Stirling Polynomials of the Second Kind

Edward Neuman
Department of Mathematics
Southern Illinois University
Carbondale, Illinois 62901

1. INTRODUCTION

In this paper the (signless) Stirling numbers of the second kind are denoted S(n,k); they are defined combinatorially as the number of partitions of the set $\{1,\ldots,n\}$ into k non-empty disjoint subsets. Hence $S(n,0)=\delta_{n0}$, where δ_{nj} denotes the Kronecker symbol. The r-Stirling numbers of the second kind represent a certain generalization of the regular Stirling numbers S(n,k). These are denoted by $S_r(n,k)$ and defined combinatorially as the number of partitions of the set $\{1,\ldots,n\}$ into k non-empty disjoint subsets, such that the numbers, $1,\ldots,r$ are in distinct subsets (see, e.g., [1]). It is easy to see that $S_0(n,k)=S_1(n,k)=S(n,k)$.

Following L. Carlitz ([2]) we define the Stirling polynomials of the second kind in the following manner

$$R(n,k;x) = \sum_{m=0}^{n} {n \brack m} S(m,k)x^{n-m} \quad (x \in \mathbb{R}).$$

A. Broder ([1]) has shown

$$R(n,k;r) = S_r(n+r,k+r)$$

 $(r,k,n = 0,1,...,; k \le n).$

The purpose of this paper is to study some properties of the polynomials R(n,k;x). Integral representation formulas are established in Section 3. New recurrence formulas as well as some inequalities that hold for these polynomials are given in Sections 4 and 5, respectively.

Complete proofs of all the theorems presented below will be published elsewhere.

2. PRELIMINARIES

Let $t_0 < \dots, < t_k \ (k > 0)$ be given real numbers. Further, let f be a real-valued function defined on $[t_0, t_k]$. A k-th order divided difference of f at the points t_0, \dots, t_k may be defined recursively by

$$[t_i]f = f(t_i)$$
 (i = 0,1,...,k)

and

$$[t_0, ..., t_k] = ([t_1, ..., t_k] = [t_0, ..., t_{k-1}] = ([t_k - t_0)]$$

The number $[t_0, \ldots, t_k]$ f is independent of the order of the points t_0, \ldots, t_k .

The following material on B-splines has its origin in the paper [3] of Curry and Schoenberg.

For fixed t let $M(t;x) = k(x-t)^{k-1}_+$, defined to be $k(x-t)^{k-1}$ if $x \ge t$ and zero otherwise. The function

$$M_k(t) = [t_0, \dots, t_k]M(t; \cdot)$$

(k-th divided difference of M(t;x) with respect to x at t_0,\ldots,t_k) is commonly referred to as a B-spline of degree k-1 (order k) and has the following elementary properties:

- (i) $M_k(t) > 0$ if $t \in (t_0, t_k)$ and $M_k(t) = 0$ otherwise.
- (ii) In each interval $[t_i, t_{i+1}]$ (i = 0,1,...,k-1) M_k coincides with an algebraic polynomial of degree k-1 or less.
 - (iii) $M_k \in C^{k-2}(\mathbb{R})$.
- (iv) If f has a continuous k-th derivative in (t_0,t_k) , then

$$[t_0, \dots, t_k]f = \frac{1}{k!} \int_{t_0}^{t_k} M_k(t)f^{(k)}(t)dt.$$

For our further purposes we would like to mention that the function

$$C_r(t_0, \dots, t_k) \equiv C_r = \sum_{i_0 + \dots + i_k = r} t_0^{i_0} \cdot \dots \cdot t_k^{i_k}$$

 $(i_0, \ldots, i_k \in \{0, 1, \ldots, r\})$ is referred to as a complete symmetric function of order r in variables t_0, \ldots, t_k (see, e.g., [4]).

3. REPRESENTATION FORMULAS FOR R(n,k;x)

The following identity

(3.1)
$$R(n,k;x) = [x,x+1,...,x+k]t^{n}$$

$$(n,k = 0,1,..., k \le n; x \in \mathbb{R})$$

is known (see [1] and [2]). Making use of (3.1) and some facts presented in Section 2 we can prove the following theorems.

Theorem 3.1. Let $0 \le k \le n$ and let $x \in \mathbb{R}$. Then

(3.2)
$$R(n,k;x) = {n \brack k} \int_{x}^{x+k} H_{k}(t)t^{n-k}dt,$$

where M_k denotes the B-spline with knots at $x, x+1, \dots, x+k$.

Let
$$S^k = \{(\lambda_1, \dots, \lambda_k) \in \mathbb{R}^k : \lambda_1 \ge 0 \text{ (all i)}, \sum_{i=1}^k \lambda_i \le 1\}$$

denote a simplex in \mathbb{R}^k . The following theorem provides another integral representation for Stirling polynomials of the second kind. We have

Theorem 3.2. Let $\lambda_0 = 1 - \sum_{i=1}^{n} \lambda_i$. Then under the assumptions of Theorem 3.1 the following identity

(3.3)
$$R(n,k;x) = n(n-1) \cdot \dots \cdot (n-k+1)$$

$$\cdot \int_{ck} \dots \int [\lambda_0 x + \dots + \lambda_k (x+k)]^{n-k} d\lambda_1 \dots d\lambda_k$$

Theorem 3.3. If $0 \le k \le n$, then

(3.4)
$$R(n,k;x) = c_{n-k}(x,x+1,...,x+k) \quad (x \in \mathbb{R}).$$

THE RECURRENCE FORMULAS FOR STIRLING POLYNOMIALS OF 4. THE SECOND KIND

The following recurrence formula

(4.1)
$$R(n,k;x) = (x+k)R(n-1,k;x) + R(n-1,k-1;x)$$

 $(0 < k \le n; x \in R)$

was given by L. Carlitz [2]. This formula has a remarkable property. Namely, if $x \ge 0$, then the algorithm based on (4.1) is numerically stable.

Below we give more recurrence formulas for Stirling polynomials of the second kind.

Theorem 4.1. If $0 \le k \le n$, then

(4.2)
$$R(n,k;x+1) = (k+1)R(n,k+1;x) + R(n,k;x)$$
.

Theorem 4.2. Let $1 \le k \le n$. Then the following formula

$$(4.3) (k-1)k R(n,k;x) = n(k-1)R(n-1,k-1;x)$$

$$+ \sum_{j=0}^{n-k-1} {n \brack j+k} [(x+k-1)(j+k)R(j+k-1,k-1;x) - (j+1)R(j+k,k-1;x)]$$

is valid.

Theorem 4.3. Assume $x \neq 0, -1, ..., -k$. Then for any k and n $(0 \le k \le n)$ we have

(4.4)
$$R(n,k;x) = \sum_{j=0}^{k} \omega_{j} R(n+1,k-j;x),$$
 where
$$\omega_{j} = (-1)^{j} / \prod_{i=0}^{j} (x+k-i) \quad (j=0,1,\ldots,k).$$

where
$$\omega_{j} = (-1)^{j} / \prod_{i=0}^{j} (x+k-i) \quad (j = 0,1,...,k).$$

INEQUALITIES INVOLVING R(n,k;x)

All results presented below hold true provided $x \ge 0$. We are now prepared to state

Theorem 5.1. Let $0 \le k \le n$. Then

(5.1)
$$\frac{(x+k)^n - k(x+k-1)^n}{k!} \le R(n,k;x) \le \frac{(x+k)^n}{k!}$$

with equalities if and only if k = 0.

Theorem 5.2. For any k, m, n \geq 0 and any α , where

$$\alpha \in \begin{cases} (-\infty, \infty) & \text{m even} \\ [x+k, \infty) & \text{m odd} \end{cases}$$

0

0

the following inequality

(5.2)
$$\sum_{\ell=0}^{m} (-1)^{m-\ell} {m \brack \ell} {p-\ell \brack k}^{-1} \alpha^{\ell} R(p-\ell, k; x) \ge 0$$

$$(p = n+m+k)$$

holds. If k > 0 then strict inequality holds.

Theorem 5.3. Let $0 \le k < n$. Then

(5.3)
$$R(n+1,k;x)R(n-1,k;x) \le R(n,k;x)^{2}$$
$$\le \frac{n}{n-k} \frac{n+1-k}{n+1} R(n+1,k;x)R(n-1,k;x).$$

If $k \neq 0$ then strict inequalities hold.

The first inequality tells us the sequence $\{R(\cdot,k;x)\}$ is logarithmically concave.

Our next result reads as follows.

Theorem 5.4. For $k \ge 0$

(5.4)
$$R(k+1,k;x) \ge R(k+2,k;x)^{\frac{1}{2}} \ge R(k+3,k;x)^{\frac{1}{3}} \ge \dots$$
Moreover,

$$(5.5) \qquad {k+1 \brack k}^{-1} R(k+1,k;x) \leq \left[{k+2 \brack k}^{-1} R(k+2,k;x) \right]^{\frac{1}{2}} \leq \dots$$

Above inequalities become equalities only if k = 0.

Theorem 5.5. If $1 \le k \le n$, then

(5.6)
$$k R(n,k;x) \ge n R(n-1,k-1;x)$$
.

If k < n then strict inequality holds.

Theorem 5.6. For any non-negative integers n and p with $n \le p$ the following inequality

a

(5.7)
$$R(n+k,k;x) \leq \frac{(n+1)\cdot ...\cdot (n+k)}{(p+1)\cdot ...\cdot (p+k)} R(p+k,k;x)$$

holds true. Equality holds in (5.6) if and only if n = k.0Theorem 5.7. Let 1 < k < n. Then

(5.7)
$$x R(n-1,k;x) < \frac{n-k}{n} R(n,k;x)$$
 $< (x+k)R(n-1,k;x) < R(n,k;x).$

REFERENCES

- [1] A. Broder, The r-Stirling numbers, Discrete Math. 49(1984), 241-259.
- [2] L. Carlitz, Weighted Stirling numbers of the first and second kind-I, The Fibonacci Quarterly 18(1980), 147-162.
- (3) H. B. Curry and I. J. Schoenberg, On Polya frequency functions IV. The fundamental spline functions and their limits, J. Anal. Math. 17(1966), 71-107.
- [4] I. G. Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, Oxford (1979).