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1. INTRODUCTION

In this paper the (signless) Stirling numbers of the
second kind are denoted S(n,k); they are defined
combinatorially as the number of partitions of the set
{1,...,n} into k non-empty disjoint subsets. Hence S(n,0)
= 6n0' where 6nJ denotes the Kronecker symbol. The
r-Stirling numbers of the second kind represent a certain
generalization of the regular Stirling numbers S(n, k).
These are denoted by Sr(n,k) and defined combinatorially' as

the number of partitions of the set (1,...,n} into k
non-empty disjoint subsets, such that the numbers, 1,...,r
are in distinct subsets (see, e.g., [11). It i8 easy to
gsee that So(n,k) = Sl(n,k) = S(n, k).

Following L. Carlitz ([2]1) we define the Stirling
polynomials of the second kind in the following manner

m

R(n, k;x) = [;]S(m,k)xn- (x € R).

N~ D

o]

m

A. Broder ([11) has shown

R(n,k;r) = Sr(n+r,k*r)
(r,k,n = 0,1, ..., k < n).

The purpose of this paper is to study some properties
of the polynomials R(n,k;x). Integral representation
formulas are established in Section 3. New recurrence
formulas as well as some inequalities that hold for these
polynomials are given in Sections 4 and S, respectively.

Complete proofs of all the theorems presented below
will be published elsewhere.

JCMCC 1(1987), pp. 175-180



2. PRELIMINARIES

Let to € vvey < tk (k > 0) be given real numbers.
Further, let f be a real-valued function defined on
[to,tk]. A k-th order divided difference of f at the
points to,...,tk may be defined recursively by

[tilf = f(ti) (1 =0,1,...,k)

and

[to,...,tk]f = ([tl"’°'tk]f - [to,...,tk_llf)/(tk-to).

The number [to,...,tklf is independent of the order of the
points to,...,tk.

The following material on B-splines has its origin in
the paper (3] of Curry and Schoenberg.

For fixed t let M(t;x) = k(x-t)%¥"!, defined to be
kix-t K1 15 2 t and zero otherwise. The function

Hk(t) = [to,...,t IM(t; )

k

(k-th divided difference of M(t;x) with regpect to x at
to,...,tk) is commonly referred to as a B-spline of degree
k-1 (order k) and has the following elementary properties:
(1) Hk(t) >0 4if t € (to,tk) and Nk(t) =0
otherwise.
(ii) In each interval [ti,t ] (1 =0,1,...,k-1) N

i+l
coincides with an algebraic polynomial of degree k-1 or

k

less.
(1) m_ e K%,
(iv) 1If f has a continuous k-th derivative in
(to,tk), then
tk
o1 (k)
[tgreopt If = (1 I m £ (trat.
to

For our further purposes we would like to mention that
the function

176



Co(tgr-vert,) = C, = ) R
io#...+1k=r )
(io,...,ik € {0,1,...,r}) i8 referred to as a complete
symmetric function of order r in variables to""'tk (see,

e.g., [41).

3. REPRESENTATION FORMULAS FOR R(n, k;x)

The following identity

(3.1) Rin,k;x) = [x,%x+1,...,x+k1t"
(n,k = 0,1,...,; k<n; x €R)

is known (see [1) and [2]). Making use of (3.1) and some
facts presented in Section 2 we can prove the following

theorems.

Theorem 3.1. Let 0O £ k < n and let x € R. Then

. n_kdt,

X+K
(3.2) Rin, k;x) = [;] I M, (t)t
b 4
where uk denotes the B-spline with knots at x,x+1,...,x+k.0
Kk
Kk
) &€ R*: Ay 2 0 (all 1), 2 A, S 1)
i=1

k

Let §" = ((Al,...,A

k

denote a simplex in Rk. The following theorem provides
another integral representation for Stirling polynomials of
the second kind. We have

n
Theorem 3.2. Let Ay = 1 - E A,. Then under the
i=1

assumptions of Theorem 3.1 the following identity

(3.3) Ri(n,k;x) = n(n-1)+...°(n-k+1)

. I ver [ tax + oo+ 2 (xek) 17 K4y
y o K

s

caodA

1 k
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Theorem 3.3. If O < k € n, then

(3.4) Rn, k;x) = cn_k(x,x+1,...,x*k) (x € R).

4. THE RECURRENCE FORMULAS FOR STIRLING POLYNOMIALS OF
THE SECOND KIND

The following recurrence formula

(4.1) Rin,k;x) = (x+kK)R(n-1,k;x) + R(n-1,k-1;x)
(0O <k €£n; x €R)

vas given by L. Carlitz [2]. This formula has a remarkable
property. Namely, if x > O, then the algorithm based on
(4.1) is numerically stable.

Below we give more recurrence formulas for Stirling
polynomiala of the gecond kind.

Theorem 4.1. If O £ k < n, then

(4.2) R(n,k;x+1) = (k+1)R(n,k+1;x) + R(n,k;x). [s]

Theorem 4.2. Let 1 £ k < n. Then the following formula

(4.3) (k-1)k R(n,k;x) = n(k-1)R(n-1,k-1;%)
n-k-1
n : :
. [jmic ]t Cesie= 10 €t R 11, ke 150
J=0
- (J*DIRCIvk, k-1;%)]

is valid. a

Theorem 4.3. Assume x # 0,-1,...,-k. Then for any k and n
(0 £ k £ n) we have

Kk
(4.4 R(n, kix) = z o R(n+1, k-§;x),
Jj=0
§ J
vhere o, = (-1)/ T (x+k-i) (j = 0,1,...,k). o
J 1=0
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S. INEQUALITIES INVOLVING R(n, k;x)

All results presented below hold true provided x 2 O.
We are nov prepared to state

Theorem S.1. Let O £ k £ n. Then

(xrk)™ - kixek-1)" (se+k) ™
(5.1) %I < Rin,k;x) £ kT
with equalitiees if and only if k = O. a

Theorem S5.2. For any k,m,n 2 0 and any «, where

(-0, ®) m even
o €

[x+k, @) m odd

the following inequality

m
(5. 2) 2 (-1)“'9[2][P;e]‘laen(p-e,k;x) >0
e=0
(p = n+m+k)
holda. If k > O then strict inequality holds. o

Theorem 5.3. Let O £ k < n. Then

(5.3) Rin+1, k;x)R(n-1,Kk;x) < R(n, k;x)>
< B 22K Rened, kix0R(n-1, k0.
If k # 0 then strict inequalities hold. o

The first inequality tells us the sequence {R(-,k;x)}
is logarithmically concave.

Our next result reads as follows.

Theorem S5.4. For k =2 O
1
(5.4) R(k+1,k;x) > R(k*2,k;x)2 > R(k+3, k;x)" 2 ... .

Wy

Moreover,
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N+

(5.5) F‘;l]'lmkq,k;x) < [[k;z]-lR(k*Zk;x)] PR
Above inequalities become equalities only if k = O. o
Theorem 5.5. If § € k € n, then

(5. 6) k R(n,k;x) 2 n R(n-1,k-1;x%).

If k < n then strict inequality holds. a

Theorem 5.6. For any non-negative integers n and p with
n £ p the folloving inequality

(n+l)., .. (n+k)
(3.7) Rin+k, k;x) < (pril . (prK) R(p+k, k;x)

holds true. Equality holds in (5.6) if and only if n = k.0

Theorem S5.7. Let 1 < k < n. Then

(5.7) x R(n-1,k;x) < 2%ER(n,k;x)

< (x+k)R(n-1,k;x) < R(n,k;x). 8]
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