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Let a/b be a raticnal number with (a,b) = 1 and 0 < a < b.
The Fibonacci-Sylvester expansion of a/b, also called the R-
expansion (31, a sorites (53, or ghe greedy algorithm expan—
sion, is the réprasentation of a/b as a sum of unit fractions
(1) a/b = 1/x, + g + cce * /%,
for which, for each j, 1 £ j £ k, !Ixj is the largest unit

fraction not exceeding
-1

a/b - 1/xi.
i=1

This expansion is guaranteed to terminate, and in at most a
steps, by the identity
2) asb = 1/7(g+1) + (a-r)/biq+1),
where b = gqa + r is the standard division algorithm
representation of b as a quotient times a plus a remainder. Note
0<r < a, since if r = 0 then the fraction a/b was not in
reduced form. Each application of the identity gives a fraction
which has a smaller nuéerator than the fraction before, even
when the intermediate fractions have to be reduced, and when the
numerator is 1 the algorithm terminates.

Campbell 1] has compiled a biblicgraphy of more than 200
articles concerning various techniques for representing numsbers
as sums of unit fractions.

It is an interesting problem to determine which fractions

make the algorithm proceed for as many steps as possible before
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terminating. Table 1 gives the first few fractions, smallest in
the sense of having smallest denominators, for which the algo-
rithm first takes exactly n steps before terminating. 1In Table 1
the size of the numerator is ignored, except that if a/b and ;/b
both take n steps and a < ;. then only a/b is shown.

TABLE 1. FRACTIONS WITH SMALL DENOMINATORS
WITH PRESCRIBED EXPANSION LENGTH

n a’/b

e

1/2

2/3

4/5
8/11
16717
-27/29
60767

44/53

9 O N o U »d W N

657131

Already the denominators generated in the expansions of the
latter fractions are in the hundreds of digits, and it is at
first surprising that the denominators are not monotone. A more
tractable problem, one that also sheds some light on the work
above, arises by restricting the size of the numerators. In
particular, we will investigate those fractions a/b whose greedy
algorithm expansion is exactly a terms long. This is the longest

the Fibonacci-Sylvester expansion can be, since the numerators of

intermediate fractions must be strictly decreasing by the argu-

ment in the first paragraph. A short table of these fractions is

given by
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TABLE 2. FRACTIONS WITH EXPANSION LENGTHS
MATCHING THEIR NUMERATORS

a a/’b

172

[=3

2/3
377
4/17
5/31
6/109
7/253

8/97

9 0O N o P WN

9/271

10/1621

[
(=]

11 117199

The denominators that work here turn out to be minimal
solutions to a set of congruences. The dencminators that work in
Table 1 can be seen by similar methods to be glcbally minimal
solutions to any of several sets of congruences, these sets
indexed by compositions of a.

Any representation of a/b of the form (1) can be used to
generate a sequence of fractions. Write, for

a’b = 1/x, + 1/%, + ... + l/xk,

1 2
with
xy < %y < «ee £ Xps
a/b = al/bl
allbl - llx1 = a2/b2 = l/x2 + eee + llxk
3) .
ak—llbk-l = l/xk_1 + 1/:(k
aklbk = llxk.
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We will call the fractions ai/bi' 2< i< k-1, intermediate
fractions.
Identity (2) can be applied to give a characterization of

the greedy algorithm in terms of the egquations (3).

THEGREM 1. The expansion of a/b as a sum of a unitAfractioA5,
a’/b = l/x1 + l/xz + eee + llxa,
has the sequence of numerators in (3) strictly decreasing if and
only if the expansion is the greedy algorithm expansion.
PROOF. The greedy algorithm always generates such a sequence of
numerators in (3), since if any intermediate fractions given by
the identity (2) are not in louest.terms, then reducing them does
not lead to a violation of the inequality when (2) is applied to
the reduced fraction in the next step. Conversely, if in a given
unit fraction expansion of the form (1),
/b

ai/bi - llxi = a; .,

i+i?
then monotonicity of numerators implies that

0 < (aix - bi)/gcd(a.x. - bi' bixi) < a_.

i i%i i

But if gcd(aixi - bi'bixi) # 1, the expansion is shortened to
fewer than a terms when the numerator is replaced by a smaller
numerator in a reduced fractiocn. Thus the gcd must equal 1, and
the inequalities can be solved for x; to give
bi/ai < %y < bi/ai + 1.

This means the only possible choice for xs is tbi,ai + 1] unless
a; = 1, in which case x; = bi is appropriate. These choices make
the sequence of intermediate fractions coincide with those of the
greedy algorithm expansion.

Salzer (3] develops some of these ideas, using the term
“R-series" for the expansion (1) given by the greedy algorithm.

He notes that it is possible to keep track of the sequence of
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operaticns using an iterated division algorithm based on (2) that
is reminiscent of Euclid’s algorithm for computing greatest
common divisors. We suppress the intermediate fractions of (3)
to write each step in terms of the original a and b.

b= qa + Fye 0 < r1 < a

a b(q1+1) = qz(a—rl) + Fos 0 < L < aryy

b(q1+1)(q2+1) qs(a—rt-rz) + rse 0 < rs < a-r ~ros

where the sequence of divisions is iterated until

r1 + r2 + eee * rk = a.

THEOREM 2. The raticnal number r = a/b, with (a,b) = 1 and

0 < a < b, has a Fibonacci-Sylvester expansion of exactly a terms
if and only if Pn(a,b) = Qn(a) {(mod Qn(a)(a-n)) for 0 < n < a,
where the numbers Qn(a) and polynomials Pn(a,b) are defined by the
recurrences

(s) g (a) = @2_ (a)(a-n+1),

n~-1
with Gota) = 1, and

_ g2
6) Pn(a,b) = Pn- (a,b) + Pn_l(a,b)Qn_x(a)(a—n),

1
with Po(a.b) = b.
PROOF. We untangle the greedy Euclid’s algorithm of
(4), using the extra information that, since the numerators of
(3) are decreasing from a to 1 in a~-1 steps, each remainder s must
be 1. Then the first step is
b= q,a + 1,

so b =1 (mod a), and q = (b-1)/a. Since

b(q1+1) = qz(a-r1)+1,
b(q1+1) = 1 (mod a-1) and q, = (b(ql+l)-1)/(a—1). We keep track
of the products b, b(q1+l), b(q1+1)(q2+1)¢ ... as rational

functions of a and b by defining

145



b(qlél)(q2+l)...(qr+x) = Pr(a,b)lor(a)
The greedy Euclid step

b(q!*l)(q2+1)...(qn_‘+1) = qn(a—n+l) +1
gives that
q, + 1= (b(q1+1)...(qn_1+l)-1)l(a-n+1) +1=

(P

n-lln

n-1

(Pn_1 + ﬂn_l(a-n))/(ﬂn_1(a-n+l)),

= 1)/ta-n+1) + 1 =

and therefore
Pn/Qn = b(q1+1)...(qn_x+l)(qn+l) =

Pt Py *8y_g ta=n2)/@ _

-1 Pra-1%8n-1 (Qn_l(a-n+1)).

1
Numerator and denominator here give (5) and (6).

The point of expressing the successive steps of the greedy
Euclid algorithm as coﬁgruences is to suppress the quotients Q.

We remark that though the recurrences (5) and (&) involve a,
the appearance of P and @ in congruences modulo Qn(a)(a—n) mean
that there is special interest in the values.for a particular a.
Table 3 list the Qn as constants and the Pn as functions of b

alone by using a special choice for a. Further specialization is

possible in the identity Pn(a.l) = On(a).

TABLE 3. SPECIAL VALUES OF Pn and Qn

n g, (n P, (n,b)
° 1 b

1 1 b2

2 4 bz(b+1)2

3 324 b2 (b+2) 2 (b2+2b+3) 2

4 21233664 b2 (b+3) 2 (b%+3b+8) 2 (b¥+6bS+17b2424b+48) 2

It is more illuminating to write the sequence (Qn(n)) as

2.4,.8.16 2.4 21

2 2 3%48, 2%23%8s16 ., 2%%  .a s oee

1, 1, 22, 2 2

33, 2

Neither this sequence of “superfactorial® numbers nor any of its
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more cbvious variants -arises in Sloane’s Handbook [41].

COROLLARY 1. If a/b has a greedy algorithm expansion of length
a, so does a/(b+ﬂa_l(a)). ‘
PROOF. By Theorem 2, the sequence of congruences that b must
satisfy has each modulus dividing the next. Thus any solution is
determined only up to the last modulus, Qa—l(a)'

Calculations indicate that often much smaller moduli work.

Table 4 compares period length with this worst case modulus.

TABLE 4. PERIODICITY QF a/b

Qa-l‘a) b giving a longest expansion
2 1 (mod 2)
18 1 (mod &)
4608 1 or 17 (mod 23)
1800000000 1 (mod 30)

5077997833420800000000 1 or 109 (mod 180)
1,253,281 ,0r S33 (mod 630)

0 N 00 0 & W N B

1,97,337,769,1009,0r 1441 (mod 1680)

CORCLLARY 2. Given a, define Da(x) = {{b < x : a/b has a greedy

algorithm expansion of length a)!. Then lim Da(x)/x is a
xX=> 00

positive rational number for any a.

For example, from Table 4 we read off that Ds(x)/x approaches 1/6
and D4(x)lx approaches 1/12. These comments have a marginal
relationship to the conjectures of Erdis and Straus and
Sierpinski [2), in that only the residLal sets need another
algorithm to yield the expansion of shorter length that is
conjectured to exist.

The density is non-zero (and in particular scme solutions

exist) because, though a/1 = 1 + 1 + ... + 1 is ruled out by our
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assumptions on a and b, that expansicn does result if the greedy
algorithm is applied to a1, and hence by Theorem 2 fractions of
the form a/(l+koa_l(a)) have greedy algorithm expansions of the

proper length.
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