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Abstract

We define three new pebbling parameters of a connected graph G,
the r-, g-, and u-critical pebbling numbers. Together with the peb-
bling number, the optimal pebbling number, the number of vertices
n and the diameter d of the graph, this yields 7 graph parameters.
We determine the relationships between these parameters. We inves-
tigate properties of the r-critical pebbling number, and distinguish
between greedy graphs, thrifty graphs, and graphs for which the r-
critical pebbling number is 2.
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1 Pebbling Numbers

Let G be a connected graph. A pebbling distribution (or simply distribution)
D on G is a function which assigns to each vertex of G a non-negative
integer number of pebbles. If D is a distribution on a graph G and a
is a vertex of G, we denote by D(a) the number of pebbles on a in the
distribution D. The size of the distribution D is the number of pebbles in
D) IDi = ZaEV(G) D(a)'

A pebbling step [a,b] is an operation which takes the distribution D,
removes two pebbles from the vertex a, and adds one pebble at the adjacent
vertex b. A distribution D is r-solvable if there exists a sequence of pebbling
steps starting with D and ending with at least one pebble on the vertex r,
and solvable if D is r-solvable for all ». We call such a sequence a solution
of D. A distribution D is r-unsolvable if it is not r-solvable, and unsolvable
if there is some vertex r for which D is not r-solvable.

A rooted distribution is a distribution which also fixes the vertex r (the
root verter). Note that for a rooted distribution, the terms solvable and
r-solvable are interchangeable. In general, any statement about a distribu-
tion D can be applied to a corresponding rooted distribution as well. For
emphasis, we say that an un-rooted distribution is a global distribution.

The pebbling number p(G) is the minimum number such that any dis-
tribution on G with p(G) pebbles is solvable [17]. For example, since the
first distribution on the graph C7 in Figure 1 is unsolvable, p(C7) > 10. In
fact, p(C7) = 11 [17).

SRR o

Figure 1: Five pebbling distributions on the graph C7. The second and
third distributions are solvable. The rest are unsolvable.

Pebbling on graphs can be used to model the distribution of resources
with loss. For example, we might be shipping water across roadways, and
the water evaporates as it travels; or we might be sending heated water
through pipes, and the water cools as it travels; or we might be sending
cell phone signals from towers, and the signal weakens as it travels. The
pebbling number of the distribution network is then a measure of how much
of the resource we need to have one unit arrive at our destination.

The pebbling number can also be thought of in the context of a pebbling
game on the graph G that we play against an opponent. First the opponent
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distributes some pebbles on the vertices of G, and picks a root vertex.
Then we make pebbling moves to put at least one pebble on the root. The
pebbling number p(G) is the smallest number of pebbles with which we can
always win the pebbling game.

The pebbling numbers of several families of graphs have been found,
such as trees [3, 4] and grid graphs [5], and significant progress has been
made on diameter k graphs [2, 22, 23]. Finding the pebbling number of
an arbitrary connected graph is computationally difficult, but can be done
in polynomial time for several additional families of graphs [1, 6, 12, 19].
Much research has focused on the pebbling number of a product of graphs,
and in particular on Graham’s Conjecture, which states that p(G x H) <
p(G) x p(H) (7, 13, 15].

In addition, many variations of pebbling numbers have been defined,
including the optimal pebbling number [3, 14], the t-pebbling number |9,
12], the cover pebbling number [11], the domination cover pebbling number
[10], and the weighted pebbling number [18]. These vary the rules for
what constitutes a pebbling step, what constitutes a solved distribution
of pebbles, or the turns in the pebbling game. For example, the cover
pebbling number requires at least one pebble on each vertex of G in a solved
distribution, and in the optimal pebbling game we distribute the pebbles
on G, then the opponent picks the root. Recently Hurlbert established a
general pebbling framework that includes several of these variations [16].

In this paper we introduce three new pebbling parameters, the 7-, g-,
and u-critical pebbling numbers. Like the optimal pebbling number, these
variations can all be thought of as variations in the rules of the pebbling
game, as we outline below. We first give more formal definitions.

A rooted distribution D is minimally r-solvable if D is r-solvable but
the removal of any pebble makes D not r-solvable. A rooted distribution
D is mazimally r-unsolvable if D is not r-solvable but the addition of any
pebble makes D r-solvable. A global distribution D is minimally solvable if
D is solvable but the removal of any pebble makes D unsolvable. A global
distribution D is mazimally unsolvable if D is unsolvable but the addition
of any pebble makes D solvable.

For example, the first distribution in Figure 2 is minimally solvable as
a global distribution, since the deletion of any pebble makes it unsolvable
to some root. However, it is not minimally r-solvable for any choice of a
root r, since once a root is selected four pebbles can be deleted from the
distribution while keeping it solvable.

The eight combinations of largest or smallest, solvable or unsolvable,
and rooted or global distributions yield the following five pebbling-related
parameters on a graph. Two pairs of these combinations yield the same
parameter, and one combination turns out to be trivial, as noted below.
Given any two of the remaining parameters, there is a graph for which they
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1 1 4 r

Figure 2: Two pebbling distributions on the graph K3 3. The first distribu-
tion is minimally solvable, but not minimally r-solvable for any choice of a
root . The second distribution is both minimally solvable and minimally
r-solvable.

differ, as shown in Table 1.

Ks | Kra | Cq

p(G) | 5 5 11
@) | 5] 5 |10
e (G) | 2 4 10
2d 2 4 8
n 5 5 7
W@ | 5| 4 |7
oG) | 2 3 5

Table 1. Some pebbling numbers. New notation is defined below; the
parameters are listed in decreasing order based on Figure 3.

e The pebbling number p(G) is one greater than the largest size of a
maximally unsolvable global distribution on G. Equivalently, p(G) is
one greater than the largest size of a maximally r-unsolvable rooted
distribution on G for any r.

For example, the first distribution in Figure 1 is maximally unsolvable,
since the addition of any one pebble results in a solvable distribution.
Since there are no maximally unsolvable distributions on C; with 11
pebbles, p(C;) = 11.

¢ The gu-critical pebbling number c4.,(G) is one greater than the small-
est size of a maximally unsolvable global distribution on G. The ru-
critical pebbling number c,,(G) is one greater than the smallest size
of a maximally r-unsolvable rooted distribution on G for any r. These
two parameters are equal, as proven in Lemma 1. Consequently, we
define ¢, (G) = ¢ru(G) = cgu(G).

For example, the fourth distribution in Figure 1 is maximally unsolv-
able, and there are no maximally unsolvable distributions on C7 with
fewer than 6 pebbles. So ¢,(C7) = 7.
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o The g-critical pebbling number cy(G) is the largest size of a minimally
solvable global distribution on G.

For example, the second distribution in Figure 1 is minimally solvable,
since the deletion of any pebble makes it unsolvable. Since there
are no minimally solvable distributions on C; with greater than 10
pebbles, c,(C7) = 10. In particular, the third distribution in Figure
1 is not minimally solvable, since removing a pebble from the vertex
with 5 pebbles results in a solvable distribution.

e The r-critical pebbling number c,(G) is the largest size of a minimally

r-solvable rooted distribution on G for any r. If a minimally r-solvable
rooted distribution on G has c,.(G) pebbles, then we call it an 7-ceiling
distribution.
For example, the second distribution in Figure 2 is minimally r-
solvable. Since there is no minimally r-solvable rooted distribution
on Ko 3 with greater than 4 pebbles, ¢,(K33) = 4. In particular, as
discussed above, the first distribution in Figure 2 is not minimally
r-solvable for any 7.

e The optimal pebbling number o(G) is the smallest size of a minimally
solvable global distribution on G [21].

For example, the fifth distribution in Figure 1 is minimally solvable,
and there are no minimally solvable distributions on C7 with fewer
than 5 pebbles. So o(C7) = 5.

o The smallest size of a minimally r-solvable distribution on G is 1 for
any connected graph G, so we do not consider it.

Just as the classical pebbling number can be used to model the distri-
bution of resources with loss, critical pebbling numbers might be used to
model the spread of harmful substances with loss. For example, suppose
the pebbles represent radioactive waste and the root vertex represents a
city. Our goal is to place the waste far enough away from the city so the
residents don’t feel the harmful effects. The largest size of an unsolvable
distribution rooted at r, which is one less than the r-critical pebbling num-
ber of the associated graph, is a measure of the largest quantity of waste we
can dispose of without harm, and the maximum r-insufficient distribution
itself is a map of where to dump it.

As discussed above, these pebbling parameters can also be defined in
terms of pebbling games on G. Here are the rules for the pebbling games
which yield the g-critical, u-critical, and r-critical pebbling numbers.

The g-critical Pebbling Game:
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Round 1. First we place some pebbles on the vertices of G. Then the
opponent picks a root vertex. Then we reach the root with a sequence of
pebbling moves.

Round 2. The opponent resets the original distribution, and removes
any one pebble. Then we pick a (possibly different} root vertex. Then the
opponent fails to reach the root with a sequence of pebbling moves.

We win the g-critical pebbling game if we win both rounds of the game.
The g-critical pebbling number ¢, (G) is the largest number of pebbles with
which we can always win the g-critical pebbling game.

The r-critical Pebbling Game:

Round 1. First the opponent picks a root vertex. Then we place some
pebbles on the vertices of G. Then we reach the root with a sequence of
pebbling moves.

Round 2. The opponent resets the original distribution, and removes
any one pebble. Then the opponent fails to reach the root with a sequence
of pebbling moves.

We win the r-critical pebbling game if we win both rounds of the game.
The r-critical pebbling number ¢,.(G) is the largest number of pebbles with
which we can always win the r-critical pebbling game.

The u-critical Pebbling Game:

Round 1. First we place some pebbles on the vertices of G, and pick a
root vertex. Then the opponent fails to reach the root with a sequence of
pebbling moves.

Round 2. The opponent resets the original distribution, picks a root
vertex, and adds one pebble on any vertex. Then we reach the root with a
sequence of pebbling moves.

We win the u-critical pebbling game if we win both rounds of the game.
The u-critical pebbling number is the smallest number of pebbles, counting
the additional pebble added in round 2, with which we can always win the
u-critical pebbling game.

The following is another helpful way of thinking of these pebbling pa-
rameters. Consider the set of all global distributions on a given graph G.
Given the distributions D and E, we say that D < E if D(a) < E(a) for
all vertices @ in G. With this ordering, the set of all distributions on G
becomes a lattice. Also note that if D < E then |D| <| E|. ‘

Now divide the distributions in this lattice into the subset S of solvable
distributions and the subset U of unsolvable distributions, and also consider
the set M of maximal unsolvable distributions and the set m of minimal
solvable distributions. The pebbling number, g-critical pebbling number,
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u-critical pebbling number, and optimal pebbling number can be viewed as
maxima and minima of these subsets. Specifically:

e The pebbling number is one greater than the largest size of any dis-
tribution in M.

e The u-critical pebbling number is one greater than the smallest size
of any distribution in M.

e The g-critical pebbling number is the largest size of any distribution
in m.

e The optimal pebbling number is the smallest size of any distribution
in m.

Said another way, among maxima of unsolvable distributions, p(G) — 1
is the largest and c,(G) — 1 is the smallest. Among minima of solvable
distributions, ¢g(G) is the largest and o(G) is the smallest.

The 7-, g-, and u-critical pebbling numbers have not been previously
studied. We now investigate the relationships between the five distinct
pebbling numbers defined above.

Lemma 1. For any graph G, ¢:+(G) = cgu(G).

Proof. By definition, every maximally unsolvable distribution on G is max-
imally 7-unsolvable for some 7.

Let r be a vertex of G. It suffices to show that every maximally r-
unsolvable distribution is maximally unsolvable. Let D be a maximally
r-unsolvable distribution on G, and assume by way of contradiction that
D is not maximally unsolvable. Since D is r-unsolvable, D is unsolvable.
Since D is not maximally unsolvable, there exists a vertex s of G such
that D is s-unsolvable, and a pebble can be added to D so that D remains
s-unsolvable. Hence, s # r.

Consider the distribution E obtained from D by adding a pebble on
s. Since D is s-unsolvable, no second pebble from E can be moved to s.
So any solution of E to r does not use the pebble on s. But this means
that E is not r-solvable, which contradicts the fact that D is maximally
r-unsolvable. a

Lemma 2. Suppose that G is a graph with n vertices and diameter d. Then
(i) o(G) < 2¢,

(i) 2¢ < er(G),

(1) cr(G) < cg(G),
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(i) o(G) < cu(G),
(v) cu(G) < m,

(vi) n < ¢cg(G), and

(vii) cg(G) < p(G).

Proof.
(i) The proof appears in [21].

(ii) Let a and b be two vertices which are distance d apart. Let D be the
rooted distribution with @ = r and D(b) = 2¢. This distribution is
minimally r-solvable, and consequently 2¢ < ¢,.(G).

(iii) Case 1: There exists an r-ceiling distribution D on G which
is not solvable. Suppose D is not solvable to the vertex s. Consider
the distribution D; obtained from D by adding a pebble at s. Since
D is not solvable to s, the new pebble cannot be used in a solution
of D; to r. Hence if we remove any pebble in D,, either D, is no
longer solvable to r, or D, is no longer solvable to s. Either D, is
solvable, or D; is not solvable to some vertex t. In this second case we
form the distribution Dy by adding a pebble at ¢ to D;. Continuing
in this way, we eventually arrive at a minimally solvable distribution
E which contains all the pebbles in D and some additional pebbles.
Since ¢.(G) = |D| and ¢o(G) > |E|, ¢ (G) < ¢4(G).

Case 2: All r-ceiling distributions on G are solvable. Every
r-ceiling distribution is minimally r-solvable, and hence minimally
solvable. Since ¢, (G) is the maximum size of an r-ceiling distribution
and ¢4(G) is the maximum size of a minimally solvable distribution,
cr(G) < ¢4(G).

(iv) Because ¢,(G) is one larger than the size of a maximally unsolvable
distribution, there exists a solvable distribution with c,(G) pebbles.
Since o(G) is the size of the smallest solvable distribution on G, o(G) <
cu(G).

(v) Any distribution on the graph G with one pebble on all but one vertex
is maximally unsolvable. Since ¢, (G) is one greater than the smallest
such distribution, ¢,(G) £ n.

(vi) The distribution with one pebble on every vertex of G has n pebbles
and is minimally solvable. Since c4(G) is the size of the largest such
distribution, n < ¢,(G).
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(vii) By the definition of p(G), every distribution with p(G) or more pebbles
is solvable. By the definition of ¢4(G), there exist distributions with
¢g(G) — 1 pebbles which are not solvable. O

Table 1 shows the values of the five pebbling parameters for three
graphs. The table illustrates that the inequalities in Lemma 2 can be
either strict or not, and that there is no definite relationship between the
remaining pairs of pebbling parameters. For instance, c.(Ks) < ¢,(K5s),
but ¢,(C7) > cu(C7). The proof that p(C7) = 11 appears in [17], and we
prove ¢,(C7) = 10 in Lemma 6 below. Since the remainder of the paper
focuses on ¢, (G), we leave the rest of the values for the reader to verify.

We summarize the relationships between these seven values in the lattice
in Figure 3. In this figure, an edge indicates that the lower value is less
than or equal to the upper value for all graphs, and a missing edge indicates
that each value may be greater than the other on some graphs. Finally,
note that for the graph with a single vertex, all seven values are equal.

p(G)
cg(G)
er(G) n
29 cu(G)
o(G)

Figure 3: The relationships between the five pebbling parameters.

2 The r-Critical Pebbling Number

For the remainder of the paper, we focus on the r-critical pebbling number.
We say that a minimally r-solvable rooted distribution is an r-critical dis-
tribution, so ¢, (G) is the maximum size of an r-critical distribution on G.
Recall that the r-critical distributions on G with ¢,.(G) pebbles are called
r-ceiling distributions.

We say that the rooted distribution D is r-ezcessive if D is r-solvable
and not r-critical, and r-insufficient if D is not r-solvable. Then the sets of
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r-insufficient, r-critical, and r-excessive distributions on G form a partition
of all rooted distributions on G. Note that for an r-insufficient distribution
I, an r-critical distribution C, and an r-excessive distribution F, we may
have |E] < |C| < }|I|. Examples of three such distributions are shown in
Figure 4.

r 3
r———o ° ® £
r 4
o o e C
r 5
r—o——0 e !/

Figure 4: Three rooted distributions on the graph P;. From top to bottom,
they are r-excessive, r-critical, and r-insufficient.

Given a distribution D with root r, we say that a solution of D is an
r-critical solution if it leaves one pebble on r and no pebble on any other
vertex.

Lemma 3. A rooted distribution D is r-critical if and only if D is r-solvable
and all solutions of D are r-critical.

Proof. Suppose D is r-critical. Then by definition D is r-solvable. Suppose
there exists a solution S of D which is not r-critical. Then S leaves a
pebble on the non-root vertex a. If this pebble is unmoved from D, we
may delete it from D and obtain an r-solvable rooted distribution, which
contradicts the fact that D is r-critical. So S must include the pebbling
step [b, a] for some other vertex b. Again, if a pebble on b is unmoved from
D until this pebbling step, then D would not be r-critical. We continue in
this way. Since S is a finite sequence of pebbling steps, eventually we will
find a pebble in D which may be deleted to obtain an r-solvable rooted
distribution. Hence, all solutions of D are r-critical.

Conversely, suppose D is r-solvable and all solutions of D are r-critical.
Let E be a rooted distribution obtained by removing a pebble from D,
and suppose that E is r-solvable. Then there exists a solution of D which
leaves this pebble unmoved. So this solution is not r-critical, which is a
contradiction. Therefore, D must be r-critical. O

Corollary 1. If D is r-critical and a is a verter of G with degree 1 distinct
from r, then D(a) is even.

208



Proof. Suppose D(a) is odd, and S is a solution of D. If [b, a] is a pebbling
step in S, then [a,b] must also be a pebbling step in S. Removing both
pebbling steps from S results in a non-r-critical solution of D, so D is not
r-critical by Lemma 3. Alternatively, if there are no pebbling steps in S of
the form [b, a], then S leaves at least one pebble on a. So S is not r-critical,
and again by Lemma 3, D is not r-critical. a

Lemma 4. Suppose that G is a graph and a is a vertex of G which is
adjacent to every other verter of G. Then the r-critical distributions on G

maust have one of the following forms:

(i) One pebble on r, and no pebble on any other verter.
(#i) Two pebbles on a, and no pebble on any other vertez, including r.

(iii) Four pebbles on some vertez b, and no pebble on any other vertez,
including a and 7.

(iv) Two pebbles on two vertices b and c, and no pebble on any other vertez,
including a and r.

(v) Two pebbles on some vertex b, no pebbles on r, and less than two
pebbles on all other vertices, including a.

Proof. Suppose D is an r-critical distribution on G, and b and ¢ are vertices
in G other than a. If D has either one pebble on 7, or two pebbles on a,
or four pebbles on b, or two pebbles on both b and ¢, then D must have
no pebbles on any other vertex. Alternatively, suppose that none of these
conditions are met. In this case, D has no pebbles on r, less than two
pebbles on a, less than four pebbles on any other vertex, and more than
one pebble on at most one vertex.

If D has more than one pebble on no vertex, then D is r-insufficient.
So without loss of generality, 2 < D(b) < 4 and D(v) < 2 for all other
vertices v in G. If D(b) = 3 then any solution of D will leave at least one
pebble on b, and D will not be r-critical. So D must have form (v). We
have shown that all r-critical distributions on G must have one of the five
forms listed. O

Theorem 1. The star K1, has pebbling number n + 2 and r-critical peb-
bling number 4 for n > 4.

Proof. The fact that p(K;,) = n+ 2 is a corollary of Theorem 4 of [20],
which gives a formula for the pebbling number of any tree.

By Lemma 2, ¢, (K1) = 4. By Lemma 4, the only r-critical distribu-
tions on K , with more than four pebbles must have two pebbles on one
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vertex, and one pebble on at least three other vertices. But by Corollary 1,
there is only one vertex in K, , which can have one pebble in an r-critical
distribution. Hence c.(K; ) = 4. a

Note that Lemma 2 gives us ¢,.(G) < p(G) for any graph G. But in fact,
Theorem 1 gives an example of a family of graphs for which the difference
P(G) — ¢-(G) is arbitrarily large.

Recall the fan Fj, the path Py on k vertices with an additional vertex
z adjacent to every vertex in P.. Fy is shown in Figure 5. The following
theorem appears in [8].

2 1 1 1 1 1 1 r 3 1 1 | 1 1 r
X; .f;

Figure 5: An r-ceiling distribution and an r-insufficient distribution on the
fan Fj.

Theorem 2. The fen Fi has pebbling number k + 1 for k > 4.
Theorem 3. The fan F}. has r-critical pebbling number k for k > 4.

Proof. We first prove that ¢.(Fi) < k. Let D be an r-critical distribution
on Fj, with more than k pebbles. Since k > 4, by Lemma 4, D must have
two pebbles on one vertex and one pebble on at least k¥ — 1 other vertices.
Therefore, either r has a pebble on it, or r = z, or x has a pebble on it. In
each of these cases, one can easily check that D is r-excessive. Thus, there
are no r-critical distributions on Fj; with more than & pebbles.

The first rooted distribution shown in Figure 5 is r-critical as long as
k > 4, and has k pebbles. It follows that c.(F;) = k for k > 4. a

Corollary 2. For a positive integer k, there ezist graphs with r-critical
pebbling number k if and only if k # 3.

Proof. For k = 1,2, the path P, has r-critical pebbling number k. For
k > 4, the fan F has r-critical pebbling number k by Theorem 3.

Now suppose that D is a rooted distribution on the graph G with 3
pebbles. We show that D is not an r-ceiling distribution. If » has a pebble
on it then D is r-excessive. Otherwise, if there is no vertex a with D(a) > 2,
then there are no legal pebbling steps from D, and D is r-insufficient. If
there is such a vertex, and a is adjacent to every other vertex of G, then
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two pebbles from a can be used to pebble to r, and D is r-excessive. If a
is not adjacent to every other vertex of G, then d(G) > 2, so ¢.(G) 2 4.
Hence, there is no r-ceiling distribution with three pebbles. [}

Also note that F} is an example of a graph with diameter 2 and arbi-
trarily large r-critical pebbling number. Thus, ¢,(G) is not bounded above
by any function of d(G).

3 Greed, Thrift, and Weight

We denote the distance between the vertices a and b by d(a,b). The peb-
bling step [a, b} is greedy if d(a,r) > d(b,7); in other words, the step moves
towards the root. The rooted distribution D is greedy if there is a solution
of D which uses only greedy pebbling steps. The graph G is greedy if ev-
ery distribution with at least p(G) pebbles is greedy [17]. The graph G is
thrifty if every r-critical distribution with at least ¢,.(G) pebbles (i.e. every
r-ceiling distribution) is greedy.

In general, computing the pebbling number of a graph is a hard problem.
However, Hurlbert notes that for greedy graphs, the computation becomes
much easier [17). For thrifty graphs, the r-critical pebbling number is even
easier to compute. As we shall see below, the r-critical pebbling number of
a thrifty graph is determined by its diameter.

The weight of the rooted distribution D is the value

D(v)
veV(G)

The weight w(G) of G is the largest weight of any r-ceiling distribution on
G. Note that there may be r-critical distributions with fewer pebbles and
larger weight, for example, given any rooted graph G, the distribution with
two pebbles on one vertex adjacent to r has weight 1. We are interested
only in the weight of 7-critical distributions with exactly ¢,(G) pebbles.

Lemma 5. If the rooted distribution E is obtained from the rooted dis-
tribution D by a greedy pebbling step, then w(E) = w(D). If the rooted
distribution E is obtained from the rooted distribution D by a non-greedy
pebbling step, then w(E) < w(D).

Proof. Suppose E is obtained from D by the pebbling step [a, b]. If [a,b] is
greedy and d(a,r) = s, then d(b,r) = s — 1. E has two fewer pebbles on a
and one additional pebble on b. So w(E) = w(D) — & + ztr = w(D).

If [a,b] is not greedy and d(a,r) = s, then d(b,7) =t > 5. So w(E) =
w(D) - & + 7 <w(D). 0
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Lemma 6. If D is r-critical and greedy then w(D) = 1.

Proof. We proceed by induction. The only r-critical distribution on G with
size 1 is the rooted distribution with one pebble on 7 and no pebble on any
other vertex. This rooted distribution is r-critical, greedy, and has weight
1 on every graph G.

Suppose that D is an r-critical, greedy distribution on G with k pebbles.
Since D is greedy, there exists a greedy pebbling step [a, b] from D to a new
rooted distribution E with k — 1 pebbles which is the first pebbling step in
a greedy solution of D.

If E is not r-critical, then by Lemma 3 there exists a non-r-critical
solution of E. Appending the pebbling step [a,b] to this solution yields
a non-r-critical solution of D. Therefore, E is r-critical. Because [a,}] is
the first step in a greedy solution of D, the remainder of this solution is
a greedy solution of E, so E is also greedy. By the induction hypothesis
w(E) =1, and by Lemma 5, w(D) = w(E). Consequently, w(D) =1. O

Corollary 3. If w(D) < 1 then D is r-insufficient.

Proof. By Lemma 5, no pebbling step increases the weight of a rooted
distribution, and the weight of a solved rooted distribution is at least 1.
It follows that the weight of any r-solvable rooted distribution is at least
1. 0

Corollary 4. For any graph G, w(G) > 1. a
Theorem 4. The graph G is thrifty if and only if w(G) = 1.

Proof. Suppose G is thrifty and D is an r-ceiling distribution on G. Then
since G is thrifty, D is greedy. By Lemma 6, D has weight 1. As this is
true for any r-ceiling distribution on G, w(G) = 1.

Conversely, suppose w(G) = 1 and D is an r-ceiling distribution on G.
Then D has weight 1. Suppose by way of contradiction that there is a
solution of D with a non-greedy pebbling step, say from distribution D’
to distribution D" on G. Then by Lemma 5, w(D") < w(D'). Also by
Lemma 5, no pebbling step increases the weight of a distribution. Then
the solution of D ends with a weight of less than 1. This contradicts
Corollary 3. So D must be r-solvable using only greedy pebbling steps.
Thus, D is greedy, and G is thrifty. a

Theorem 5. If G is a thrifty graph with diameter d, then c.(G) = 2¢.

Proof. Suppose D is an r-ceiling distribution on G. By Lemma 2, | D| > 2¢.
Since G is thrifty, by Theorem 4, w(D) = 1. Because every pebble in D
must contribute at least 51;, to w(D), there must be exactly 2¢ of them. O
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By Theorems 4 and 5, all thrifty graphs achieve the lower bound for
weight given in Corollary 3 and the lower bound for r-critical pebbling
number given in Lemma 2. Thus, thrifty graphs are in some sense the sim-
plest graphs with respect to r-critical pebbling number. However, although
all graphs with weight 1 are thrifty, we prove in Theorem 8 that not all
graphs with r-critical pebbling number 2¢ are thrifty.

4 Separating Examples

The goal of this section is to provide examples of graphs in all of the regions
of the Venn diagram in Figure 10. We consider five specific graphs, which
we prove distinguish the classes of greedy graphs, thrifty graphs, and graphs
G for which ¢.(G) = 2¢. The first of these is C7, the cycle on 7 vertices.
The remaining four graphs we call G; through G4, and display them in
Figures 6, 7, 8, and 9, respectively. For each graph, we first determine its
pebbling number and r-critical pebbling number, and then prove that it
has the required properties to fit in the claimed region of the Venn diagram
in Figure 10.

To determine c.(C7), it will be useful to have the following lemma. If
H is a subgraph of G, D is a rooted distribution on G, and E is a rooted
distribution on H, we say that E is induced from D if the root of E is the
root of D, and E(a) = D(a) for all vertices a of H.

Lemma 7. Suppose that D is a rooted distribution on the graph G, P is a
path in G with end vertez v, and E is the rooted distribution on the subgraph
P induced from D. If w(E) > 1 on P, then D is r-excessive on G.

Proof. Suppose w(E) > 1 on the graph P. If there is a pebble on r, then
there is also a pebble not on . Then D is r-excessive on G. Now suppose
there is no pebble on r. If there is at most one pebble on every other vertex
of P, then w(E) < 1. Therefore there must be more than one pebble on
some vertex a of P. We pebble from a towards r on P. Since this pebbling
step is greedy, by Lemma 5, the new rooted distribution E’ obtained from
this pebbling step still satisfies w(E’) > 1. We may continue in this way
until we reach a rooted distribution ¥ on P with a pebble on 7. Because
w(F) > 1, again F has a pebble not on r, so F is r-excessive. As we may
use these same pebbling steps on D, D is also r-excessive. O

Theorem 6. The cycle Cr is not thrifty, not greedy, and has r-critical
pebbling number greater than 2°.

Proof. The pebbling number of C; is 11 [21]. Let r be any vertex of C7,
and let u and v be the two vertices farthest from r. Then it is easy to verify
that the rooted distribution D(u,v) = (5,6} is not greedy.
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Suppose that D is a rooted distribution on C7 with 11 or more pebbles,
and suppose that the number of pebbles in D on each of the six non-root
vertices of C7 are a, b, ¢, d, e, and f, starting from a vertex adjacent to r and
continuing around the cycle. We consider the two paths from r clockwise
and counterclockwise around the cycle. If D is r-critical, then by Lemma
7, D must satisfy

a b ¢ d e f
g2y, 407 <
stitg T T tegstand
b c d e f
— _— —_ - - =<1
et T tstgtgst

3]

Adding these inequalities and simplifying yields

33a+ 18b + 12c+ 12d + 18e + 33f < 128
12(a+b+c+d+e+ f)+2la+6b+6e+21f < 128.

Since |[D|=a+b+c+d+e+ f 211, we have
132=12-11<12(a+b+c+d+e+ f)+2la+6b+6e+21f < 128,

which is a contradiction. Consequently, there is no r-critical distribution on
C7 with 11 or more pebbles, and ¢.(C7) < 10. As the rooted distribution
D(u,v) = (4,6) is r-critical, ¢.(C7) = 10. Also, this rooted distribution is
not greedy, so C7 is not thrifty.

Finally, d(C7) = 3, and so ¢(C7) = 10 > 8 = 29, m]
7] b ¢ d ¢ 15
® ° . ®
! g h 1 } 1

Figure 6: A labeling and a rooted distribution on the graph G,.

Lemma 8. The pebbling number of G, is 18.

Proof. We follow the labeling system given in Figure 6. Let H be the
induced subgraph of G; on the vertices b, ¢, d, f, g, and h. Note that
H =2 F;. We will show that any distribution on G; with 18 pebbles is
solvable.
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Let D be a distribution on G; with 18 pebbles. Assume without loss of
generality that D(a) > D(e). If there are no pebbles on a, then there are
also no pebbles on e, so we may assume that a is not the root of D. If there
are pebbles on a, we may also assume that a is not the root of D. So in
all cases we may assume that a is not the root. Therefore in any solution
of D, we will never make a pebbling step from b to a, only from a to b. So
we may also assume that D(a) is odd because, if D(a) is even, we may add
one pebble at a without affecting the solvability of D. There are five cases
to consider:

Case 1. The vertex r is in H. We have 18 pebbles in our distribution.
We move as many pebbles as possible from a and e into H. After this,
there is at most 1 pebble remaining on each of a and e. At most half of the
other 16 pebbles may be used in these pebbling steps, so there are at least
8 pebbles on H afterwards. But p(H) = 6 by Theorem 5, so the resulting
distribution of at least 8 pebbles on H is solvable.

Case 2. D(a) > 17. In this case, we may pebble to any root from a, since
d(G,y) = 4.

Case 3. D(a) = 15 and r = e. In this case, we perform the pebbling
step [a,b] 7 times, yielding at least 7 pebbles on b, and 10 pebbles total
on H. If there is an additional pebble on b, ¢, or d, or two pebbles on
f, g, or h, the resulting distribution is solvable. The only case left is
D(b, f,g,h) = (7,1,1,1). Then the rooted distribution is still r-solvable.
Case 4. D(a) = 13 and r = e. We perform the pebbling step [a, b] 6 times,
yielding at least 6 pebbles on b, and 11 pebbles total on H. Since H has
diameter 2, by [21] H satisfies the 2-pebbling property, which states that if
H has 2p(H) — q + 1 pebbles on g distinct vertices, then two pebbles may
be moved to any specified vertex. Since p(H) = 6 by Theorem 2, if there
are pebbles on at least two vertices of H, then starting with 11 pebbles on
H we may pebble two pebbles to d, and then one to e. If the 11 pebbles
are all on b then we may pebble directly to e on the path bede.

Case 5. D(a) < 11 and r = e. We perform the pebbling step [a, b] as many
times as possible, yielding at least 12 pebbles total on H. Since p(H) = 6
by Theorem 2, this means that we can pebble two pebbles to d, and one to
T,

So p(G1) < 18. If we remove the pebble on f from the rooted distribu-
tion in Figure 6, then this rooted distribution is no longer r-solvable. So
p(Gl) =18. a

Lemma 9. The r-critical pebbling number of G; is 16.

Proof. By Lemma 2, ¢.(G,) > 16. We show that any r-critical distribution
on G has at most 16 pebbles. Again, we use the labeling system of Figure 6,
and identify H as the induced subgraph of G; on the vertices {b,¢,d, f, g, h}.
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Case 1. r is a vertex of H.

Let D be a rooted distribution on G; with 16 pebbles. We move as
many pebbles as possible from a and e into H. We may leave at most 1
pebble on each of a and e, leaving at least 14 pebbles total. At most half of
these may be used moving into H, leaving at least 7 pebbles on H. Because
¢-(H) = 5 by Theorem 3, D is r-excessive. Hence, there are no r-critical
distributions on G, with » in H. Without loss of generality, there is only
one case remaining.

Case 2. r =e.

By definition, every r-critical distribution must have a solution S which
leaves one pebble on e and no pebble on any other vertex. Let the rooted
distributions arrived at after each pebbling step of S be Dy5, D1y, ..., D2,
D,. We consider the pebbling steps in S in reverse order. The last pebbling
step in S must be [d, e}, from the rooted distribution D, with two pebbles
on d and no pebble on any other vertex to the rooted distribution D, with
one pebble on e.

We color one of the pebbles in D, red and the other blue. For each peb-
bling step before [d, €], we identify the pebble produced from the pebbling
step as either red or blue, and color the two input pebbles the same color.
Working back through these rooted distributions in this way, we arrive at
a coloring of the pebbles in D.

We consider the rooted distributions R and B of only red and blue
pebbles, respectively. Note that {R, B} is a partition of the distribution
D into not necessarily equal sizes. The rooted distributions R and B are
each r-critical distributions on G; — e with root d, since any non-r-critical
solution of one of these rooted distributions would result in a non-r-critical
solution of D.

Without loss of generality, a solution of R can begin by pebbling all of
the pebbles on a in R to b, obtaining the rooted distribution R'. However,
R’ is an r-critical distribution on H, so it must have one of the forms given
in Lemma 4. This implies that R has at most 8 pebbles, and the only form
of R with eight pebbles has all eight pebbles on a. This is also true for B.

Since |R| < 8 and |B| < 8, |D| £ 16. So the largest r-critical distri-
butions on G; have 16 pebbles, and the only r-ceiling distributions on G,
have 16 pebbles on a. Consequently, ¢.(G,) = 186. a

Note that since d(G,) = 4, ¢-(G1) = 2°.
Theorem 7. The graph Gy shown in Figure 7 is thrifty but not greedy.

Proof. By Lemma 9, the only r-ceiling distributions on G; have 16 pebbles
at one of the two vertices a and e, and the root at the other vertex. As
these rooted distributions are greedy, G is thrifty.
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However, the rooted distribution given on G; in Figure 6 has p(Gi)
pebbles and is not greedy. Thus, G} is not greedy. a

a b ¢ d e
m.
S &8 ki
12 r 15 r
Z7AN S P7AN
[ T T S| T T

Figure 7: A labeling and two non-greedy rooted distributions on the graph
Ga.

Lemma 10. The pebbling number of G3 is 19.

Proof. The proof is analogous to the proof of Lemma 8. We use the labeling
system of G5 given in Figure 7. As in the proof of Lemma 8, let H be the
induced subgraph of G; on the vertices b, ¢, d, f, g, h, and i. Note that
H = Fg. We verify that every rooted distribution on G, with 19 pebbles is
r-solvable.

Let D be a distribution on G5 with 19 pebbles. Assume without loss of
generality that D(a) > D(e). As in the proof of Lemma 8, we may assume
that a is not the root of D and that D(a) is odd. There are five cases to
consider:

Case 1. The vertex r is in H. As in the proof of Lemma 8, moving as
many pebbles as possible into H yields at least 8 pebbles on H, and since
H has pebbling number 7 by Theorem 5, the resulting distribution of at
least 8 pebbles on H is solvable.

Case 2. D(a) > 17. In this case, we may pebble to any root from a, since
d(Gy) = 4.

Case 3. D(a) = 15 and r = e. In this case, we perform the pebbling
step [a,b] 7 times, yielding at least 7 pebbles on b, and 11 pebbles total
on H. If there is an additional pebble on b, ¢, or d, or two pebbles on
f, g, h, or i, the resulting distribution is solvable. The only case left
is D(b, f,g,h,i) = (7,1,1,1,1). Then the rooted distribution is still r-
solvable.
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Case 4. D(a) = 13 and r = e. We perform the pebbling step [a,b] 6
times, yielding at least 6 pebbles on b, and 12 pebbles total on H. If at
least 8 of these are on the path bede then the distribution is solvable to e.
If 7 pebbles are on this path then one of the vertices f, g, k, or ¢ must have
two pebbles. After the pebbling step from this vertex to ¢, the path bede
has 8 pebbles again. If bede has only 6 pebbles and one of the vertices f,
g, h, or 7 has 4 pebbles, we make two pebbling steps from this vertex to ¢,
and again bcde has 8 pebbles. Finally, if none of these are the case, then at
least three vertices in H have pebbles on them. Then since H satisfies the
2-pebbling property, we may pebble two pebbles to d, and then one to e.
Case 5. D(a) < 11 and r = e. We perform the pebbling step [a,b] as
many times as possible, yielding at least 13 pebbles total on H. If all 13
pebbles are on any vertex, we may pebble from this vertex to e. Otherwise,
again by the 2-pebbling property, we can pebble two pebbles to d, and one
toe.

So p(G2) £ 19. If we remove the pebble on f from the second rooted
distribution in Figure 7, the resulting rooted distribution is no longer -
solvable. So p(G2) = 19. |

Lemma 11. The r-critical pebbling number of G5 is 16.

Proof. The proof is analogous to the proof of Lemma 9. The only r-critical
distributions on G5 with 16 pebbles have r =aorr =e. We assumer = e
and D(e) = 0. Every r-critical distribution of this form can be colored red
and blue so that the resulting red and blue rooted distributions R and B
are r-critical distributions on G — e. Each of these rooted distributions
can be solved by first pebbling all of the pebbles from a to b, resulting in
rooted distributions R’ and B’, which are r-critical distributions on H. By
Lemma 4, these rooted distributions must take one of the five forms given
in that lemma. Again, R and B can each have at most eight pebbles, and
it follows that c.(G2) = 16.

Note that given the assumption r = e, R must either have R(a) = 8
or R(a, f,g,h,i) = (4,1,1,1,1), and equivalently for B. It follows that the
only r-critical distributions on G with 16 pebbles must be a combination
of two of these rooted distributions. However, D(a, f, 9, h,i) = (8,2,2,2,2)
is not r-critical. Therefore, the only r-critical distributions on G, with 16
pebbles are either D(a) = 16 or D(a, f, g, h,i) = (12,1,1,1,1). O

Theorem 8. The graph G2 shown in Figure 8 is not thrifty, not greedy,
and has r-critical pebbling number 2¢, where d is the diameter of G».

Proof. By Lemma 11, ¢.(G2) = 16 = 2¢, because d(G2) = 4. The first
rooted distribution in Figure 7 shows a non-greedy r-ceiling distribution
on Ga, so G is not thrifty. The second rooted distribution in Figure 7
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shows a non-greedy rooted distribution on G with 19 pebbles, which is the
pebbling number of G2 by Lemma 10. a

Figure 8: An r-critical and an r-insufficient distribution on the graph Gj.

Theorem 9. The graph Gs shown in Figure 8 is greedy, not thrifty, and
has r-critical pebbling number 2¢.

Proof. The second rooted distribution in Figure 8 is an r-insufficient dis-
tribution on G3 with 6 pebbles. This implies that p(G3) > 7.

Let D be a rooted distribution on G3 with 7 pebbles. We show that
D is r-solvable and greedy. If r has a pebble on it, we are done. If every
vertex but ~ has a pebble on it, then there is one vertex a with more than
one pebble. In this case, we can pebble from a to r using a shortest path,
so D is r-solvable and greedy.

Now suppose that there is a vertex a other than r with no pebbles on
it. That leaves 4 vertices and 7 pebbles. By the pigeonhole principle, D
has either one vertex with at least 4 pebbles or two vertices a and b with
at least 2 pebbles each. In the first case, the 4 pebbles can be pebbled to r
along a shortest path. In the second case, either a or b is adjacent to r or
both a and b are adjacent to a neighbor of r. So again D is r-solvable and
greedy. Since every rooted distribution on Gg with 7 pebbles is r-solvable
and greedy, p(G3) = 7 and Gj is greedy.

By Lemma 4, any r-critical distribution D on Ga with more than 4
pebbles must have at least 2 pebbles on one vertex and at least one pebble
on at least 3 other vertices. Call the first vertex @ and the other three
vertices b, ¢, and d. For D to be r-critical, the only solution of D must be
([a,b], [b,¢), [c, d], [d, 7]). Then the induced subgraph consisting of these five
vertices must be a path. But there is no induced Ps in G3. So ¢.(G3) <
4, and because d(G3) = 2, ¢.(G3) = 4. In particular, this implies that
¢ (Gs) = 2¢.
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The first rooted distribution D shown in Figure 8 is r-critical and has
four pebbles, and so D is an r-ceiling distribution. Therefore, since D is
not greedy, G3 is not thrifty. (|

Figure 9: An r-insufficient and an r-critical distribution on the graph Gjy.

Theorem 10. The graph G4 shown in Figure 9 is greedy, has c.(G) > 2¢,
and is not thrifty.

Proof. 1t suffices to show that G4 is greedy and has r-critical pebbling
number greater than 2%; then by Theorem 5, G4 is not thrifty.

The proof is analogous to the proof of Theorem 9. The first distribution
in Figure 9 is an r-insufficient distribution on G4 with 7 pebbles. This
implies that p(G4) > 8.

Let D be a rooted distribution on G4 with 8 pebbles. As before, we can
rule out the case in which D has a pebble on r and the case in which there
is at least one pebble on every other vertex. Consider the remaining case,
in which there is a vertex a other than r with no pebbles on it. That leaves
5 vertices and 8 pebbles. By the pigeonhole principle, D has either one
vertex with at least 4 pebbles or two vertices with at least 2 pebbles each.
As before, every rooted distribution on G4 with 8 pebbles is r-solvable and
greedy, so p(G4) = 8 and G4 is greedy.

Again by Lemma 4, any r-critical distribution D on G4 with more than
5 pebbles must have 2 pebbles on one vertex and one pebble on at least
4 other vertices. By the same reasoning as in Theorem 9, the induced
subgraph consisting of these six vertices must be a path. Since there is no
induced Ps in Gy, ¢-(G4) < 5. The second rooted distribution D shown
in Figure 9 is r-critical and has five pebbles, so ¢.(G4) = 5. In particular,
c-(Gq) > 4 = 29, since d(G4) = 2. O

The above results are summarized in the Venn diagram in Figure 10. In
each region of this Venn diagram, a graph is shown with the given proper-
ties.
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Figure 10: The Venn diagram of rooted pebbling properties of graphs.

Theorem 11. The fan Fi. has weight £3L.

Proof. By Theorem 3, ¢.(Fi) = k. Thus, the weight of Fy is the largest
weight of an r-critical distribution D on Fj with k& pebbles. No r-critical
distribution with more than two pebbles can have more than one pebble in
the neighborhood of r. Since d(Fy) = 2, this means that at least k — 1 of
the k pebbles in D are distance 2 from r. If all & pebbles in D are distance
2 from 7, then w(D) = %. If exactly & — 1 pebbles in D are distance 2 from
r then w(D) = L + &1 = £+l The first diagram in Figure 5 shows an
r-critical distribution with & pebbles and weight "—"‘{—1. O

Corollary 5. There exist graphs with diameter 2 that have arbitrarily large
weight. O
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This concludes our discussion of the r-critical pebbling number. We
hope to explore the g-critical and u-critical pebbling numbers further in
future work.

Acknowledgements

We thank Glenn Hurlbert for suggesting the g-critical pebbling number to
us, and Glenn Hurlbert, Aparna Higgins, and an anonymous referee for
many helpful suggestions.

References

[1] Airat Bekmetjev and Charles A. Cusack, Pebbling algorithms in diam-
eter two graphs, SIAM J. Discrete Math. 23 (2009), no. 2, 634-646.

[2] Boris Bukh, Mazimum pebbling number of graphs of diameter three, J.
Graph Theory 52 (2006), no. 4, 353-357. MR 2242834 (2007i:05090)

[3] David P. Bunde, Erin W. Chambers, Daniel Cranston, Kevin Milans,
and Douglas B. West, Pebbling and optimal pebbling in graphs, J.
Graph Theory 57 (2008), no. 3, 215-238. MR 2384021 (2009b:05142)

[4] Fan R. K. Chung, Pebbling in hypercubes, SIAM J. Discrete Math. 2
(1989), no. 4, 467-472. MR MR1018531 (91a:05095)

[5] T. A. Clarke, R. A. Hochberg, and G. H. Hurlbert, Pebbling in di-
ameter two graphs and products of paths, J. Graph Theory 25 (1997),
no. 2, 119-128.

[6] Charles A. Cusack, Timothy Lewis, Daniel Simpson, and Samuel Tag-
gart, The complexity of pebbling in diameter two graphs, SIAM J. Dis-
crete Math. 26 (2012), no. 3, 919-928. MR 3022114

[7) Rongquan Feng and Ju Young Kim, Graham’s pebbling conjecture on
product of complete bipartite graphs, Sci. China Ser. A 44 (2001), no. 7,
817-822.

, Pebbling numbers of some graphs, Sci. China Ser. A 45 (2002),
no. 4, 470-478. MR 1912119 (2004e:05184)

(8]

[9] Ze-Tu Gao and Jian-Hua Yin, The t-pebbling number of Cs[ICs, Dis-
crete Math. 313 (2013), no. 23, 2778-2791. MR 3106451

222



[10] James J. Gardner, Anant P. Godbole, Alberto Mokak Teguia, An-
nalies Z. Vuong, Nathaniel G. Watson, and Carl R. Yerger, Domination
cover pebbling: graph families, J. Combin. Math. Combin. Comput. 64
(2008), 255-271. MR 2389083 (2008k:05108)

[11] Anant P. Godbole, Nathaniel G. Watson, and Carl R. Yerger, Thresh-
old and complezity results for the cover pebbling game, Discrete Math.
309 (2009), no. 11, 3609-3624. MR 2528074 (2010h:91053)

[12] D. S. Herscovici, B. D. Hester, and G. H. Hurlbert, t-pebbling and
extensions, Graphs Combin. 29 (2013), no. 4, 955-975. MR 3070068

[13] David S. Herscovici, Graham’s pebbling conjecture on products of
cycles, J. Graph Theory 42 (2003), no. 2, 141-154. MR 1953226

(2004j:05123)

[14] David S. Herscovici, Benjamin D. Hester, and Glenn H. Hurlbert, Op-
timal pebbling in products of graphs, Australas. J. Combin. 50 (2011),
3-24. MR 2829275 (2012m:05393)

[15) David S. Herscovici and Aparna W. Higgins, The pebbling number of
Cs x Cs, Discrete Math. 187 (1998), no. 1-3, 123-135.

[16] Glenn Hurlbert, General graph pebbling, Discrete Appl. Math. 161
(2013), no. 9, 1221-1231. MR 3030615

[17] Glenn H. Hurlbert, A survey of graph pebbling, Proceedings of the
Thirtieth Southeastern International Conference on Combinatorics,
Graph Theory, and Computing (Boca Raton, FL, 1999), vol. 139, 1999,
pp. 41-64.

[18] Stephanie Jones, Joshua D. Laison, Cameron McLeman, and Kathryn
Nyman, Weighted pebbling numbers of graphs, In preparation.

[19] Timothy Lewis, Charles A. Cusack, and Lisa Dion, The complezity of
pebbling reachability and solvability in planar and outerplanar graphs,
Discrete Appl. Math. 172 (2014), 62-74. MR 3197262

[20] David Moews, Pebbling graphs, J. Combin. Theory Ser. B 55 (1992),
no. 2, 244-252.

[21] Lior Pachter, Hunter S. Snevily, and Bill Voxman, On pebbling graphs,
Proceedings of the Twenty-sixth Southeastern International Confer-
ence on Combinatorics, Graph Theory and Computing (Boca Raton,
FL, 1995), vol. 107, 1995, pp. 65-80.

[22] Luke Postle, Pebbling graphs of fized diameter, J. Graph Theory 75
(2014), no. 4, 303-310. MR 3159066

223



