SOME FURTHER RESULTS ON ONE-FACTORIZATIONS
OF CARTESIAN PRODUCTS

W.D. Wallis and Wang Zhi-jian

Southern Illinois University, Carbondale IL 62901
Soochow Railway Teachers College, Socochow,
People’s Republic of China

We use standard graph-theoretic ideas. Our notations
include Kn and Cn for the complete graph and the cycle on n
vertices; Pn denotes a path with n edges. A graph P1 is
also denoted E. Given graphs G and H, the cartesian product
G X H is formed by replacing each vertex of G by a labelled
copy of H; if two vertices of G were adjacent, then each
vertex in one of the copies of H is joined to the
corresponding vertex of the other copy of H. In other
wordae, if H has h vertices, G is8 replaced by h copies of G
and the h copies of each vertex of G are connected up as a
copy of H.

If G is any graph, an edge-coloring of G into K colors
is8 a way of labelling the edges of G with k labels, called
colors, such that no vertex lies on two edges of the same
color. A one-factor is a spanning subgraph with every
vertex of degree 1, and a one-factorization is a
decomposition of the edge-set of a graph into pairwise edge-
disjoint one-factors; so only regular graphs have one-
factorizations, and a one-factorization of a regular graph G
of degree k is precisely an edge-~coloring of G into k
colors.

We are interested in the following questions, posed by
Kotzig [1): if G is a bridgeleas cubic graph, does G X KS
necegssarily have a one-factorization?

Since we shall be discussing the Cartesian products of

various graphs with K wve shall establish some notation.

3!
If G hag vertex-set X, then G X K3 has vertex-set {ux,vx,vx:

X € X}, with the edges
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"x“y' vxvy, vxwyz xy an edge of G.

In other words, the vertices with the same superscript form
a copy of G and the vertices with the same subscript form a
KS' We also note an easy but useful decomposition: if F is

a spanning subgraph of G, then
G x K3 = F X Ka U (G-F) X Kq
and the union is disjoint.

G x l(:3 clearly has a one-factorization if G does: we
write

G x K3 = (F1 X KS) * (F2

where FI'FZ and Fa are the factors of G, and observe that

X Ré) + (Fa X Rs)

the second and third terms are one-factors themselves while
F1 X K3 is the union of disjoint copies of the triangular
prism E X KS’ vhere E is a single edge; and these triangular
prisms can be one-factorized -- see Figure 1. So we are
interested in the case where G is a bridgeless cubic graph
which does not have a one-factorization.

In discussing the triangular prism E X Ka we shall
refer to the edges on the twvo triangular faces as end edges
and the other edges, which constitute a copy of E x K., as
aide edges. In the same way, the graph Hl = P

2k+1 * K3
vhere P2k*1 is a path with 2k+1 edges, consists of two end
triangles (containing end edges), 2k inner triangles and
2k+1 sets of three side edges, each set being an E X Ré
corresponding to an edge of P2k+1‘

The folloving results were proven in [2].

1

3

Figure 1
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LEMMA 1 ([2], Lemma 2). Suppose G is a graph with a
subgraph H isomorphic to E X Ka, and G1 is G with H replaced
by Hl = P2h+1 X Ks. Suppose G is colored in t colors,

t 2 5, in such a way that the side edges of H are in colors
chogen from {1,2,3,4}. Then 61 can be colored so that the
end edges of Hl' and all edges not in Hl' are the same as in
the coloring of G, and the side edges and inner triangles of
Hl contain only colors from (1, 2,3, 4}.

LEMMA 2 ([2], Lemma 3). If (.'.‘.,.'“1 has two distinguished
x K

vertices x - and y, then there is a way of coloring C2
such that:

k+l 3

(i) no edge of color 1 touches u i
(ii) no edge of color 2 touches Vi
(iii) no edge of color 3 touches uy;
(iv) no edge of color 4 touches v_;
(v) edges u vy and u vy are of color O and all other

edges are colored from {1,2,3,4}.

LEMMA 3 ([2], Lemma 4). If C2k has two distinguished
vertices x and y, then there is a way of coloring C2k X K3
such that:

(i) no edge of color 1 touches u, or uy;
(ii) no edge of color 2 touches v, or vy;
(iii) edges u vy and uyvy are of color O and all other

edges are colored from (1,2,3, 4}.

Suppose G is any bridgeless cubic graph. Then G
decomposes into a one-factor F, and a two-factor F2. In [2]
ve associated with G a graph G, the cycle graph of G (with
regard to the decomposition Fl U Fz), formed by contracting
each cycle to a point, and a vertex of G" 1s called an odd
(even) cycle point if it comes from an odd (even) cycle.

The main result of (2] was that if G has a cycle graph G*
vhich possesses a two-factor in which no component cycle
contained an odd number of odd cycle points, then G X K3 has
a one-factorization. It is in fact easy to see that one can

slightly weaken the hypothesis of that theorem, to obtain
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THEOREM 1. Suppose G is a bridgeless cubic graph which
haa a cycle graph G* with the following property: G' has a
2-regular subgraph Gz vhich contains all the odd cycle
points, and no component cycle of this 2-regular graph
contains an odd number of odd cycle points. The G X Ka has
a one-factorization.

The proof is almost identical to that of the theorem in
[21.

We shall generalize Theorem 1. We first prove several

lemmas about special colorings of C X Ka.

LEMMA 4. Suppose x,y,z and t are four vertices of an
odd cycle C2k+1' Then one can S-color the edges of

c2k*1 X KS in such a way that:

(i) no edge of color 1 touches U, u, Or u,;

(ii) no edge of color 2 touches A v, or vt;

(141) no edge of color 3 touches uy;

(iv) no edge of color 4 touches vy;

(v) the edges U Ve uyvy, w,v, and u,v, are of color 0O

and all others are colored from (1, 2,3, 4}.

Proof. For convenience, suppose that as one follows
the C2k+1 the four special vertices occur in the order
X,¥,2,t. Then the C2k*1 is the union of four pathas which
are disjoint except at their endpointa: an (%, y)-path, a
(y,z)-path a (z,t)-path and a (t,x)-path. Two cases must be
distinguished, according as one or three of those paths have
odd length; each of these divides according to whether the
two paths which contain y have the case or different parity.
Figure 2 shows four examples, corresponding to these four
cases: Figures 2(a) and 2(b) are examples with one odd
path, in the "same parity" and "different parity" cases,
respectively; Figures 2(c) and 2(d) cover three odd paths.

In each case, the example shows paths of length 1 for
the odd paths and paths of length 2 for the even paths.
These can be generalized to arbitrary lengths using Lemma 1.
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It i8 easy to see that the coloring in Lemma 4 is still
valid if a permutation (13)(24) is applied to the color set.

LEMMA 5. Suppose X,y,2z,t are four pointe of the even
cycle Czk. Then there is a S5-coloring of C2k X Ka with the
properties:

(1) no edge of color 1 touches ux, uy, uz or u,;
(1i) no edge of color 2 touches Vr vy vy or vt;
1]
(i11) edges U Ve uyvy, u, v, and u, v, are colored O, and

all other edges are colored from ({(1,2,3,4}.

Prcof. Again, assume that x,y,z and t occur in the C2k
in that order, and consider the four paths (x,y), (y,2),
(z,t) and (t,x) which are disjoint e&cept at their
endpoints. Four cagses arise: (a) all four paths can be of
even length; (b) there can be tvo ad jacent even paths and
two adjoint odd paths; (c) there can be two odd paths and
twvo even pathsa, with paths whose lengths have the same
parity being inadjacent; (d) all four can be odd. Four

225



appropriate examples are shown in Figure 3; each can be
extended to arbitrary length paths using Lemma 1.

Again,

permutation (13)(24).

LEMMA 6.
wvith the property

(1)
(11)
(1ii)
(iv)
(v)

Proof.

vhich the four distinguished vertices may occur around the

no edge of color 1 touches ungr
no edge of color 2 touches v, or
no edge of color 3 touches uy or
no edge of color 4 touches vy or

u_v
edges xVx’ “yvy' u v, u,v, are

all other edges are colored from
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Suppose x,y,z and t are four vertices of C2
that neither x nor z is adjacent to y or

t. Then there is a way of S-coloring C X K., such that:

colored O, and
{1,2,3,4}.
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the colorings in Lemma 5 remain valid under the

k

In this case there are two different orders in



cycle CZR’ x-z-y-t-x is essentially different from
X-y~2~-t-x.

Suppose first that the ordering is x-z-y-t-x. Again
the four vertices partition C2k into four paths vhich are
internally disjoint; say the (x,2)-path, (z,y)-path, (y,t)-
path, (t,x)-path are called Pl' Pz, P3 and P4, respectively.
There are five different cases:

(a) all are of even length;

(b) P1 and P2 are even, P3 and P4 are odd;

(c) P1 and P3 are even, P2 and P4 are odd;

(d) P2 and P4 are even, P1 and P3 are odd;

(e) all are cdd.

Figure 4 shows a suitable coloring in every case, with paths
of minimum length; again, they can be generalized using
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Lemma 1. (In the case vhere 92 has odd length, for example,

the minimum length is 3,

since z and y are not adjacent.)

If the ordering is x-y-z-t-x, four subcases occur. If

wve write PI’PZ'PQ'P4 for the (x,y)-, (y,z)-, (z,t)- and

(a)
(b)
(c)
(d)

(t, x)-paths respectively, they are:

all paths are of even length;
P1 and P2 are even, P3 and P4 are odd;

P1 and P3 are even, P2 and P4 are odd;
all are odd.

Suitable examples are shown in Figure S.
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In order to generalize Theorem 1 using the above
Lemmas, we first examine the proof of Theorem 1. Suppcse G
1 Y For
where F1 is a one-factor and Fz a tvo-factor, and suppose

is a bridgeleas cubic graph which decomposes as F

G"* is the corresponding cycle graph. If c* = (gl,gz,...,gk)
is a cycle in G‘, then each vertex gy correspondsg to a cycle
n in
Aagume G

Ci in F2, and the edge 94944y corresponds to gome edge e
Fl which joins a vertex of Ci to a vertex of c1+1'

satiafies the conditions of Theorem 1; let 52 be the

2-regular subgraph specified in the theorem, and denote by U

the set of all edges of F1 corresponding to edges of G To

¢
construct the one-factorization of G X KS' we label the

endpoints of the edges in U as follows. Two vertices in C1

I if Ci is an
odd cycle, e, is XyXy,q OF YyVy,4} if Ci is an even cycle,

are labelled Xy and Yy ey intersects C1 at x

e, is XiVjieq OF %44y (where subscripts are reduced medulo
k if necessary). For detaile, see [2). Observe that the
consistenqy is guaranteed because 62 contains no cycle with
an odd number of odd cycle points, and that when labelling
wve are concerned only with the symbols x and y, and not with
the subscripts. We nov generalize this labelling procedure.

Suppose the bridgeless cubic graph G has a
decompesition Pl U Fz into a one-factor and a two-factor for
vhich the corresponding cycle graph G' contains a collection
of edge-disjoint (but not necessarily vertex dis joint)
cycles which between them contain all the odd cycle points
of G*. Further, suppose that no cycle point is a vertex of
more than two of these cycles. We shall call such a get a
proper collection of cycles. If P is a proper collection,
ve write E(P) for the collection of edges of F‘1 wvhich are
used to give edges in the members of C. A common vertex
between two members of C will be called a common odd or even
cycle point, according as it is an odd or even cycle point
of G*.

In order to label the endpoints of the edges in E(P) we

first reclassify the common cycle points. A common odd
cycle point is considered as an odd cycle point in one of
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the cycles and an even cycle point in the other. A common
even cycle point is either classified as class I and
conaidered as an even cycle point in both cycles, or
classified as class II and considered ocdd in both cycles.
Then the same scheme is used for labelling the endpoints of
the edges of E(P) as was used for the endpoints of the edges
of U previously. Such a labelling is consistent whenever in
each cycle the number of odd cycle points (after
reclassification) is even. In each cycle in F2
corresponding to a common cycle point there will be two
vertices labelled with x and two vertices labelled with y.
To be precise and avoid this multiple 1abélling ve let x and
y denote the endpoints of edges in E(P) which appear in one
cycle of G*. wvhile x' and y' denote the endpoints of edges
in E(P) vhich appear in the other cycle of G*. Such a
labelling we shall call a consistent labelling of E(P).

THEOREM 2. Suppose G i8 a bridgeleass cubic graph
admitting a cycle Graph G“ vhich contains a proper
'¢ollection P with the properties:

(1) each cycle of P contains an even number of odd cycle
points after some reclassification;

(i1) after that reclassification there is a consistent’
labelling of E(P) in which no vertex labelled x or x'
in an even cycle of F2 corresponding to a common even
cycle point is adjacent to any vertex labelled y or y'
in the same cycle.

Then G X Ka has a one-factorization.

Proof. We color G X K3 as follows. The edges of

(Pl\E(P)) X K3 have color O. For the edges e in E(P), the
e X Ka are colored as in the proof of Theorem 1. Finally,
for all cycles C in F2, Cx K3 is colored as follows: if C
corresponds to a common cycle point then C X K3 is colored
by Lemma 4, Lemma S or Lemma 6 according as the common cycle
point i8 class I or class II (with the substitution of x’
for z and y' for t); for other cycles in Fz the coloring is
done using Lemma 2 or Lemma 3, permuting the colors via

(13)(24) if necesasary. [ ]

230



Notice that Lemma 5 does not require non-adjacency in
C2k of the vertices {x,z} and (y,t}, and therefore does not
require non-adjacency between {x,x'} and ({y,y'} in Theorem
2. It is easy to see that the "non-adjacency” condition in
part (ii) of the theorem is not required for the class I
common even cycle points in some cycle if the.cycle contains
only one such point, or if it contains several such points
between any two of which there is an even number of odd
cycle pointa including those obtained from common cycle
points.

EXAMPLE. 1In Figure 6(a), G is a bridgeless cubic
graph. It can be expressed as a decomposition F1 U F2, Fl
being a one-factor with black line and F2 being a two-factor
with broken line.

In G', vhich is shown in Figure 6(b), one can find
three edge-disjoint cycles containing all odd cycle points
c* =« ), €¥ =¢ ) and CX =¢ )

1 79,9283, 7 Cp =19,859¢9,9g 3 "'9g99959,0911912"
Each point in G is a common vertex of at most two cycles.

g, cen be considered as an even cycle point in C: and odd

cycle point in C;; gg an even one in C; and odd one in C;;
gg 80 even one in both c; and c;. So P = (c:,c;,c') is a
proper collection of cycles. On the other hand, C1 has two
odd cycle points g, and 9,4 C; has two odd cycle points 9y
and 9g i C; containg four odd cycle points 99295+ 939 and 9y
So condition (i) of Theorem 2 is satisfied. Since there is
only one class I even cycle point in G*, condition (ii) is
not required. From the theorem we know that G x K3 has a
cne-factorization.

A suitable labelling to the endpointe of edges in E(P)
is shown in Figure 6(a), where for the common even cycle
point gg the vertex of C8 labelled x or x'* is not adjacent

to the vertex of C_ labelled y or y'.

8
Therefore, in order to determine whether for any given

bridgeless cubic graph G the product G X K3 has a
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one-factorization, one can first try G itaself and see if G
haa a one-factorization. 1If not, try the cycle graph G"*
and gee if Theorem 1 is applicable. If any 2-regular
subgraph of G* always contains some cycle with odd number of
of odd cycle points one can then try Theorem 2 before
trying a new decomposition Fl U F2 and a new cycle graph

G*. Here the cycles in G* which contain all odd cycle
points are not neceassarily disjoint and form a 2-regular
subgraph; they can have something in common (common points),
but not tco much (they are edge-disjoint and each point can
be a common point of at most two cycles of G'). From this

improvement we have
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COROLLARY, If a bridgeless cubic graph G has a
two-factor with at most three components, then G X Ka has a
one-factorization.

Progof. Suppose a bridgeless cubic graph G has a
one-factor Fl and a two-factor F2 such that G = Fl U Fz. If
the component number of F2 satisfies v(Fz) £ 2, the cycle
graph G* is a Hamilton graph since G 1ie bridgéleea, and
Theorem 1 implies that G X K3 has a one-factorization. We
then suppose v(Fz) = 3. If F2 has three even cycles,
apparently G x Ka has a one-factorization. We further
suppoge that Fz haa two odd cycles and one even cycle.

Since G is a bridgeless cubic graph, for either odd
cycle Ci in F2 (i = 1,2) there are at least three edges in
Fl with one endpoint in Ci and another endpoint in other
cycles of F2. There are four possible cases:

(1) there are at least three edges in Fl each linking
one vertex in C1 and one vertex in ng

(1i) there are exactly two edges in F‘1 each linking one
vertex in C1 and one vertex in ng

(1ii) there is exactly one edge in F‘1 linking one vertex

in C1 and one vertex in C

H

(iv) none of edges 1§ Fl can link one vertex in C1 and
one vertex in C2.

Theorem 1 is applicable to the first three cases.
There remains only case (iv).

Suppose the end vertices in C3 of three edges linking
C1 and C3 in Fl are 51'32'333 the end vertices in C3 of
three edges linking 02 and C:3 in F‘1 are bl'bz’b3° Then,
el,az,aa,bl,bz,ba are gsix distinct vertices in Ca. Their
order in Ca (clockwise or counterclockwise) fits one of the
three following patterns:

aabbba, aabbab, ababab.
In each case there always exists a set of four points

X,¥,%x',y' such that x,y € (31,32,33) and x',y*' € (bl,bz,ba),

and such that neither x nor x' is adjacent to y or y': for
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example, in the above listings one can take the gecond and
third points in order as x and x', and the fifth and sixth

as y and y'. In the cycle graph G* of G there are two
#*

1
common even cycle point. Theorem 2 is nov applicable and

cyclea C, = (91'93) and C; = (92,93), vhere 95 is a class II

G X Ka has a one-factorization.
REFERENCES

{1) A. Kotzig, Problems and recent results on
1-factorization of cartesian products of graphsa.
Congressus Num. 21(1978), 457-460.

{2) W. D. Wallis and Wang Zhi-jian, On one-factorizations
of cartesian products. Congressus Num. 49(1983),
237-245.

234



