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Abstract. Let the vertices of a graph denote
computer processes which communicate by passing
messages along edges. It has been a standard Computer
Science problem to provide algorithms that let the
processes solve problems jointly (e.g. leader
election, clock synchronization). What if some of the
processes are maliciously faulty, i.e. send messages
calculated to sabotage joint algorithms? Here we
review a few "byzantine agreement” algorithms with
interesting graph-theoretic features and raise
questions about graph connectivity and diameter (with
a few answers).
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1. Introduction.

In my preceeding paper on Dining Philosophers and
Graph Covering Problems, I spent a little while discussing
some computer problems as a jumping off point to discuss
topics that most computer scientists would identify wmainly
as graph theory, questions that are of known interest to
researchers in graph theory and combinatorics. 1In this
paper I mainly discuss computer algorithms. 1I'll need some
graph arguments in the proofs, but my impression is that
the graph theory dgquestions suggested here haven't been
studied as widely as the questions mentioned in that paper.
I hope the context I suggest will help make these questions
seem more important, because I think the answers might have
some practical applications.

There is a great deal of interest in fault tolerant
algorithms -- systems or programs that function even when
part of the system breaks down. For instance, if we have a
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distributed system -- a bunch of computers communicating
over communications lines -- either some of the computers
might malfunction, or some of the communications 1lines
might garble messages, or other things might go wrong. 1In
particular, I've become interested in networks where one or
more processors go crazy in malicious ways -- they actively
try to sabotage the joint process. Algorithms designed to
protect against such failures are called ‘'byzantine
algorithms”. A good place to find articles about such
systems, for example, are the Proceedings of the annual
SIGACT conferences on Principles of Distributed Computing.
A large part of my work on this was motivated by [TPS] in
the 1985 PODC.

The standard example of such a problem is the
“"Byzantine Generals" problem [P]. Suppose we have n
processes, each communicating with all others. At time 0
one of them -- A in Figure 1 -- is supposed to send a
message, either 0 or 1, to the others. Within a known
length of time we want them to agree on the message. If all
the processes are correct, it is easy; we might for
security have B and C each send the other the message "A

sent 1", for example. But what if A is faulty, and sends a
L/A\
B C
Figure 1.
1 to B and a 0 to C? B gets a message from C saying VA
sent 0" -- but now how does B know if A is a liar, sending

different messages, or if A really sent two 1's and C is a
liar? 1Is there any way B can tell the difference?

Somewhat more formally, we want a program that we can
load into. computers A, B and C such that the programs will
all stop at a known time after the ‘"general" sends a
message, have decided on a message, and we will have

(A) cCorrectness. If the general is correct, all
correct processes will decide on the message sent by
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the general;
(B) Agreement. Whether or not the general is correct,
all correct processes must agree on the same message.

The original application was for control of an
airplane's flaps:; one wants them to obey the autopilot if
it is working, but act in a self-consistent fashion even if
the autopilot stops working or communications from it are
garbled.

Here is a nice proof we cannot do this for three
processes, one of which is faulty. This argument is due to
{(F]. Suppose my friend Joe appears in the door, with a
computer program in hand, and he claims that if I load this
program into computers A, B, and C, and start them running,
the program will stop with a correct result. I am going to
prove he is wrong, by the following strategy. First, I
build a set of 6 processes, as shown in Figure 2. I 1load

Figure 2.

his program into each of them, telling both processes
labelled A that they are process A, and so on around. I let
the top A be a general sending 1 and the bottom A be a
general sending 0. Now the top A and B are both correct
processes; they will act just like a correct A and B in a
triangle with a faulty C. Since the general, A, is correct
and sent 1, B must decide 1 by the Correctness property if
Joe's program is correct. Now the.right-hand B and C are
correct, and act just like they were in a triangle with a
faulty A; since B decides 1, C must decide 1 by the
Agreement property. But of course exactly the same argument
on the bottom A and C shows € must decide o, a
contradiction. Joe's program can't work; to sabotage it in
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the triangle, the faulty A in the triangle just sends the B
the same messages as the top A in the hexagon, and sends
the C the same messages as the bottom A in the hexagon. The
theorem one gets from this is: You can't hope to have
byzantine agreement unless the correct processors outnumber
the faulty ones by MORE than two to one. Similarly, it
turns out that to do this sort of thing in a graph with £
faulty processes, the graph must have at 1least 3f+1
processes and be at least 2f+1 - connected. The fact that
you need at least 2f+1 - connectedness is very closely tied
to Menger's Theorem. To be sure to get a message from A to
B, I need to send it by 2f+l1 vertex-disjoint routes
(Figure 3). That way, even if f routes pass through faulty
processes that change my YES to a NO, B will still receive
a majority of YES messages, and know that at least one of
those YESes really came from me (the faulty processes could
have started f of them by themselves).

YES - C > YES
/ YES —————3 D (fault)—> NO

A YES ->» E (fault)-» NO B
YES > F —>» YES
YES -3 G > YES
Figure 3.

There are a lot of papers out on some of the things
one might want to do in a network, and many of these use
"byzantine generals" algorithms as building blocks. For
example, there are several problems associated with
coordinating clocks of computers in a network: one may have
a synchronous system where all clocks advance at the same
moment, and we want them all exactly alike [NH]}, [BL]; or
one may have an asynchronous system, where the real clocks
run at slightly different speeds and we need to agree on an
approximately accurate "logical time" that is similar for
all processes[ST]. The first problem, incidentally, is
called the byzantine firing squad problem.

. Gra ecognition art 1
Much of the published literature assumes that all
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processes have direct communication with all others -- that
is, the underlying graph is a clique. Obviously, if we are
looking to use graph theory, we want to look at networks
where not all processes are connected directly to all
others.

What problem shall we work on? A good starting point
seems to me to be to identify the graph we are in. Suppose
each process has a unique identifier (ID), and knows how
many communication lines it has. I'm going to assume all
communications channels are two-way, so I have graphs, not
digraphs. Can the processes find out what the network that
they are in looks like? Let's start by supposing that all
processes are correct and all messages are transmitted
correctly, to get a notion of the problem (Figure 4).

Throughout this talk, I'm going to assume a
synchronous environment, in the following sense: every
process has a clock that starts at 0. In each time unit or
round, each process can (1) receive any number of messages
from adjoining processes; (2) compute; and (3) send any
number of messages to adjoining processes.

B D G
Hmn
' A c X

Figure 4.

The algorithm we will consider is given below.
Clearly, we have no hope unless G is connected; so G has a
finite diameter d. 1In this case, every process will have
received the adjacency list of every other process by the
end of round d; once it has heard from all processes the
stopping condition in (2) will be satisfied and it will
have a complete map of the graph. The number of messages
sent is clearly polynomial since each of the n vertices
forwards each of n adjacency lists (of length less than n)
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once each to all or a subset of its neighbors (so less than

n times).

A GRAPH RECOGNITION ALGORITHM

In round 0, each process sends its ID to its neighbors.

In round 1, each process receives its neighbors IDs and

thus has its own adjacency list. It sends its adjacency

list to all its neighbors.

In each subsequent round, each process

1) receives some adjacency lists;

2) makes a list of each process which appears in any

adjacency 1list that has been received but whose own

adjacency 1list has not yet been received. (If this

list is empty, it can stop at the end of this round);
3) forwards each adjacency list it has received for the
first time to every neighbor it has not received it from.

END of GRAPH RECOGNITION ALGORITHM

3. Graph recognition, part 2.

.
.

The above algorithm fails badly to extend to the

byzantine case.

A simple problem is that a faulty process

may never send us its adjacency list; a much more serious

difficulty is

that each faulty process can invent

fictitious processes connected to the rest of the graph
through it; a correct process may continue indefinitely to
receive adjacency lists from ever more distant fictitious

processes (Figure 5).

Correct

processes

-, -\
<----—<_"T/
~ N g
g W -
~ Vg A

N - L

- ——— N = = -N o
Faulty Fictitious
processes processes

Figure 5.

Once we can put an upper bound the size of the graph
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there is hope; we can use a byzantine generals algorithm,
for example, to decide on the individual adjacency lists.
The hard part is knowing when to stop 1listening and
estimate the size of the graph. The key to this is the
following: as long as there is a correct process we haven't
heard from, there are f+1 correct paths from us to it; we
are getting messages forwarded along f+1 disjoint paths.
While a faulty process can send us a false adjacency 1list
by £+1 or more paths, it cannot cause an adjacency 1list
from a fictitious process to reach us by more than f
disjoint paths, since each such path must contain a faulty
process.

We need to be more explicit about our means of
transmitting messages. From now on, each process sending a
message will sign it; and each process forwarding a message
it has received will append its signature to the end, so we
can tell the route a message has followed. We assume that
faulty processes can make up any nonsense they want, and
forge any signature they want, with one exception: we will
suppose each process knows who is on the end of its wires,
so that it knows who it physically received each message
from. Hence, a faulty process can't lie about its own name
to its own neighbors: and a correct process will ignore any
message that isn't signed by the person it receives it
from.

Finally, we see that a message is credible (that is,
we believe the sender sent it) only if (1) we sent it
ourself, or (2) it was originated by an immediate neighbor
and sent to us directly, or (3) we receive it by at least
f+1 vertex-disjoint routes. 1In this case, we say that we
have heard the message.

We need the following simple graph-theoretical lemma.

Lemma 1. If G is a graph with n vertices and is 2f+1 -
connected, between any two nonadjacent vertices there are
2f+1 (vertex-)disjoint paths of length not exceeding
n-2f-1. Further, there is a graph for which this is
attained.
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Proof. Let a and b be nonadjacent vertices. By Menger's
Theorem, there are 2f+1 paths between them. ILet one of
these be as long as possible. The other 2f paths each use
at least one vertex of G, and a and b occupy vertices. Thus
at most n-2f-2 vertices are available to be interior
vertices of the long path, and it consists of at most n-2f-
1 edges. To see that this can happen, join all points of a
cycle with n-2f+1 points to all points of a complete graph
on 2f-1 points. To construct 2f+1 disjoint paths between
points that are two apart on the cycle, we have the
following: the path of length 2 on the cycle; 2f-1 paths of
length 2 via the complete graph; and the long path around
the far side of the cycle, of length n-2f-1.

If I'm going to guarantee that f+1 copies of my
message will reach the recipient, I've got to send it by
2f+1 disjoint paths. How long will it take until f+1 copies
get there? In the worst case, as long as the longest of the
2f+1 paths. We call this number d', the wide diameter of

‘G. We've just seen that d' is no larger than n-2f+1.
' We can now state an algorithm to find the vertices of
the graph G. The algorithm appears on the following page.

We need to show that the "candidate graph" produced in
each correct process by this algorithm has all the
vertices of G and only those of G; that all the correct
processes thus agree on n = n' and on d"; and that all
correct processes determine d" no later than round A4".
Notice that the adjacency lists "heard" may differ from
process to process and may not for any process represent a
reasonable graph; a faulty process may have more than one
adjacency 1list Yheard" and it is possible that p; reports
P is adjacent to it but Py claims p; is not adjacent to
it.

Lemma 2. No correct process stops before it has heard a
message from every correct process.

Proof. We show that at round t>0, if correct process pPi
has not heard from correct process pj, then Pi has H at
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least f£+1. Suppose pj has not heard a message from Py
Then there are at least f+1 disjoint paths from P4 to p;
passing through correct processes. On each of those paths
there is a closest process to Py from which p; has heard a
message; these are all distinct. (By round 1, p; has heard
from all the processes adjacent to it, hence from one on
each of these paths). Thus there are at least f+1 vertices
that have been heard from that report adjacency to vertices
(pj or something closer to p;) not yet heard from, and H is
at least f+1.

A BYZANTINE GRAPH SIZE ALGORITHM
For each process: At round O:
Send to all neighbors my own adjacency list (the message
("p; adjoins Pjs -+s Pgs signed p;"):

Store a Y“candidate set" of vertices and of adjacency
lists, each of which may be marked "heard" or
"expected". Initially this set consists of mnyself
and my own adjacency list, marked "heard".

At round t > O:
Forward all messages received, adding a signature.
When a new adjacency list is "heard", add that vertex
and adjacency list to the candidate set.
Compute H := the number of vertices whose "heard"
adjacency lists contain vertices not yet "heard".
IF H > £ THEN

For any vertex previously marked “expected" but not

yet "heard", mark it "heard" (it is faulty):

For any vertex included in "heard" adjacency lists
of at least f+1 vertices but not yet "heard",
add it to the candidate set marked "expected";

ELSE (If H < f+1) ’

n' := number of "heard" vertices;

ay :=n' - 2f -1;

IF t > d" THEN EXIT (this algorithm) ENDIF;
ENDIF.

END OF BYZANTINE GRAPH SIZE ALGORITHM
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Lemma 3. Every correct process hears a message from every
other correct process by time d'.

Proof. Given correct processes p; and pj, they are
adjacent or there are 2f+1 disjoint paths between them with
the longest not exceeding length d'. Hence the message sent
by pj at the start of the algorithm reaches P by at least
f+1 routes within that time.

Lemma 4. By time d' + 1 every correct process will have
every vertex of G marked "heard" in its candidate graph.

Proof. By time 4' it will have heard a message from every
correct process. It will have heard an adjacency list from
every correct process. But then for each faulty process, at
least f+1 correct processes are adjacent to it; so if no
message from that faulty process has been heard by time 4!
it will become "expected" no later than then and will be
marked "heard" the following round.

Lemma 5. No process not in G will ever be marked “heard"
by a correct process.

Proof. A correct p; may receive messages purporting to be
originated by fictitious vertices, but each such message
must have come from a faulty process and must therefore
have a signature of a faulty process among its signatures;
hence it can arrive by at most f disjoint routes and will
not be ‘"heard". A vertex marked "heard" by first being
marked "expected" must be adjacent to f+1 "heard"
processes, at least one of which must be a correct one; so
it must really be in G.

Lemma 6. At all times after d', H will be f or less for
every correct process.

oof . By this time the candidate graph will have all
correct nodes and all faulty nodes marked ‘“heard". No
message will have been heard from a correct node except a
correct message (for no incorrect message can have arrived
by f+1 disjoint routes) so at most f processes (the
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incorrect ones) can have sent adjacency lists that have
been ‘'heard" and report not-yet-heard (hence fictitious)
vertices.

Theorem 1. By time d' + 1 all correct processes will have a
list of precisely the vertices of G; all will have the same
value of n' equal to n, and all will have the same value of
d" which is no less than d'.

Proof. By the lemmas, each correct process will have the
same correct list of vertices, hence the same n' and d"; by
Lemma 1, d" will be no less than 4d'.

4. Graph recognition, part 3.

The algorithm of Section 3 allows us to determine the

number and names of the processes in the graph; it gives
little help on the edges. This problem turns out to be much
harder. One solution is to continue exchanging messages,
carrying out a Byzantine Generals algorithm on each
adjacency list. In (0] there is an algorithm that carries
this out, terminating in 2(f+2)d" rounds -- surely not the
best possible, but I suspect it is of the right degree. (2
figure like (£f+1)d' might be best possible). Oonce this is
done, all correct processes will have the same candidate
adjacency Tmatrix, i.e. the same 1list of claimed
adjacencies. Note that if A is faulty and B is not, A may
claim to be adjacent to B but not conversely, or vice-
versa. All correct processes might decide to suppose an
edge exists if either end claims it; our graph image G!
would now contain at least all edges of G that touch at
least one correct vertex. In particular, the graph image
G' would be sufficient to allow the processes to engage in
further byzantine algorithms.

There is, however, a serious problem with G'. G is
2f+1 - connected; G' need not be (edges between two faulty
processes in G need not appear in G'). Thus, there seems
little possibility that we can compute any number very
close to 4'. G may have a very modest "wide diameter",
that would allow quick byzantine agreement; G' may not let
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us compute any wide diameter at all, forcing us to use the
upper bound n - 2f - 1. If we have to wait that long to
be sure a distant process has received our message, it will
slow down byzantine algorithms seriously. In fact, the
problem is worse: Since G is 2f+1 connected, we can
actually determine 2f+1 paths between each pair of points:
once we determine them (I'm afraid this is NP-complete) we
can send addressed messages and the usual byzantine
algorithms will require only polynomially many nessages
thereafter. Since we can't find 2f+1 paths for all pairs of
points in G', we may have to resort to broadcasting
messages on all possible paths -- hence, exponentially many
messages!

There is a partial solution. Suppose the original
graph G is at least 2.5f+1 - connected instead of just 2f+1
- connected. Now G has 2.5f + 1 paths between A and B, and
if A and B are correct processes then at most £/2 of them
contain edges that are absent in G' (an edge is absent only
if both ends are faulty). Thus G' will have 2f+1 paths
between correct processes, we can find a number that will
function as the "wide diameter", and we can make do with
polynomially many messages after our exponentially-nasty
(in number of messages, and path finding) graph recognition
algorithm.

This 1leaves some open questions that are heavy with
graph theory. Given a graph G, is there a graph
recognition algorithm that produces d4' as a byproduct? can
d' in fact be determined? Can we determine some reasonable-
sized collection of paths between each pair of points
guaranteed to contain f+1 disjoint correct paths?

5. Path lengths in Menger's Theorem.

Finally we turn to some implications for pure graph
theory. Let G be a graph with n vertices which is k-
connected; Menger's Theorem tells us that any two vertices
are connected by at least k vertex-disjoint paths. Lemma 1
gives us an upper bound on the lengths of these paths, and
an example where the upper bound is assumed. But if I were
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designing a network, 1I'd want to guarantee that there were
lots of short paths. Hence, a question: what are some
conditions on a graph that will guarantee the existence of
a large number of short disjoint paths connecting any two
points? Are any of these conditions easy to recognize, in a
context such as the graph recognition problem above?

Some examples of ‘“nice" graphs of this sort are
discussed in [BHP]. A look at some related pathologies may
be found by looking in [B], which discusses how badly the
diameter of a graph may increase if a vertex is deleted.
One theorem says, very approximately, that if G has even
diameter D and maximum degree d, d>5, and s vertices are
deleted, the diameter of the remaining graph cannot exceed
sd(D-1) - 1. Loosely, that is, deleting a vertex increases
the diameter by as much as dD. . This seems rather
frightening, but it just seems to show that one had better
look at well-bahaved graphs!

In early 1986, R. Faudree, R. Schelp, and I at Memphis
State had a chance to discuss these questions with 2solt
Tuza of Budapest. (The rough notes we have are cited as
[FOST]). I'll try to suggest the way we are going. Suppose
a graph G on n vertices is k-connected. Then any two points
are connected by k vertex-disjoint paths. What conditions
can we put on G to force all of these paths to have length
less than some constant m? We have been looking at three
kinds of conditions: degree, connectivity, and edge
density.

Theorem. If G is a k-connected graph on n vertices and the
degree of each vertex of G is at least 3n/s + kX -1 then
there are k vertex-disjoint paths of length not exceeding s
between any two vertices of G.

Theorem. If G has connectivity at least n/s + k then there
are k vertex-disjoint paths of length not exceeding s
between any two vertices of G.

In each case there is an example which shows that at
least the coefficient of n cannot be improved. For
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example, consider a cycle of length s+2 and replace each
point except 2 adjacent ones by a clique on (n-k)/s
points, each edge by a complete connection between the
corresponding cliques or points, and add in the center a
clique on k-2 points attached to everything (Figure 6).

n-k/s points
each

s cliques around
the circle

‘e

Figure 6.

This is (n-k)/s + (k-2) + 1 or (for large s) n/s + k - 1
connected; it has n vertices. The two single points are
connected by one path of length 1, k-2 of length 2, but the
k-th path has length s+1.

The situation for edge density harder to express, so
I'll leave the details until we write up that paper. There
are two graphs -- one essentially the above (motivated by
the computer-motivated example I gave earlier) and the
other made by deleting the edge between the two single
vertices and adding another vertex in the center. We think
that these two graphs -- well, these two families of graphs
-- are extremal examples for graph density conditions on
having k paths of length s.

I can't help but notice that the limiting cases in
(FOST] seem to depend on the fact that adjacent vertices
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require a long path. In our applications we only need many
short paths between non-adjacent vertices. Does this change
things? I don't know yet.
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