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ABSTRACT

A triangle in a Steiner triple system S is a triple of
blocks from S which meet pairwise and whose intersection is
empty. If S contains b blocks, and b = 3¢ + s, where
0 < s < 2, then a triangulation of S is a collection of g trian-
gles {T',T},...,T,} in S such that no two distinct triangles share
a common block. It is shown that, for v =1 or 3(mod6),
there exists a Steiner triple system which admits a triangula-
tion. Moreover, if ¢ = 2, there is a triangulated triple system
in which the pair of blocks not occurring in a triangle are dis-
joint, and a triangulated triple system in which they intersect.

1. Introduction.

A Steiner triple system (STS) of order v is a pair (V,B), where V is
a v-set and B is a collection of triples from B called blocks, which has the
property that every pair of distinct elements (points) from V occurs in
exactly one block of B. It is well known that a necessary and sufficient
condition for the existence of a Steiner triple system of order v (STS(v)) is
that v be a positive integer congruent to 1 or 3 modulo 6. A STS(v) con-
tains b = v(v—1)/8 blocks and distinct blocks meet in at most one point.

* Let S be an STS(v) and suppose b = 3¢ + s, where 0 < 5 <2. A
triangle in S is a set of three blocks of S which meet pairwise but whose
intersection is empty. A triangulation T of S is a set {T\,T2,...T,} of q
triangles of S such that T; N T; = J for i # ;. Let R denote the set of s
blocks which occur in no triangle of a triangulation T. We say that T is of
type I if any two distinct blocks from R are disjoint; otherwise T is of type
II. Vacuously, if s = 0 or 1, then any triangulation is of both type I and
type Il. A triangularized Steiner triple system (TSTS) of order v
(TSTS(v)) is a triple (V,B,T) where (V,B) is a Steiner triple system S of
order v and T is a triangulation of S. A TSTS is said to be of type I or
type II according as T is of type I or type II. It is our object to show that
for every positive v = 1 or 3(mod 6) there exists a TSTS(v) of type I and
type Il whose underlying STS(v)’s are isomorphic.
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2. Notation and Preliminary Results.

2.1 Notation. Let N; be the set of integers {v} such that there exists an
STS(v) with its blocks decomposable into triangles such that no two trian-
gles have common blocks and there are ¢ disjoint blocks left over, where
¢ = 0,1,2, or 3. Note that Ny, Ny, and N, are the set of integers {v} such
that there exists a TSTS(v) of type I. Also, we let M, be the set of
integers {v} such that there exist a TSTS(v) of type II. Note that in this
paper we refer to blocks left over as remaining blocks.

Throughout this paper we will use the convention that, for STS(v) a
Steiner triple system S, when we make use of the expression S € N;, we
are identifying a decomposition of S such that its blocks are decomposed
into triangles such that no two triangles have common blocks and there
are { disjoint remaining blocks.

2.2 Preliminary Results.
The following necessary conditions are easily established.

2.2.1 Necessary Conditions.

.2.2.1.1. v EN, impliesAthat. v = 1,9(mod 18).
:2.2.1.2. v € N, implies that v = 3,7(mod 18).
2.2.1.3. v € N, implies that v =13,15(mod 18).

2.2.1.4. v € M, implies that v = 13,15(mod 18).

We will first concern ourselves with proving the sufficiency of the first
three necessary conditions above. We will use recursive constructions in
each of the six cases; then only four small cases need to be done directly,
namely, v =7,9,13, and 21.

2.2.2 Sufficiency for the cases v = 7,13, and 21.

Lemma 2.2.2.1. 7 isin N,.

Proof. Figure 1 illustrates the blocks in triangles by grouping them in
collections of three. The one remaining block is (7,1,3).

Lemma 2.2.2.3. 21 is in N,.

Proof. The triangulation of an STS(21) is illustrated in Figure 3.
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7 1 3
Figure 1

Lemma 2.2.2.2. 13 is in N,.

Proof. Figure 2 illustrates this. The two remaining blocks are (5,6,9) and
(10,11,1).

1 2 5 8 7 10 2 3 6
m 12 2 1 6 8 2 7 g

5 10 12 7 12 1 9 1 3

3 4 7 4 E3 8 9 10 13

4 9 1 8 9 12 12 13 3
11 3 5 12 4 8 3 8 10
13 1 4 7 8 11

8 13 2 6 11 13
10 2 4 13 5 7

5 6 9 10 11 1

Figure 2

Remark. In the STS(21) shown in Figure 3, if we develop the block
(0,7,14) mod 21, we get 7 blocks forming a parallel class of blocks and con-
taining the remaining block (0,7,14).

Let L be a Latin square of order n based on these symbols:
{a,,aq,...,a,}. Then a transversal in L is a set n of cells, one from each
row and column, with the property that a,a,, ..., and a, each appear in
a cell.

Lemma 2.2.3. For n > 2 there 18 an idempotent Latin square of order
n with three disjoint transversals, one of which is the main diagonal.
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1 17 110 n w e 1 2 4 9 20 1
8 19 0 s 7 1 8 18 20 o0 2
8 o w 4 10 2 & 11 o 17 4 3
M DV 0 13 0 4 “ 1 8 3 4 o
2 2 3 15 0 10 [} 1 8 3 10 17
e 12 1 7 2 3 14 38 2 71
I 1 1 13 10 8 38 16 X 7 8 10
4 12 10 7 15 10 e 8 7 8 o n
e 18 4 10 18 & 12 18 7 10 11 13
16 2 o e 10 12 4 &5 17 n 12 14
2 9 18 8§ 12 1 4 1 18 12 13 15
17 2 2 18 38 B 10 4 M 13 14 10
$ 17 0 1 0 18 9 6 110 4 8 17
o 8 12 10 18 1 2 10 M 15 16 18
2 6 18 5 18 17 6 M 18
3 1 1 17 18 2 18 6 o 0 7 14
2 3 3 6 18 2 5 o6 8
Figure 3

Proof. For n > 2 and n # 6, there is a pair of orthogonal Latin squares
of order n. Take three elements in the second square, each of which
determines a transversal in the first square. Some permutation will take
one of them to the main diagonal so that the (i,{) entry is ¢, for
{ = 1,.,n. A required square of order 6 is shown in Figure 4. Two
transversals other than the main diagonal are marked with circles and

squares. . @E s 6 s
5 2 4@1
]: 3 2 4«



A group divisible design GD(n¢;n;k) consists of a triple (V.G ,F)
where V is an né set, G is a partition of V into £ n-subsets (called
groups), and F is a family of k-subsets (called blocks) of V' with the pro-
perty that every pair of points of V from distinct groups of G occurs in
precisely one block of F, and no pair of points from the same group of G
occurs in any block of F. Let A be a Latin square based on {1,2,...,n}. If
the (1,7) entry of A is k, and we associate a block (z:,9;,2:) with it, we get
a group divisible design GD(3n;n;3), based on the set {(z;,3:,2;)[1<i <n}.
If A has a subsquare with the row indices, column indices, and entries in
the same set, then the deletion of the subsquare will result in an incom-
plete GD, that is, GD(3n;n;3)-~GD(3k;k;3). Deletion of two disjoint such
subsquares of orders & and h will result in an incomplete GD, that is,
GD(3n;n;3)-GD(3k;k;3)-GD(3h;h;3). We write n €C;, or (n;k) €C;,
or (n;k;h) € C; if there is a GD(3n;n;3), or GD(3n;n;3)~GD(3k;k;3), or
GD(3n;n;8)—GD(3k;k;3)~GD(3h;h;3), respectively, whose blocks can be
decomposed into triangles such that no two triangles have common blocks
and there are i remaining blocks, i = 0 or 1 (since n®> =0 or 1(mod 3)).
Similarly we can have an incomplete GD with several sub-GD deleted.
For example, the notation (n;k;h;¢) € C; is also well defined.

Lemma 2.2.4. If n = 0(mod 3), then
1. n€eCyn2>3

(n;3) €Cy,n >6

(ni33) €ECon >9

(n;3;3;3) €Con =9

B 1o

Proof. Suppose some Latin square A has the same element k as its (¢,5)
entry and its (r,8) entry. Then ¢ # r and j # s. If the (i,8) and (r,j)
entries are ¢t and A, then we have two triangles as shown in Figure 5.

T Y5 % T Y %

Ty Yo % Tr Yo 2

i Yo 2¢ T, Y;i 2
Figure 5.

With the above statement, we can decompose a GD(9;3;3) into triangles as

shown in Figure 6. 2 .
1 3 L2
s ]
I 2| I 3

Figure 6.
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For n =0 (mod 3), write n = 3¢, ¢t > 1. From Lemma 223, for t = 2
and k = 1, and for t > 3 and k = 1,2, and 3, there is an idempotent Latin
square of order ¢ with the (i,{) entry ¢ (f = 1,...,k). We can delete the
entries (1,1),...,(k,k). Thus, the direct product of the square of order 3 al!d
these squares of order ¢t (with and without deletions) resuits in
GD(3n;n;3), GD(3n;n;3)-GD(9;3;3), GD(3n;n;3)-GD(9;3;3)-GD(9;3;3),
GD(3n;n;3)-GD(9;3;3)~GD(9;3;3)-GD(9;3;3). In each case the decom-
position for GD(9;3;3) applies, and the four results follow.

Lemma 2.2.5. If n = 1,2(mod 3), then
ne€C,n2>1

(ni3)eC,n>17

(n;3;3)€Cy,n >10
(n;3;3;3)€Cy,n > 10

Lol o o

Proof. First, we know from the decomposition in Figure 7 that 2 € C,.

=

. Figure 7.

Ift>2and n=23t+ 3, =1 or 2 then from Lemma 2.2.3 there is an
idempotent Latin square of order ¢ with 5 + 1 disjoint transversals,-one of
which is the main diagonal. Take the product of a square of order 3 with
the square of order ¢. Add one one new row and new column by project~
ing one transversal and adjoining a new element a in its place. In each
cell on the transversal, use the decomposition of Figure 8. Note that, from
here on, in this paper, the term ‘Latin square’ is replaced by ‘square’.

« 3] |2 1
3 a 1 2
3 1

Figure 8.

We choose an off-diagonal transversal and the square of order n = 3t+1
will be as in Figure 9. .
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aBs 4

3X3 6a4d IX3 3Ix3 5
54a 8

al3?2 1

3x3 3x3 3x3 3al 2
21a 3

a98 7
Qa7 3Ix3 IX3 33 8
87« 9
789 4586 123 a

Figure 9

Thus the conclusion is true for n = 3t+1, t > 2. When n = 3t+2 and
t > 2, we use two transversals and two new elements  and 8. We choose
the two transversals such that neither is the main diagonal. The decompo-
sition (Figure 11) will contain decompositions of order 3, decompositions of
order 4, and the decomposition of order 2 in the lower right corner, shown
in Figure 10.

a
x| B
Figure 10.

The cells of the two off-diagonal transversals combine with the two added
rows and columns to give two sets of decompositions of order 4.

Finally, we consider the cases t = 2 and ¢t = 1. A decomposition for
a GD(21;7;3)-GD(9;3;3) is shown below. Thus (7;3) €C, and 7 €C, as
shown in Figure 12.

155



Y -
X Y[X 2 new
X columng
Y

2 off-diagonal transversals
(cells of 3x3) denoted by
X and Y

2 new rows

Figure 12.

Similarly, (8;3) € C, and 8 € C, come from the decomposition in Figure 13.
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Fort = 1,4 €C, and 5 € C,, as shown in Figures 14 and 15 respectively.

°°I

1

2
4

4
1
2

___I—
L_:’—__l_

Figure 14.

2
5
2 5 3
5 3' 1_
’3‘ |l 4

Figure 15.

157



Remark. In Lemma 2.2.5, the remaining block is always of the form
(%n,Yn+2s)- Also, we choose our square of order 3 to be that of in Figure 6,
that is, a transversal is on the main diagonal. Take the product of this
square with the idempotent square of order ¢. The result is that, when
n = 0,1{mod 3), the (¢,7) entry, except in some hole, is always ¢ unless for
the case (6;3) € C,.

Lemma 2.2.8. 913 in Ngand N,

Proof. Since 3 €C;, from Lemma 2.24, 9 € N,. The remaining blocks

are (2,%5,23), (¥1.¥2,93), and (2,,25,25). A modification of the decomposi-
tion in Figure 6 is shown in Figure 16, from which we know 9 € No.

T N %y To Yo 29 T3 Y3 23
Z), Y2 2y Y1 Ys 22 Z2 Y3 %y

Y1 Y2 Y3 T T3 T3 T3 Y2 2,

I3 Y1 22
Ty Y 23

2) 29 2y

Figure 16

Remark. STS(9) contains a parallel class of blocks (z1,22%3), (¥1.92:¥3),

and (2,,2,23). These blocks are the three remaining blocks when we use
an STS(9) € N,.

3. Lemmas used recursively to get sufficient conditions for the
first 3 necessary conditions of Lemma 2.2.1.

Lemma 3.1. If6t+1 ENjor 6t+1 €N;,i = 1 or 2, then 18t+1 € N,.

Proof. If 6t+1 € N3, we add one point to each of the three groups of a
GD(18t;6¢;3) and use the decomposition of an STS(6t+1) for each group.
Now we use a (6¢;3;3;3) €Cy, t > 1. For the incomplete GD, fill in two
sub-GD(9;3;3)s with an STS(9) € Ny, and the third one with an
STS(9) € N;3. We then get 18¢t+1 € Nj.

If 6t+1 €N;, i = 1,2, we use an incomplete GD(18t;6¢;3) (again for
t > 1) with ¢ holes and fill in one hole with an STS(9) € N;, and hole
(—1) with an STS(9) € Ny,. We get 18t+1 € N,.
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For t = 1, we have 6t+1 = 7 € N| (Lemma 2.2.2.1), and we use an
incomplete GD(18;6;3)-GD(9;3;3). We fill in the one hole with an
STS(9) € N3, and we get 18t+1 € Nj.

Lemma 3.2. If 6t4+3€N,N Ny or 6t4+3€EN;, i =1 or 2, then
18t+9 € Ny N Ny,

Proof. The case t = 0 is done in Lemma 2.2.6. Suppose ¢ > 1. We have
a decomposition for an incomplete GD(18t+9;6t+3;3) with i holes,
t = 1,2, or 3, since (6¢+3;3;3;3) € Cyp from Lemma 2.2.4. Fill in each of
the i—1 holes with an STS(9) € N, and one hole with an STS(9) € NV,
J=0or 3. We get 18t+9 € NyN N;. Note that, if i = 0, we use the
fact that 6¢+3 € C, (no holes), and thus 18t+9 € Nj.

Remark. The STS(18t+9) in Lemma 3.2 contains a parallel class of
blocks, each of which is associated with some diagonal element of a square
of order 6t+3, or from some STS(9) corresponding to i holes (see Remark,
Lemma 2.2.5), that is, when we use an STS(9) € Ny choose (z;,4;,%),
(Zivr¥i41,2i41)s 304 (Z;42,9i 42,2 42). When we use an STS(9) € N, for the
final hole, 18¢+9 € N;,. When we use an STS(8) € N,, 18t+9 € N;, and
the parallel class contains the three remaining blocks, that is,
(Tor+1:% 0142, 6t43)s (Yoe+1:Yoe42:Yoe43) and (20041,26042:26043)-

Lemma 3.3. If6t+3 €N;, i = 1,2 or 3, then 18t+3 € N,.

Proof. The case for ¢ = 0 is trivial;the case for ¢ = 1 is established in
Lemma 2.2.2.3. For ¢t > 1, we have an incomplete GD(18¢;6¢;3) with {—1
holes. Add three points to each group and use 6¢+3 € N;; the three points
form a block, one of the remaining blocks. As usual, the i —1 remaining
blocks should match the §—1 holes. Fill in each hole with an STS(9) € N,.

Remark. The STS(18t+3) in Lemma 3.3 contains a parallel class of
blocks, 6¢ of which are associated with some diagonal element of a square
of order 6¢, or from some STS(9) € N, (see Remark, Lemma 2.2.5). The
last block of the parallel class is the additional block. Thus, the parallel
class contains the remaining block.

Lemma 3.4. If6t+3 €N;, i = 0,1, or 2, then 18t4+7 € N,.

Proof. The case t = 0 is discussed in Lemma 2.2.2.1. For t > 1, we use
an incomplete GD(18t+6;6t+42;3) with { holes and add one point to each
group. For each group, use 6¢4+3 € N; and fill in each of i holes with an
STS(9) € Ng. One remaining block comes from the decomposition of the
incomplete GD, since 6¢t+2 € C; (Lemma 2.2.5). Thus 18t+7 € N,. Note
that when ¢ = 1, 6t4+3 = 9 € Ny, and we have a GD(214;8;3) with no holes,
and so we get 25 € N|.
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Lemma 3.5. If6t+7 € N;,{ = 1,2 or 3, then 18t+15 € N,.

Proof. Write 18t+15 = 3(6t4+4)+3. We wuse an incomplete
GD(18¢+12;6t+4;3) with i—1 holes (and ¢ > 1) and add. three points to
each group. Let those three points form a remaining block in the decom-
position of 6¢47 € N;. Fill in each of the i—1 holes with an STS(9) € N,
Then we know 18t+15 € N,, where exactly two blocks are remaining, one
from the incomplete GD and the other formed by the three new points.
Note that when t = 0, 7 € NV, and we use a GD(12;4;3) with no holes and
get 15 € Nz.

Remark. The STS(18t+15) in Lemma 3.5 contains a parallel class of
blocks, that is, 6¢+5 disjoint blocks, 6t+4 of which are associated with
some diagonal element of a square of order 6¢+4, or from some
STS(9) € Ny (see Remark, Lemma 2.2.5). The last block of the parallel

class is the additional block. Therefore the parallel class contains the two
blocks remaining.

The “v—2v+1 construction for STS is very old; one account of it
can be found in [1, p.329]. Let (S,T) be any triple system, oo an element
not in {1,2}xS, and K = {od} U ({1,2}XS). Then (K,B) is an STS(2v+1)
where B contains the following blocks:

(1) the |S|blocks (oq(1,2),(2,2)) € B for every z € S.

(2) For every triple (z,y,2) € T define a copy of a triple system of order
7 on the set {od U {(1,2)X(z,y,2)} such ‘that the blocks
((1,::),(2,3/),(2;2)), ((1,y),(2,2),(2,2)), ((l'z)r(?"z)v(2vy))» and
((1,z),(1,y),(1,2)) belong to B.

Lemma 8.8. If 18t+15 € N, and the STS(18t+15) has a parallel class
of blocks, then 36t+31 € N,.

Proof. First we know that, if 18t+15 € N,, then there exists an

STS(18t+15) which has a parallel class of blocks for all ¢, from the remark

in* Lemma 3.5. Now write 36t+31 = 2(18+15)+1 and use the
“v =+ 2v+1" construction. Suppose that STS(18t+15) is such a system

(S,T) with a parallel class T, of blocks in B such that the first three blocks

in (2) form a triangle .in (z,y,z) € T\T,, but for (z.y,2) € Ty we form two
triangles ((1,9),(2,2),(2,2)); ((1,2).(2,2),00); - ((Ly).(2,y).9); and

((L,2).(2,9)42,2)); ((1,x).(2,).2,2)); ((1,2),(2,2),09. What is remaining in B
is' exactly the blocks ((1,z),1,9),(1,2)), where (z,y,2) €T. Since"
18t+15 € Ny, we then know that 36¢+31 € N,.

Lemma 3.7. If6t+3 €N, ¢ = 1,2 or 3 and the STS(6t+3) has a paral-
lel class of blocks containing the i disjoint blocks remaining in the
decomposition, then there is an STS(12t+7) with a sub-STS(7) such that
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12t4+7 € N; and the decomposition contdins a sub-decomposition on the
STS(7). By this we mean than an STS(7) (two triangles and one remain-

ing block - Figure 1) comprise a subset of the triangulation of
STS(12t+7).

Proof. First we note that if (for all t) 8t+3 € Non Nj or 6¢+3 € N;,
t =1 or 2, then each STS(6¢t+3) contains a parallel class of blocks con-
taining the ¢ (i = 1,2, or 3) disjoint remaining blocks in the decomposition
(Lemmas 2.2.23, 226, 3.2, 33, 35 - Remarks) Now write
12¢+7 = 2(6t+3)+1. We do a construction similar to that of Lemma 3.6.
For a block (z,y,2) remaining in the decomposition of STS(6¢+3), we have
(z,y,2) €Ty and then the block ((1,z),(1,9)(1,2)) and two corresponding
triangles form a sub-decomposition on a sub-STS(7).

From (2, p.96], we have an indirect product construction. Suppose
that there exist the following ingredient designs:

(1)  STS(u),

(2) STS(v) missing sub-STS(w),

(8) GD(3(v—a)v—a;3) missing a sub-GD(3(w—a);w—a;3),
(4) STS(u(w—a)+a). '
Then, there is an STS(u(v—a)+a).

Lemma 3.8. If 12t+7 €N;, i = 1,2, or 3, and the decomposition con-
tains e sub-decomposition on a sub-STS(7), then 36t+13 € N,.

Proof. Write 36t+13 = 3(12t+3)+4 and let u = 3, v = 12t4+7, w = 7,
and a = 4. From the indirect product, we have an STS(36t+13). We will
further look at its decomposition. First, we have (assume t >1) a
GD(3(12t+3);12¢ +3;3) with ¢ holes whose blocks are decomposed into tri-
angles. Distinguish one hole and fill in each of the i—1 holes with an
STS(9) €ENp. Add four new points to each group. For each group we use
a decomposition of STS(12¢+7) with a sub-decomposition on a sub-STS(7)
missing so that the three points corresponding to the distinguished hole all
belong to the missing sub-STS(7). Now all the blocks are decomposed into
triangles except those in the set formed by the nine points corresponding
to the distinguished hole and the four new points. Since 13 € N,, from
Lemma 2.2.2.2, we use such an ST5(13) on the set of 13 points. Thus we
get an STS(36¢+13) such that 36¢413 € N,. Note that, when ¢t = 0, we
have already shown that 13 €N, (Figure 2).

4. Summary.
The foregoing results are brought together below.
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Theorem 4.1. For every positive integer v, v =1 or 3(mod 8), there is an
STS(v) with its blocks decomposable into triangles such that no two tri-
angles have common blocks and there are i disjoint blocks remaining,
where ¢ = 0,1, or 2, as appropriate.

Proof. From Lemmas 2.2.2.1, 2.2.2.2, 2.2.2.3, and 2.2.6, we know that
3€EN, TEN, 9€NyNn Nj, and 13 € N,. Also, since 7 € N,, then from
Lemma 3.5, 15 € N,. The results follows by induction.

We still need to prove the sufficiency of the last necessary condition
in 2.2.1, that is, v = 13,15(mod 18), implies that v € M,.

5. Lemmas needed to prove sufficiency of 2.2.1.4.

Lemma 5.1. If 18t + 15 € M, and the STS(18t+15) has a parallel class
of blocks, then 36t + 31 € M,..

Proof. Assume that 18t+15 € M, for all ¢ > 0. From Lemma 3.8, using
the “v — 2v+1” construction, we would have the blocks of STS(36¢+31)
in triangles except for ((1,z),(1,y),(1,2)), where (z,y,2) is a block in an
STS(18t+15). Therefore, if 18t+15 € M,, then 36¢+31 € M,.

Lemma 5.2. 36t+13 € M..
Proof. By examining Lemma 3.8, which is used to show that

36t + 13 € N, for every t > 1 (Theorem 4.1), we see that, if 13 € M,,
then 36¢+13 € M, for t > 0. Now 13 € M, as shown in Figure 17.

1 2 s 6 7 10 2 3 &8
5 8 9 10 11 1 2 7 9
1 6 8 7 12 1 9 1 3
3 4 7 4 5 8 9 10 13
4 9 1 8 9 12 12 13 3
I 3 5 12 4 6 3 8 10
13 1 4 7 8 1 1m 12 2
8 13 2 6 11 13 5 10 12
10 2 4 13 5 7
Figure 17.
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The two remaining blocks are (11,12,2) and (5,10,12), which intersect.

Therefore all that is left to prove is that 18t4-15 € M,.

Lemma 5.3. 12t + 1 EN;, i = 2,3, or 4 (for t > 2), and there ezists an
STS(12t+1) which contains a sub-decomposition on a sub-STS(7).

Proof. In Figure 18, the elements. of an STS(2v+7) are shown, where
v = 2341 and v = 1,3(mod 6).

These are the points of the STS(2v+7): (0,3), (1,¢),1 = 0,1,...,v—1;
09,9, .« . . ,008.
These are the blocks of the STS(2v+7):

(1) (o00,(0,0),(1,0)) }
mod(—,28+1)
(oo,,(0,0),(l,l))

(002,(0,0),(1,—1))

(003,(0,0),(1,2))

(004,(0,0),(1,-2)) mod(~,20+1)
(005,(0,0),(1,3))

(006,(0,0),(1,-3))

((0,0),(1,a),(1,—a))

for every mod(—,28+1)
a=4p5,.,s

((1,0),(1,2),(1,6))

(2) blocks of an STS(7) on the elements oo;;
(3) blocks of an STS(v) on the elements (0,:).

Figure 18

Note that the above construction does not hold for v = 3; so we let
v=06t=3 for t>2 (that s, = 3t-2). We  get
2047 = 2(6¢—3)4-7 = 12t+1 (for t >2). Some of the blocks of an
STS(12t+1), for t > 2, are shown in Figure 19.
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o (00) (1.0) | [ [ oqy @0 (1} || = [ | o9y (08 —0X1.24—0) I o (0—)1.06-8) | og (0.06—4)(1.08~)

[ oq (.0) (L1) @A f| | oq(0e-—0XL2—) o (0.0¢—6)1.6—) oq (0.0t—)1,6¢—8)
o 00) (1-0)f |[og @0 (-2l | - | [ g @et-oMroe-ar| | [oq -srras- | | | oq2ee—trevn
1A 24 - —5(A4) —4(A) «-34)

o3 (0.0) (1.9) og (1) (L) | | o (0,0¢—0)(2.0¢~3) 0, (0.0¢—6)1.—2) oq, (0.0e—1)1,04-1)
09, 0.0) (1L.=2)| | Joo, @) (1=1)] | | | o0, (nce—e)1.0¢—8) o0, (0.06—56)1,04~7) o0, (0oe—e(1.0¢—0)
18 2B - «—5(B) «—4(B) o«—3(8)
oq (0.0} (1.2) LY CH IR | oq, (0.0 —0X1,0—4) g (0,06—5X1.06-3) oq (0.00—a)1,0¢~2)
“ &4 1A | 24 u
(10020 | L) (ﬁ) ) |- (l.u-e)(g;-‘)(w) (Let-c)(w‘l:-exwm (w-ﬂ(uil-a)(x.aﬂ)
Y] ] o-8(B) B 28
(1,0) (1.4) (1.—4) | (1.2) (1.6) (1,~8) | ... | (1.0¢—0)3,0¢—2)(2,0¢—10) (1.«-6)(1.*—1)(1.&-0) (l.&—!)(fﬂ)(l.u-ﬂ)

Figure 19

In Figure 19, triangulations are illustrated by the blocks circled, as

well as the pairs of blocks circled with an associated number linking them
with a third block in one of the bottom two rows. Note that there are
6¢—10 columns (an even number) in the space where there are three dots.
They can be triangulated like the pair of columns on the left. The three
remaining blocks are underlined; they are (o9,(0,6¢—6),(1,6¢-5)),
(Qv(o»st-s)r(ltst_4))r and (003,(0,6‘-4),(1,63—5))-

Thus we are left with the 3 remaining blocks and:

(1)  ((0,0),(1,2),(1,—a)) for every a = 5,6,...,8, mod(—,25+1)
(only if s > 4, that is, t > 3);

(2) Dblocks of an STS(v) on the elements (0,1);

(3) blocks of an STS(7) on the elements oo;.

Now remembering that s = 3t—2 (or s = 1(mod 8)), we write the blocks
((0,0),(1,a),(1,—a)) for & = 58,...,6 in Figure 20.
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, .(1'._5)) “ e ——

2= A ((LOM1.8)1,-8)) -~

=202 ... 0

s+5 243 .

34 ((1,0),(1,

a+5
)

24 ((1,0),(1, (1~

ﬂs_),(l _%)) -

18 ((Lop( 2 0,- ) -

28 (Lo 2 -5 -

3B ((LOML, ’*” M2y -

1A ((1,0),(1, 2.
ratio

> 201'14
3C ((1,0),(1,6—-2),(1,~s+2)) 3
2C ((1,0).(1,8—1),(1,—3-{-1)) ..
1C ((1,0),(1,8),(1,-8)) - -~

Figure 20

. 8§—
Group the rows according to the numbers on the left (there are

“groups” of rows) where the group of rows KA, KB, and KC can be put
into sets of triangles. We can put them into triangles since the second
parts of the second element of the blocks of row KB are greater than the
corresponding parts in the second element of blocks in row KA by 2K-1.
But in row KC the second parts of the third element of each block are
greater than the second parts of the second element of each block by
2K —1. Thus since in each row we have the blocks mod(—,2s+1), each
difference of 2K —1 (between KA and KB) corresponding to each of the
2841 blocks (in rows KA and KB) would appear once in KC.
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Example: K =1
s =10
A = ((1,0),(1,8),(1.8) . -
B = ((1,0),(1,7),(1,-7))

c = ((1,0),(1,10),(1,-10)) 70 ((1,17),(1,6),(1,7)) .

Figure 21

Another Example: K =3

8 =13
3A ={((1 0) (1,5),(1,-9)) L.
3B =|((1,0),(1,10),(1,-10))| - - -

C = ((.1,0),(1,11),(1,—11)) v~'|((1’21)i(1ts)r(lilo))lv e

Figure 22

Thus, in this way (see Figures 21 and 22), all the rows can be triangulated.
We now have remaining:

(1) the 3 remaining blocks in Figure 19

(2) blocks of an STS(v) on the elements (0,¢)

(3) blocks of an STS(7) on the elements ogq; i = 0,...,6.

Now since v = 6¢—3, from Lemma 2.2.8, and the fact that Lemmas 3.2,
3.3, and 3.5 hold for ¢ > 0 (Theorem 4.1), we know that v € N; if b, the
number of blocks congruent to 1 or 2 ((mod3), respectively and
v € Ng N Nj otherwise. (If v € Ny N N3 we examine the case v € N3.) So
assume one of the remaining blocks is: ((0,6¢—6),0,6t—5),(0,6¢—4)). Note
that we can always get this result by permuting the symbols. We note
that this block forms a triangle with (09,(0, 6!—6) (1,6t=5)) and
(09,,(0,6¢—5),(1,6t—4)). Therefore what we have remaining is:
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o Ty {00

(022,(0,6¢—4),(1,6¢5)
(oo 1003, 0%)

Now we know that the top ¢—1 blocks are disjoint from
((0,6¢—8),(0,6¢—5),(0,6¢—4)) and that we can always get (09,0000 as the
remaining block in a:triangulation of an STS(7) by permuting the symbols.
Thus, we observe that all of the blocks above are disjoint. So the result
we have is that 12t+1€N;, i =23, or 4 for all ¢t >2, and the
STS(12t+1) contains a sub-decomposition on a sub-STS(7) (which is, in
our construction, the STS(7) on og, i = 0,...,6).

Lemma 5.4. 18t+15 € M, for t = 0 and t > 2, and there exists such
an STS(18t+15) which contains a parallel class of blocks.

Proof. Now we know GD(3(6t+4);6t+4;3) € C, from Lemma 2.2.5. Now
assume that ¢ > 2. If we take the transversal to be the diagonal elements
of a square of order 2t+1 (compare with Lemma 2.2.5) with which we use
to replace the squares of order 3 (of a square of order 6¢+4) by the upper
left parts of some squares of order 4 (see Figure 8), we have the configura-
tion shown in Figure 23.

al32 1
3al 2
21a 3
abd 4
a4 5
54a 8

a 6t+36t+2 6t+1

6t+3 a 6t+1 | 6t+2

6t+26t+1 o 6t+3
123 | 4586 Bt+1 6t+2 6¢+3 a

Figure 23
Observe that GD(3(6t+4);6t+4;3)-GD(12;3;4) €C,, where the
GD(12;3;4) is associated with the square of order 4 on the bottom right
corner (remembering that ¢ > 2).

Now if we use a tranversal (off diagonal) of the square of order 2¢+1
we can find 0,1,2, or 3 “holes” (3%3) that do not involve the bottom four
rows or the four right-most columns. This is true because we have
assumed that ¢ > 2 (thus 6¢+4 > 16), and the square of order 4 on the
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bottom right only eliminates two possible holes; but there are 5 holes (since
(16—1)/3 = 5). Note that we get an incomplete GD even if we remove an
off-diagonal 3 X 3 cell, since we can permute the rows and columns of the
square of order 6¢ 4+ 4.

Now we know from Lemma 3.7 that 12t+7 €N;, i =12, or 3, and
contains a sub-decomposition on a sub-STS(7), and from Lemma 5.3 that
12t+1 €N;, i = 2,3, or 4, and contains a sub-decomposition on a sub-
STS(7). Therefore, for t even, 6t+47 €N;, i =12, or 3; for t odd,
6t + 7€N;, { =23, or 4; in either case it contains a sub-decomposition
on a sub-STS(7). So we now take an incomplete GD(3(6t+4);6t+4;3) with
i—1 holes off the diagonal cells, and add three points to each group. Let
those three points form a remaining block in the decomposition of an
STS(6t+47), t > 2. Thus we would have the incomplete GD in Figure 24,

i—1 disjoint blocks one remaining block

group 1|Zet+1 Tat42 Tor43 Tora| ZT1T2° " Tg Z, %y 2,
Broup 2 |Yses1 Yors2 Yores Yoras| Y1¥2°°° Yoo Z, Ty Z,
BrOUP 3|20, Zarsz Zoes Zeed]| 21227 Zg z, 2 T,
L 6t+7 J

Figure 24

We fill in each of the i—1 holes with an STS(9) € N,. For each group we
use a decomposition of STS(6t+7) with a sub-decomposition on a sub-
STS(7) such that the four points corresponding to the distinguished square
(the square of order 4 on the bottom right of Figure 23) as well as the
points z,,2;, and z, all belong to the sub-STS(7). Now since:

(1) (6t+4)ec, t>0
(?) ((Bt+4)3)ec, ¢ 21
(8) ((6t+4)3;3)ecCc, t>1

(4) ((6t+4);3;33)eC, t>1
by Lemma 2.2.5, and since each of (1), (2), (3), and (4), minus GD(12;4;3)
is in Cy (for .t > 2), we are left with fifteen points : Zgy1, Zeeyo, Tersa,

Zot+ar Yor+1r Yor4ar Yoradr Yoeanr Zot+1r Z6t+2 Zot+3 Zet+ar ZTas Ty, and z.. -
These can be triangulated by triangulating the GD(12;4;3) (as in to Figure
8). Note that the block (Z 6t 440t 4+4120¢44) Temains from triangulating the
GD(12;4;3).. We include a triangulated ST'S(7) on the points Tore1r Toran:
Zor43) Lot44r Loy Ty, and z,, with remaining block (z,,2y,z.); plus a triangu-
lated STS(7) on the points yer41, Yor+2) Yoraa Yot+4 Zay Ty, and z,, Wlth
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remaining block (z,,2;,z.); plus a triangulated STS(7) on the points zg,,,,
Zet42) Z6t43) Zet+4» Ta» T4, and z,, which contains the block (z,,2,z.) and
has the block (zg44,%4,28¢41) remaining. So if we remove the two blocks of
(%4,%3,2.) in the first two STS(7)'s (since this block appears in the third
STS(7)), we are left with a triangulated STS(15) with remaining blocks
(Tot4+4Yot+4r26044) N (Zg144,%0,20e41) Which intersect (Figure 25). There-
fore 18t + 15 € My fort =0and t > 2.

zy Tot4er  ZToes2 Zete1 T To143

Z. Tot+2  Tot+4 Tot+2  Tot+s Zs TaTy X,
Zot+s  Torad Z Toet Za Zot+1 (remoye)

£ Yse4r  Yors2 Yor+t Zz. Yer4s

e Yaev2 Yot Yer4e2 Tor4s Z, EPEIE
Yotes  Yor44 z Yor+4 T4 Yet+1 (remove)

z, £ z, z Zat+1 Zet42
Zot41 Z, Zgt43 z, Zot42 26t Zet+4 Ta 26t+1
Zet42 %6143 Z, Zot43  Tor4 Ty

Figure 25

Remarks. The STS(18t+15) in Lemma 5.4 (t > 2) contains a parallel
class of blocks, that is, 6¢+3 disjoint blocks each of which is associated
with diagonal elements of off-diagonal 3 X 3 cells (that is, the product of
the square of order 3 with an off-diagonal transversal of the square of
order 2t+1 (which exists for ¢ > 1) or from some STS(9), plus the block
(% g¢44:¥ 8t +4:20144) (2s explained in Lemma 5.4, this block is in the specified
GD(12;4;3)), plus the additional block (z,,z;,z.). The STS(15) contains a
parallel class  of blocks: (ZersiYersnzarss)r  (Tors2VerssiZorsr)s
(Tor+a:Yor+1:20042)s (Torsas¥ors0r2ee44)s and (24,2,,2.).

Note that if we wish to construct 18¢+15 € M, (for ¢t > 2), we need
to apply Lemmas 3.1 through 3.8 recursively (Theorem 4.1} until we
obtain, for ¢ odd, 6¢' — 3 € N; where i = 1 or 2 if b is congruent to 1 or
2(mod 3) respectively, and 6¢'—3 € Ny N N, otherwise (for t = 2t/ — 1) or
we obtain a construction for an STS(6t+7), for t even, such that it
contains a sub-decomposition on a sub-STS(7) (Lemma 3.7).

Lemma 6.5. 18t+15 € M, for t = 1, that is, 33 € M, such that the
* STS(33) has a parallel class of blocks.

Proof. We take a GD(30;10;3) which we know is in C, (Lemma 2.2.5). If
we take the transversal to be the diagonal elements of a square of order 9
(a similar procedure to that used in Lemma 5.4) which we use to replace
the squares of order 3 (of a square of order 10) by the upper left parts of
some squares of order 4 (see Figure 8), we have the configuration shown in
Figure 26.
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3 a 1 9 8 7 6 5 4 2
2 1 a 8 7 9 5 4 6 3
7 9 8 a 8 5 1 3 2 4
9 8 7 8 a 4 3 2 1 5
8 7 9 5 4 a 2 1 3 6
4 6 5 1 3 2 « 9| |8 7

5 4 6 2 1 3 BLla 9]

12 s |a s s |z 8] o] e

Figure 26

The diagonal cells can be triangulated with the bottom row and right-most
column. Therefore, if we remove the GD(12;4;3) on the bottom right, we
have an incomplete GD which is in Cp. Now let us look at the three
groups and add three new points to each group (Figure 27).

group 1|%7 Tg ZTo9 ZT1o|T1 %2 " " ZTe Ty Ty Z)3
group 2|y; Ys Yo Yio|Vi1 VY2 Ve Ty Tyg Ty
Broup 31z, 25 24 zyg|zy 29 " 24 2y Tyg Zys

Figure 27.

Now we know 13 € M, (Figure 17); so we group the elements by row, as
shown above. We let one of the remaining blocks in each row be
(z11,212,%13), and let the other be (zg,20,211), (Va¥ezyy), and (2g,29,2y,),
respectively. (We can guarantee this by permutation of the symbols.)
Thus the blocks remaining in STS(33) that are not yet in triangles are the
four blocks just mentioned and the GD(12;4;3). These blocks can be tri-
angulated as shown in Figure 28.
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Tg Ty I Zg 2y In Zz7 Y7 2y

Zg Yr 2 T7 Ys 2y z7 Yo 27
Ty Y7 28 Z7 Yo 2g o Y7 29
Tg Yo 27 Zg Ys Z10 Ty Yio 29
Ty Ys 27 g Yio 23 To Yo 2y
Zy Yo 210 ZTio Ys 2g To Yo 210

remaining blocks: (z,,,%12,%}3) and (yg.¥9,211)

Figure 28

Therefore, since the two remaining blocks (z,,,z,,2,3) and (yg,y9 2 1) inter-
sect, we have that 33 € M,.

Remark. The STS(33) in Lemma 5.5 contains a parallel class of blocks,
that is, the 10 disjoint blocks each of which comes from an off-diagonal
transversal element of the square of order 10 and the block (z0,y0210),
and the additional block (z,,,7,9,;3)-

6. Summary.
The foregoing results are brought together below.

Theorem 8.1. For every positive integer v, v = 1 or 3(mod 8), where an
STS(v) has 3q+2 blocks, there is an STS(v) with its blocks decomposable
into triangles such that no two triangles have common blocks and there
are two remaining blocks which intersect at a point.

Proof. This follows directly from the results of Lemmas 5.1, 5.2, 5.4, and
5.5. Therefore we have proved the sufficiency of the necessary condition
stated in 2.2.1.4.
7. Lemmas needed to prove Theorem 7.1.

Lemma 7.1 If v = 18t + 15 (t > 0) and there ezists a TSTS(v) of type |
and type II whose underlying STS(v)’s are isomorphic and have a paral-
lel class of blocks, then for w = 36t + 31, there exists a TSTS(w) of type
I and type II whose underlying STS(w)’s are isomorphic.

Proof. This result follows directly from Lemmas 13 and 16.
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Lemma 7.2. For all v = 36t + 13, there ezists a TSTS(v) of type I and
type II whose underlying STS(v)’s are isomorphic.

Proof. Since the STS(13)’s used in Lemmas 3.8 and 5.2 (Figures 2 and 17
respectively) are isomorphic (in fact identical), the result follows.

Lemma 7.3. If v=18t + 15 (t = 0 and t > 2), then there exists a
TSTS(v) of type I and type II whose underlying STS(v)’s are isomorphic,
and such that the STS(v)’s have a parallel class of blocks.

Proof. We know from Lemmas 3.7 and 5.3 respectively, that for even
nonnegative ¢, 6t4+7 € V;, i = 1,2, or 3, as appropriate; for odd (t>3)
6t + 7 €N;, where ¢ = 2,3, or 4, as appropriate. In either case, there
exists a corresponding TSTS(6¢ + 7) which contains a sub-decomposition
on a sub-STS(7). So we now use the square of order 6¢ + 4 used in
Lemma 5.4 (Figure 23) to prove a modified version of Lemma 3.5. Lemma
3.5 taking an incomplete GD(3(6¢+4);6t+4;3) with i — 1 holes off the
diagonal cells (these exist for ¢ > 2, as discussed in Lemma 5.5, fort =0,
use 0 holes), and add three points to each group. (Note that we added
three points to each group originally.) We let those three points form a
remaining block in the decomposition of an STSS(6t+7). We fill in each of
the ¢ — 1 holes with an STS(9) € Ny. As in Lemma 5.4, for each group we
use a decomposition on a sub-STS(7) such that the four points (for each
group) corresponding to the distinguished square (the square of order 4 on
the bottom right of Figure 23) as well as the points z,,z, and z, all belong
to the sub-STS(7).

We now need only to show that the STS(15) corresponding to the
points of the square of order 4 on the bottom right of Figure 23 and the
points z,,z;, and z, in this case (the new Lemma 3.5) and the case of
Lemma 5.4 are isomorphic. The square of order 4 and the points z,,z;,
and z, are triangulated like the GD(12;4;3) (Figure 8) and with three
STS(7)’s as shown in Figure 29.

£ Zot+1r  Tot42 Tot+1 z, Zor+s

z. Tote2  Tor4d Zor42  Teor+s T T2y,
Tot43s  Toe4d zy Tot4d Z, Zot41 (remove)

zy Yor+1  Yors2 Yoe+1 z. Yer43

T Yore2  Vor+4 Yoevz  Yatss g EPET T
Yeess  Yotad T Yet4s T, Yor+1 (remove)

Ty Zat+1 Zet+2 Zat+1 z, Z6t43

z. Zot42  Zotd Zot+2  Zoe4s Ta ZaZy T,
Zet43 2ot Ty 26144 Zq Zet+1

Figure 29
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We remove two blocks of (z,,z;,z.) and note that we have a triangulation
with two remaining disjoint blocks: (Zg¢44:¥st+4284+4) 30nd (Z4,%3Z.). Since
we are triangulating the same GD(12;4;3) as in Lemma 5.4 and since the
blocks in Figure 29 are identical with those of Figure 25, we have the fol-
lowing result.

From Lemma 5.4 and the new Lemma 3.5, there exists a
TSTS(18t+15) (t = 0 and t > 2) of type I and type II whose underlying
STS(v)'s are isomorphic. Also, the STS(18t+15)’s have a parallel class of
blocks as discussed in the remark in Lemma 5.4.

Lemma 7.4. There exists a TSTS(33) of type I and type II whose under-
lying STS(33)’s are isomorphic and have a parallel class of blocks.

Proof. We start with the square of order 10 in Figure 26 (Lemma 5.5),
and we remove a GD(9;3;3) by removing the 3 X 3 cell in the centre part
of the top row, as shown in Figure 30.

a 2 3 4 6 5 1
3 a 1 6 5 4 2
2 1 o 5 4 6 3
7 9 8 a 6 5 1 3 2 4
9 8 7 6 a 4 3 2 1 5
8 7 9 5 4 a 2 1 3 6
4 6 5 1 3 2 a 9] |8 7
6 5 4 3 2 1 9] r 8
5 4 6 2 1 3 |[s] o 9
1 2 3 4 5 6 ki sl 9 «

Figure 30

-Our stategy is to repeat, in a different way, the case in Lemma 3.5 to show
that 33 € N,. Now we know that 13 €N, and 13 € M,, where the
STS(13)’s are isomorphic (Figures 2 and 17). So we use the incomplete
GD(30;10;3) (Figure 30) and take an STS(13) on {z,,...,2,3} such that the
blocks (z4,210,2y3) and (z,,25,23) remain. We also take an STS(13) on
{1r-¥10/Za,Zs 2.} such that (z},,2,0,7,3) and (y,,y5Ye) remain. Finally we
take an STS(13) on {z),..,210,2,,212,%13} such that (z,,,ze,2,3) and
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(27:28,29) remain. Note that these three STS(13)’s are isomorphic to the
three STS(13)’s used in Lemma 5.5; in fact we can easily choose our
STS(13)’s in Lemma 5.5 to be identical with these three STS(13)’s. So we
now fill in the hole in the GD(30;10;3) with an STS(9) € Ny, on the
elements z,,2,,%3,¥4,Y5Y62n2820. After removing two blocks of
(%11,%12,213), we have remaining the blocks (z,,,z,,213) and (z,0,910,210)
which are disjoint.

Since we have filled in the hole with an STS(9) with the same sym-
bols that appeared in the centre cell in the top row of Figure 26, and since
the three STS(13)’s we just used are identical with those used in Lemma
5.5, therefore the ST'S(33) we constructed in Lemma 5.5 is identical with
this new STS(33). Note that, if we only use the fact that the two sets of
STS(13)’s are isomorphic, we would have to permute the symbols
(z1,--%10), and/or the symbols (yy,....410), and/or the symbols (zy,...,2),
and then we would get the two GD(30;10;3)’s to be isomorphic; so then
the ST'S(33)’s would be isomorphic. Therefore there exists a TSTS(33) of
type I and type II whose underlying STS(33)’s are isomorphic, and have a
parallel class of blocks (as discussed in Lemma 5.5).

Theorem 7.1. For every positive v=1 or 3 (mod 6) there exists a
TSTS(v) of type I and type II whose underlying STS(v)’s are isomorphic.

Proof. Let STS(v) have 3¢ + s blocks. If 8 =0 or 1, any triangulation
is of both type I and type II. Therefore Theorem 7.1 holds as a result of
Theorem 4.1. If 8 = 2, then the result follows directly from Lemmas 7.1,
7.2,7.3, and 7.4.
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