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ABSTRACT

In assessing the *vulnerability” of a graph one determines the extent to
which the graph retains certain properties after the removal of a number of
vertices and/or edges. Four measures of vulnerability to vertex removal are
compared for classes of graphs with edge densities ranging from that of trees
to that of the complete graph. 4

1. INTRODUCTION

Connectivity, though certainly the most studied, is but one measure of the vulnerability
of a graph. We use *vulnerability” in a generic sense. If we think of the graph as modeling a
network, the vulnerability measures the resistance of the network to disruption of operation
after the failure of certain stations or communication links. In this survey we consider

vertex removal only and focus on the follcwing four measures of vulnerability.

i) &(G): The connectirvity of a graph G is defined by

<(6) = i, |S|
for which G — S is disconnected or trivial.
ii) t(G): The toughness of a graph G is defined by
I8

{G)=mh S5
where S is a vertex cut of G and w(G — S) is the number of components of G~ S.

ili) 8(G): The binding number of a graph G is defined by

i IN(S)
NG =TT
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where ¢ # § C V(G) and N(S) # V(G). The neighborhood, N(S), of S consists of
all vertices of G adjacent to at least one vertex of S.

iv) I(G): The integrity of a graph G is given by

1(G) = ;min_(I5]+ m(G - 5))

where m(G - S) is the maximum number of vertices in a component of G — S.

The toughness of a graph was introduced by Chv4tal [2] in connection with $he hamil-
tonicity of a graph. Since K, has no vertex cut, ¢(K,) is not defined in ii). Chv4tal defined
t(K,) = oo but if we redefine ¢(K,) to be (n — 1)/2 then the following result of Chv4tal
holds without excepting K,.

‘Theorem A (Chvital [2]). For all graphs G,

x(G) 1
(@) <4(G) < 2x(G)

where a(G) is the independence number of G.
Woodall [5] defined the binding number of a graph and showed its relation to the
existence of sets of independent edges and, also, to the hamiltonicity of the graph. He also

proved the following relations of binding number to connectivity and toughness.

Theorem B (Woodall [5]). For all graphs G,

n + &(G)
n—-x(G)’

§(G) <

Theorem C (Woodall [5]). For all graphs G,
G)<HG)+1.

The authors (1] introduced the integrity of a graph as an alternative measure of vul-

nerability. The reasons for our particular choice will be discussed in Section 3.

In the next section we will calculate the four measures of vulnerability for the complete
graph K,, the complete bipartite graph Kyn—i, k¥ < n — k, powers C? of the n-cycle,
2 < 2k € n — 2, and the graphs G, ; and T,, pictured in Figure 1.
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Figure 1.

These graphs were purposefully chosen, first because they exhibit the widest possible
range of edge density and second to illustrate where the different measures of vulnerability
differ in their effectiveness in measuring important structural characteristics of graphs.
Throughout the next section we will use {z] and [z] to denote the largest integer not

more than z and the least integer not less than z, respectively.

2. VULNERABILITY CALCULATIONS
The values of x(G) given in Table 2 are all obvious except, perhaps, for x(C%). We

give a derivation cf £(C¥) for later comparison with the derivations of ¢(C%) and b(C%}).
Pact 1. x(C}) =2k for2< 2k < 2n-2.

Proof. Let C, be the n-cycle with vertices v,...,v,_; labeled so that vu; € E(C,) iff
| = §] = 1 (indices are read modulo n). Then v;v; € E(C) iff 1 € |§ — j| < k so that,
since 2k < n— 2, x(C}) < 2k. It remains to exhibit 2% internally disjoint vy — v; paths for

1< 5 <n—k—1. We consider two cases.

k+1<j<n-k-1 For0<s < k=1let P be the path with vertex set
{vo, Vi, Yaais - - - Y|(i-a/a)e+ir vi}. Then {Pi0 < ¢ < k— 1} is a set of pairwise in-
ternally disjoint vy ~ v; paths using only vertices v, with 0 < r < 5. Since a set of
v; —vg paths using only vertices v,, j < r < n—1 and v, may be similarly constructed,

C contains 2k internally disjoint v, — v; paths in this cage.

i)l £ 5 £ &k The paths (vwuy;),...,(vv-1v;),(vov;), (vvj4av)),-...,

15



(vovav;) and (vo¥n—1¥;) - - - (VoUn-s+;;) form a set of 2k — j pairwise internally dis-
joint uy — v; paths using only verticesv,,0 S r< kandn-k+j5<r<n-1. For
1 <% < jlet P; be the path with vertex set {v;, 4, - -, V| (nakot)/bji+ir Vaobti-1) Yo}
Since these paths are pairwise internally disjoint and use only vertices v, with
k+1<r<n-k+j—1and w and v;, C? contains 2k internally disjoint vo — v;
paths.

We conclude that £(C?) = 2k.

We have previously redefined ¢(K,) = (n — 1)/2. To show that ¢{(Gpns) = 1 we simply
note that for any vertex cut S we have w(G—S) < 2and |S| > 1 and that the equalities may
be simultaneously achieved. Chv4tal [2] has shown ¢(Kia-x) = k/(n — k) and remarked
that ¢{C%) = k. We give a proof of the latter equality.

Pact 2. {(Ct) = k.

Proof. Let S be a vertex cut of C! labeled as in the proof of Fact 1 and choose onc vertex
v;; from each of the w(G — 5) components of G — S. We may assume these vertices are
labeled 8o that §; < 63 < -~ < f,g-5). Set V; = {uli; i < ijpq}for1 < j < w(G-S) (we
take L
v;; — %i,,, paths in C* using only vertices of V; we must have |[S N V| > k. Consequently
IS| 2 kw(G — S). On the other hand, if weset S = (vl <s<korn-k<i<n-1}
then |S| = 2k and w(G — S) = 2. Consequently ¢(C}) = k.

To determine ¢(Tj, 4) we let S be a vertex cut of T, » and note that to minimize |S|/w(G~

e = v;,). Since, as shown in the proof of Fact 1, there are & internally disjoint

5), § must be an independent set of vertices with degree at least 2. If S is such a set and
v@ES then
ISl _ _lIs]
w(G-8) |S|+1

whereas if v € S then
ISl _ _Is|
w(G-5) |S|+k°

Consequently we take S = {v} and have ¢(T,.4) = zi;.

We now proceed to calculate $(G) for the various graphs G. In particular, if G = K,
then, because N(S) # V(G), S must contain only one vertex of G so that }(K,) =n-1.
If G = Gp, then, since N(S) # V(G), we have only the following cases to consider.
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i) |S|=1. 155 = (v} then |[N(S)|=n~1andif S # {v} then |S|=korn—k-1.

i) |S| > 1. Here we note that S # {v} implies v € S. In Table 1 we determine |N(S)] for
each of the possible choices of S.

IS NV (KL 1 >1 1 >1 o

ISOV(Kaci-g)] | 1 1 >1 0 >1

IN(S)| n-2 n—-1 n-1 k+1 n-k
Table 1.

From Table 1 it is easily determined that
i) If k=1 we take |SNV(X,)| =1 and have (Gns) =1,

B) I k = 2 we take |SAV(K,)| = 1, |S OV (Kas-1)| = n— k-1 and have b(Gas) = 81

and

iii) If k > 3 we take S = V(K,._s—1) and have §(Gas) = ;252

na=§-1°*

Woodall [5] has shown b(Kya-s) = ;3. We determine 4(C?) in the following.

1 Jk=1,2n
Pact 8. b(CY)={8-1 ,2k=n-2 .

2=% , otherwise
Proof. Woodall [5] has shown that

1 1 2|n
b(Ca) = {:_:; 2in

80 that, since C,, is a spanning subgraph of C}, we have 5(C}) > 1. Let S = {v;,, ..., i,
be a subset of V(C?) for which 3(C%) = |N(S)|/|S]. We assume the vertices of C, are
labeled as in the proof of Fact 1. We may assume further that §; < §; < --- < ijs) and that

k > 2. We then have the following (in which §is}44 is taken to be 4, and i, to be 5j5.

i) If for some r, 1 < r < [S|, we have i,y +1 =, < §,42 — 1 then, setting §' = SU{v;,41}

we have

IN(SY)| o IN(SH+1  IN(S)|
Is'1 = Isl+1 = |S]|
and N(S') = V(G) iff N(S) = V(G) - {vi,s141}-
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ii) If for some r, 1 < r < |S|, we have 5, + k > v;,41 then, setting §' = SU{v;,41} we have
IN(S) _ IN(S)| _ IN(S)|

I’ T IS|+1 = |S]
and N(S") # V(G).

K N(S) = V(G) - {v} for some v € V(G) we take S = {u € V(G)|d(v,u) > k} U {v}

and have
IN(S)| _ m=1
IS| " n-2%"

On the other hand if [N(S)| < n — 1 then from i) and ii) we have 4, + k < i,4, for
1 < r £|S| so that |[N(5)| 2 k|S|. Now

n-1
n-2k

Ske=>2-nk+n-1>0¢=>(n—-2k-2)(1-k)=2k>—nk+n—-220.

The equality of Fact 3 immediately follows.

o=l k=12¢tn
Pact 4. b(Tos) = {"*‘ ’ .

i ,otherwise

Proof. The case k = 1 is a result of Woodall [5]. We assume, then, that k > 2 and note

that, in this cae,
G
Is'l 2
where S’ consists of two of the end vertices of T, adjacent to v. We also may assume
k < n — 3 since the equality of Fact 4 obviously holds in this case.

Let v; be the end vertex of T}, 5 not adjacent to v and label the vertices of the v, — v

b(TnJ) <

Path vy, ¥, ..., Yn_4y, Yas = v 80 that v; is adjacent to v;y, for 1 <s<n—k—1. Let
S be a subset of V(G) for which 8(T.4) = |N(5)|/|S| and N(S) # V(G). If v; € § for
1 £ i < vay then obviously 5(T,s) = }. Otherwise let r be the least index such that
v, €S.

Hr=1andv; €S (orv; & Sbut vy € §) weset §' =S~ {v;,%) (or §' =5 —{v,vs)},

respectively) and have
IN(S') o IN(S) =1 _ |N(S)
s = Is|-2 = ||
Ifr=1and {v;,»;}NS=¢@orif r>2weset S'=5 - (v,} and have

IN(S) _ INS) =1 _ IN(S)]
ST <Js]-1 < 18] °

In any case we may assume v; € S for 1 <i < n -k and have 3(T,..) = }.

18



We now turn to I(G); obviously JI(K,) = n. f G = Gas we have two cases to consider.

i) If v @ S then, since m{G — §) = |V(G)| — |S|, we have |S]| + m(G — §) =n.

ii) M v e S weset |SNV(Ky)| = a and |S NV (Kn-s-y)| = b s0 that

S|+ m(G-S)=a+b+1+max(k-an—k=b=1)=1+max(k+bn-k+a-1).

This last expression is minimized by taking a = b = 0 so we have I(Gnp) =n - k.
It is easily seen that I(Kjina—i) = k + 1. The integrity of C? is calculated in [1] and

shown to be min,(m + & l;';‘,;J + €4) where

0, (m+k)n

€Em =
{l,

(m+k)tn '

In particular if k = 1, i.e.,, G = C, we have I(C,) = [2y/n] - 1.

G Measure of vulnerability of G
(G) | ¢(G) | ¥(G) I(G)
Ku n-1 ”—;l' n-1 n
1 k=1
G“‘ 1 % J:_:; ’k=2 n—-k
oy k23
Ko | k| H 35 k+1
1 Jk=1,2n
c 2 | k [{3-1 ,2k=n-2 |mina(m+k|5;]+e)
2oL, otherwise
o("l+k)|u
where ¢, =
y(m+k)tn
T 1| & {:%: yk=12¢n {I’NM-] 21<k<\/_,.+ -t
nk +1 } ,otherwise [2VR-Fk|-1,Vn+1-8<k<n-2
Table 2.

Fact 5. I(Tos) = {

[ovan+1]-2 ,1<k<Va+1-¢
2va—F]-1 ,/a+i1-8<k<n-2
Proof. Let S be a subset of V(G) for which I(T4) =

|S] + m(G - S). As we note below,

we may assume k > 2 and it is easy to see that we may assume S was chosen so as to not
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contain any of the k end vertices adjacent to v. Let P = (uu; : + « Up_4—) be the path from
v(= v) to the end vertex vo_;—; of T,,; furthest from v and let r be the least index for
which v, € S.

The authors [1] showed that

KTas) = I(P.) = min(m - 1 + ['”' 1 P =revasin -2,
We use these equalities in the following.

i) If r = 0 then, since n < &k + m(G -~ S) + |S|, we have |S| 2 (n — k)/(m + 1) (where
m = m(G - §)) so that

I(Tas) 2 min (m+{— )-[2\/_]—1

il) If r > O then, since v and the end vertices adjacent to v all lie in the same component

of G - § we have
ITos)=I(P.) = [2vVn+1]-2.
Thus
K(Tos) 2 min([2vVn - k] - 1,[2vVn +1] -2).

Now, for k > 0, we have

[2VR—k]-1<[2vn+1]-2 < [2Vn-Fk|<[2Vn+1-1]
< 2/n+l1-2/n-k21ek>

Thus
[2Va+1]-2,1<k<Vn+1-}

2VA=Fl-1,VaFl-8<k<n-2
Easy constructions (space the members of S equally on path P) show that equality
holds and the proof of Fact § is complete. This entry also completes Table 2.

I(Tn.l) 2 {

3. DISCUSSION
If a system such as a communication network is modeled by a graph G and a function
J(G) is designed to measure the ability of the system to operate after one or more stations

are disabled it seems reasonable to expet f(G) to satisfy the following criteria.
i) If A is a spanning subgraph of G then we should have f(H) < f(G).

ii) f(G) achieves its maximum value only at G = K, and its minimum value only at
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G = K, where K, is the complement of K.
These two criteria are included in the next.
iii) If H is a proper subgraph of G then f(H) < f(G).

It is easily verified that x(G), ¢(G), b(G) and I(G) all satisfy i) but that ii) is satisfied
only by J(G) since both (G) and ¢(G) are 0 iff G is not connected (S = ¢ is allowed in
the calculation of ¢(G)) and §(G) = 0 iff G has an isolated vertex.

Criterion iii) is not satisfied by any of the four measures of vulnerability since it requires
such a measure to assume at least (';) different values and J(G), being integer valued,
cannot do that.

We now turn our discussion to the entries of Table 2. The graphs G, perhaps best
illustrate the inability of connectivity to provide a realistic measure of the vulnerability of
graphs. Certainly disabling a station located at vertex v is less damaging to the operation
of the remaining system when k = 1 than when & = |(n - 1)/2]. Yet neither £(G, ) nor
t(Knz) reflect this. Also, (G, s) is quite insensitive to the value of k. On the other hand,
I(Gn ) provides a significant indication of the change in the nature of the structure of the
system for 1 € k < (n - 1)/2.

For G = T4 «(G) is totally insensitive to the value of k while J(G) is a non-constant
function of k only for limited values of k. On the other hand, both ¢(G) and 8(G) reliably
reflect the weakness of the system in terms of the degree of v.

4. CONCLUDING REMARKS

The edge analog of (vertex) connectivity is well studied. Chv4tal [2] defined an edge
analog of toughness but showed that its value for any graph G was one half of the edge
connectivity of G. The authors [1] bave defined the edge integrity I' of a graph by I'(G) =
mins(S+m(G - S)) where § C E(G). As with connectivity and edge connectivity we have
I(G) £ I'(G) for all graphs. However, in contrast to connectivity and edge connectivity,
integrity and edge integrity have quite different properties for certain classes of graphs. For
example we have shown that of all trees on n vertices the path P, has the largest integrity
while the star K, ,_; has the smallest but that K;,_, has the largest edge integrity and
P, has the least.

Further measures of edge vulnerability have been devised by Lipman and Pippert (3,4].
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They have studied the parameter A;(G) which denotes the minimum number of edges
which must be removed from G so as to separate at least ¢ vertices from the remaining
vertices. Also, in this connection, Robin Dawes has informed us that Kockay and Skillicorn
are studying the function v(G,s) which denotes the minimum cardinality of a subset S of
- V(G) for which G — S has at least two components each with at least § vertices.

We close with the observation that, except for binding number, all measures of vulner-

5bility discussed depend on the concept of a graph being connected.
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