7(Tiy1) = v(Ti) + 1, we obtain that deg(z) = 2. Let
z; be the leaf of T;;; which is adjacent to z. Clearly z; € S;. If
y € Sy then (S; NV(T})) is a y(T;)-set that is not an fd(T;)-set, a
contradiction. Thusy € S). If w € S) then S1NV(T;) is a dominating
set for T; implying that v(T}) < ¥(Ti+1) — 2, a contradiction. Thus
w ¢ Sy. Since |N(w) N 81| = |N(z) N S|, we obtain that S; NV (T;)
is a dominating set for T} of cardinality less than 4(T;). This is a
contradiction. m

Lemma 2 If fd(T;) = v(T;) and Ti41 is obtained from T; by Oper-
ation Oy, then fd(Tiy1) = v(Tit1)-

Proof. Let z be the center of the star K, which is joined to w
according to Operation Oy. Let S be a 4(T;)-set containing w. By
assumption S is a fd(T;)-set. Then SU{z} is an FD-set for Ti11, and
thus fd(Tiy1) < fd(T:) + 1. Now let D be a fd(T;y1)-set. Assume
that z € D. Then any leaf adjacent to x belongs to D. In particular
D contains all leaves of T;;.;. Then D NV(T;) is a dominating set
for T; implying that fd(T;) = v(T;) < fd(Tiy1) — r. This leads to
FA(T) +r < fd(Ti+1) £ fd(Ti) + 1, a contradiction, since r > 2.
Thus z € D. Since w is a support vertex, and D is an FD-set, we
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find that w € D. Then D N V(T;) is an FD-set for T}, and thus
fd(Ti) £ fd(Tiy1) — 1. Hence fd(Tiy1) = fd(T:) + 1. Similarly
ATir) = AT) + 1. Now fd(Tinr) = fd(T) +1 = (T)) + 1 =
Y(Tit1)-

Next we show that fd(Ti+1) = v(Ti41). Assume that fd(Tiq) Z
Y(Tit1). Let D; be a (Ti+1)-set that is not fd(T;y;)-set. Clearly
we may assume that z € D;. If w € D then Dy NV(T;) is a y(T;)-
set that is not an fd(T;)-set, a contradiction. Thus w ¢ D;. If
w is a strong support vertex then (D, N V(T;) — L(w)) U {w} is a
dominating set for T; of cardinality less than +(T;), a contradiction.
Thus w is not a strong support vertex. Let w; be the leaf adjacent to
w. Clearly wy € Dy, and Dy NV(T;) is a y(T;)-set. Now Dy nV(T;)
or Dy = (D1 NV(T;) — {w1}) U {w} is a 4(T;)-set that is not an
FD-set, a contradiction. m

By a simple induction on the number of operations performed to
construct a tree T', and Lemmas 1 and 2 we obtain the following.

Lemma 3 Let T be a tree. If T € T then fd(T) = v(T).

Theorem 4 Let T be a tree of order n > 3. Then fd(T) = v(T) if
and only if Te T.

Proof. Let T be a tree of order n > 3 with fd(T) = v(T). We
employee an induction on n to show that T € 7. If diam(T') = 2 then
T is a star and so T € 7. If diam(T") = 3, then T is a double star.
Let z and y be the centers of T. If deg(z) = 2 then {y,z;}, where
z1 is the leaf adjacent to z, is a y(T')-set which is not an FD-set, a
contradiction. Thus deg(z) > 3, and similarly deg(y) > 3. Let Ty be
the component of T — zy which contains z. Clearly Tj is a star with
a unique minimum dominating set, and To € 7. Then T is obtained
from Tp by Operation O;. Thus assume that diam(T") > 4.

Let d = diam(T'), and zg, 1, - ,zq be a diametrical path of T,
where zg and z4 are two leaves of T. We root T at zg. Let S be a
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4(T)-set containing all support vertices. Clearly S is an fd(T)-set.
We consider the following cases.

Case 1. deg(z4—1) = 3. Assume that deg(zqg—2) = 2. If z4_2 € 5,
then we may assume that z4_3 € S, and then (S — {z4—2})U{z4-3} is
a y(T)-set that is not an fd(T)-set, a contradiction. Thus z4_2 & S.
Then 243 ¢ S. Let Ty =T — T;,_,. Then SNV(Ty) is an FD-set
for Ty and so fd(T1) < fd(T) — 1. Furthermore every fd(T1)-set can
be extended to a dominating set for T' by adding to it the vertex
z4-1 and so fd(T) = v(T) < fd(T1) + 1. Hence fd(T) = fd(T1) + 1.
Similarly v(T') = v(T1)+1. Now we obtain that fd(T}) = fd(T)-1=
¥(T) — 1 = 4(T1). Next we show fd(T1) = v(T1). Assume that
fd(T1) # v(T1). Let S; be a v(T1)-set that is not an fd(T1)-set.
Then S;U{zq_1} is a 4(T)-set that is not fd(T')-set, a contradiction.
Hence fd(T1) = v(T1). Applying the inductive hypothesis, we have
that T € 7. If there is some y(7})-set containing z4_3 then adding
x4-1 to it yields a y(T)-set which is not an fd(T)-set, a contradiction.
Thus no v(T})-set contains z4_3. Consequently T is obtained from
T) by Operation O;.

Now we assume that deg(z4—2) = 3. Suppose that x4_o has a child
u # x4_y with deg(u) > 2. Then u € S. Since S is an FD-set
and z4 is dominated by precisely one vertex of S, we obtain that
zq_o € S. Let u; be a leaf adjacent to u. If deg(u) = 2, then
(S—{u})U{u1} is ay(T)-set which is not an FD-set, a contradiction.
So deg(u) > 3. If z4_o is not a support vertex then we observe that
z4-3 € S, and (S — {z4—2}) U {za-3} is a y(T)-set which is not
an FD-set, a contradiction. Thus z4_o is a support vertex. Let
Ty =T —T;,_,. Then SNV (T3) is an FD-set for T3, and so y(T2) <
fd(Ty) < fd(T) — 1. Clearly every y(T3)-set can be extended to a
dominating set for T by adding z4— to it, and thus v(T) < 4(T2)+1.
Thus v(T) = 4(T3) + 1. Now every fd(T2)-set can be extended
to a dominating set for T by adding to it the vertex z4—;, and so
fd(T) = v(T) < fd(T2) + 1. Hence fd(T) = fd(T3) + 1. Now we
obtain fd(T3) = fd(T) — 1 = 4(T) — 1 = y(T3). Next we show that
fd(Ty) = v(T). Assume that fd(T2) # v(12). Let D; be a y(T3)-set
that is not an fd(T3)-set. Then D; U {z4—1} is a (T)-set that is
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not fd(T)-set, a contradiction. Hence fd(T5) = v(T3). Applying the
inductive hypothesis, we have that T € T. If degr,(ra—2) > 4, then
T is obtained from T by Operation Op. Assume that degr, (z4-2) =
3. If there is a (73)-set not containing z4_2 then adding to it the
vertex z4_1 yields a y(T')-set which is not an FD-set, a contradiction.
Thus every y(T3)-set contains z4_s. Consequently T is obtained from
T by Operation Q3. Now suppose that every child of z4_5 except
z4-1 is a leaf. Clearly z4-2 € S. As before if Ty =T — T;,_, then
we can easily obtain that T € 7. If degr,(z4-2) > 3 then z4 5
is a strong support vertex of Tp belonging to every «(T3)-set, and
thus T is obtained from T by Operation Op. Thus assume that
degr,(zq—2) = 2. If there is a y(T2)-set D] not containing x4_s then
Dj U {z4-1} is a y(T)-set that is not an FD-set, a contradiction.
Thus every «y(T»)-set contains z4_s. Now T is obtained from T3 by
Operation Os.

Case 2. deg(z4-;) = 2. Assume that deg(z4_9) > 3. If z4_5 has a
child v # z4_; that is not a leaf, then according to Case 1 we may
assume that deg(v) = 2. Then v,z4_; € S. Since S is an FD-set, we
find that 49 € S. Now (S — {z4-1}) U {zq} is a y(T)-set that is
not an FD-set, a contradiction. Thus any child of z4_5 except z4_
is a leaf. Since z4_o € S, we obtain that (S — {z4_1}) U {z4} is
a y(T)-set that is not an FD-set, a contradiction. We thus assume
that deg(zq—2) = 2. If z4_2 € S then (S — {z4_1}) U {z4} is a
v(T)-set which is not an FD-set, a contradiction. Thus z4_5 & S.
Since |N(zq) N S| = |N(zg-2) N S|, we find that z4_3 ¢ S. Let
I3=T-T;,,. Then SNV(T3) is an FD-set for T3. So fd(T3) <
fd(T) — 1. Furthermore every fd(T3)-set can be extended to an FD-
set for T by adding to it the vertex z4_;. So fd(T) < fd(T3) + 1.
Hence fd(T) = fd(T3) + 1. Similarly v(T) = v(T3) + 1. Now we
obtain fd(T3) = v(73). Next we show fd(T3) = v(T3). Assume that
fd(T3) £ y(T3). Let R be ay(T3)-set that is not an fd(T3)-set. Then
RU{z4-1} is a y(T)-set that is not fd(T')-set, a contradiction. Hence
fd(T3) = ~(T3). Applying the inductive hypothesis, we have that
T3 € T. If there is a y(T3)-set R; containing z4_3 then Ry U {z4—1}
is a y(T")-set which is not an FD-set, a contradiction.
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Thus no «(73)-set contains z4_3. Consequently T is obtained from
T3 by Operation O;.

The converse follows from Lemma 3. m
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