THE GENERALIZED MOORE GRAPHS ON
ELEVEN VERTICES

R.W. Buskens and R.G. Stanton
1. Introduction

The topological design of computer communications networks led to
the analysis and development of generalized Moore graphs. For a
consideration of network cost, delay, and reliability, we refer to [3];
these graphs also satisfy a criterion of minimal average path length, as
discussed in [6]. A discussion of the existence or non-existence of the
graphs for valence 3 in [2], {4], [5], [7], [8], and [9] provides a fairly
complete census of the trivalent generalized Moore graphs. Initial
work on a census of tetravalent generalized Moore graphs was begun
in [1], where we discussed graphs having 10 or fewer vertices; in the
current paper, we discuss the most complex small case, that of 11
vertices. The behavior of graphs having 12 to 20 vertices is treated in
a parallel paper.

As in [1], we abbreviate "Generalized Moore Graph” to "GM graph”,
and assume that all graphs under discussion are regular and of valence
4 at every vertex. For completeness, we recall the definition of a GM
graph (of valence 4). If we select a particular node as the root node,
then there are 4 nodes at distance 1 from it, 12 nodes at distance 2 from
it, 36 nodes at distance 3 from it, etc. There may, of course, be
incomplete levels; a GM graph with 61 nodes would have exactly 8
nodes situated on the fourth level (at distance 4 from the root node).
The essential feature of a GM graph is that the distance property holds,
no matter what node is selected as the root node. In short, any vertex
has the same "distance distribution" as any other vertex, and any node
has the maximum possible number of nodes at distances 1,2,3, etc.

We also find it useful to refer to the girth of a GM graph; this is the
length of the smallest cycle in the graph. If the graph happens to be
complete (that is, if the m'th level is full), then the girth of the graph is
2m+1; on the other hand, if the m'th level is not complete, then there
can be an edge of the graph that joins two points in the (m-1)th level,
and so the girth of the graph is 2m-1.

In general, if we have a GM graph on N nodes which is regular and of
degree V, then we denote it by the symbol M(N,V). In an carlier
paper,we have discussed the graphs M(N,4) for N less than eleven; in
this paper, we give the results for N = 11. As before, we abbreviate
M(N,4) to M(N). We also mention that we have again used Kocay's
isomorphism testing method throughoui the paper, as described in [1].
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2. The Graphs M(11,4); Case (9,6,3).
We use the notation of [1]. Start with the three equations
a+b+c =18, 2a+b=24, b+2c =12,

where a represents the number of joins at level 2, ¢ represents the
number of joins at level 1, and b represents the number of edges
joining level-1 vertices to level-2 vertices. Since the six level-2
vertices must reach node 1 in two steps, there is a further restriction
that b be at least 6.

The solutions for (a,b,c) are (6,12,0), (7,10,1), (8,8,2), and (9,6,3).

The (9,6,3) case will be discussed in this section. The only way to join
the top 6 vertices with 9 lines and a valence of 3 at each node is to form
M(6,3), for which there are only two graphs. There are, however,
three ways for level 1 to be configured; thus we must discuss a total of
6 cases.

Case 2.1. The first case is set up in Figure 1.

Begin by joining vertices 2 and 6 by an edge. In order that 6 may
reach both 4 and 5, join 7 to 4 and 9 to 5. To permit 7 to reach 2 in two
steps, there is no loss in generality in making the join (10,2). To
satisfy the distance property for vertex 9, (11,3) must be a join,
leaving 5 to join to vertex 8. The completed graph and its Hamiltonian
are presented in Figures 2A and 2B.
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Figure 2A Figure 2B

We note that the M(6,3) graph illustrated as the top level in Figure 1 is
bipartite with 3 vertices in each partition. Hence, the first join is
completely arbitrary, and only one distinct graph graph can exist for
this case.

Case 2.2. The next case has the same top level arrangement as the
previous case, but the level-1 joins all emanate from a common vertex

(Figure 3).
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Figure 3

Since the top level is bipartite (the bipartition separates vertices 6, 10,
and 11 from vertices 7, 8, and 9), the first join is arbitrary; take (6,2).
There is no loss of generality in joining 7 to 4 and 9 to 5; this satisfies
the distance criterion for 6. To permit 7 to reach S in two steps, select
(10,5). Now, 11 must be joined to 4 so that 9 can reach 4 through at
most 2 edges. Then an edge joins vertices 2 and 8. This graph is
displayed in Figures 4A and 4B.
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Figure 4A Figure 4B

Case 2.3. Figure 5 depicts a new level-1 configuration with the same
top level configuration.

_Figure 5

The first join is completely arbitrary; take (6,2). So that 6 may reach
vertex 5 in two steps, select (5,8). To satisfy the distance criterion for
vertex 8,we may join 10to 3 and 11 to 4; then 5 is joined to both 7 and
9. Figures 6A and 6B show the completed graph.

Figure 6A Figure 6B
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Case 2.4. Figure 7 shows a new level-2 configuration, with a path
spanning the level-1 vertices.

As a result of the symmetry of the top level,we may join 2 to 6. Now
two possibilities exist: either vertex 8 or vertex 9 can be joined to 4.

io 11

Figure 7

Let us make the join (9,4). If vertex 7 is joined to 3, then 3 can not
reach both 8 and 11 in two steps; hence, 10 must be joined to 3. In
order for 4 to reach 8, 5 must be joined to 8. For 2 to reach 11, the
join (2,11) must be made, leaving 5 to join to 7. Figures 8A and 8B
present the graph.

Figure 8A Figure 8B

On the other hand, if vertex 8 is joined to 4, we may take (9,5).
Joining 7 to 3 gives a graph isomorphic to that of Figure 8A; so we
join 11 to 3. Then 5 is joined to 10. The completed graph is shown in
Figures 9A and 9B.
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Figure 9A Figure 9B

Case 2.5. In Figure 10, all edges at level 1 emanate from a common
vertex.
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Figure 10

Without loss of generality, we make the joins (3,6) and (5,9) . Now,
either 7 or 8 must be joined to 4.

Take the edge (8,4). So that 4 may be joined to both 7 and 9, take
(7,4). If 3 is joined to 10, then 5 must be joined to 11, and we get the
graph of Figures 11A and 11B. If 3 is joined to 11 (and thus 5 is
joined to 10), we get the graph shown in Figures 12A and 12B.

Since all cases where both 7 and 8 are joined to 4 have been considered,
the remaining cases must have 7 joined to 4 and 8 joined to some other
vertex. The only new case occurs when 3 is joined to 8. To avoid a
previous case, the join (4,10) must be made; then S is joined to 11.
This graph is displayed in Figures 13A and 13B.
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Case 2.6. The last (9,6,3) subcase is depicted in Figure 14.
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Without loss of generality, join 3 to 6. The distance property for 3
requires the joins (2,10) and (4,11). Then vertex 5 must be joined to 7,
8, and 9, and vertex 2 can not reach 9 through at most 2 edges.

We summarize our results so far in

Theorem 1. If (a,b,c) = (9,6,3), there are eight distinct tetravalent
Moore graphs.

3. The Case (8,8,2).

If (a,b,c) = (8,8,2), there are two possible level-1 joins, and five level-
2 configurations.

Case 3.1. The first of ten configurations is illustrated in Figure 15.
10 il

Figure 15
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Since at most two 3-cycles may be formed through any vertex, we see
that vertex 6 must be connected to 2,4, and S. Arbitrarily, we join 10
to 2, so that 6 can reach 10 through at most 2 edges; now, for 11 to
reach 6 in two steps, it may be joined to either to 4 or to 5.

If 11 is joined to 4, then 3 must be joined to 7 in order to reach 7, 8,
and 9 in two steps. Then 5 must be joined to both 8 and 9. Figures 16A
and 16B illustrate the completed graph.

Figure 16A Figure 16B
If, on the other hand, 11 is joined to 5, then 10 must reach 4 by the
edge (9,4). This forces the join (3,8); the remaining edge is (5,7).
This graph is shown in Figures 17A and 17B. A

Figure 17A Figure 17B

Case 3.2. Figure 18 displays the next configuration .

Without loss of generality, 6 may be joined to 2, 3, and 4. Also, we
may join 10 to 2. Now if 11 is joined to 3, then 10 must reach 4 and 5;
so we take the joins (8,4) and (9,5). The final edge is (5,7); see Figures
19A and 19(B).

If 11 is joined to 4, then the joins (8,3) and (9,5) may be made; the final
join is (5,7). This graph is displayed in Figures 20A and 20B.
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Case 3.3. The third subcase starts out as illustrated in Figure 21.
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Figure 21

Vertex 6 can not be joined to both 3 and 5 (for then either 2 or 4 has to
be joined to two of 9, 10, and 11, thus forming three triangles through
either 10 or 11). Also, 6 can not be joined to both 2 and 4 (for then 5
would be joined to 7, 8, and 9); there is no loss of generality in joining
10 to 3, but then 11 can not reach both 2 and 4 in at most two steps.

Hence, 6 must be joined to both 2 and 5. If we apply the same
argument to 7, we find that 7 must be joined to 2 and 5 or to 4 and 5; if
7 is joined to 2 and S, then 2 can not reach both 10 and 11. Hence (7,4)
and (7,5) are joins.

If 3 is joined to 8, then 2 may be joined to either 9 or 10. If (2,9) is an
edge, then the joins (4,10) and (5,11) may be made without loss of
generality. Figures 22A and 22B illustrate the completed graph.
Figures 23A and 23B present the graph resulting from joining 2 to 10.
The distance property requires the join (4,9); (5,11) is thz final edge.

Figure 22A Figure 22B
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Now consider the situation when 3 is joined to 10; 5 can be joined to
either 9 or 11. The edge (5,9) forces (2,11) and (4,8); see Figures 24A
and 24B.
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Figure 24A Figure 24B

If (5,11) is an edge, then (4,8) and (2,9) are forced; see Figures 25A
and 25B. i

io 8
Figure 25A Figure 25B

Case 3.4. Figure 26 presents a configuration with different level-1
joins.
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Vertex 2 can not be joined to 7 (the join (2,6) can be made with no loss
of generality, and then 3 triangles are formed through 10 and 11). If2
is joined to 6 and 8, 6 can not be joined to 3, but it may be joined to 4
without loss of generality. This forces edge (3,9). Next, the joins
(10,4) and (11,5) may be made without loss of generality. Then 7 must
be joined to both 3 and 5. Figures 27A and 27B illustrate the com -
pleted graph. i

Figure 27A Figure 27B

If 2 is joined to 6 and 10, then 11 may be joined to either 3 or 5. First
take (11,3). To avoid three triangles through 11, make the join (7,3).
Now 6 may be joined to 4 without loss of generality; however, 7 can
not joined to 4 (then 4 would not reach both 10 and 11 through 2
edges). So we select (7,5).

Figure 28
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If (8,4) and (9,5) are joins, the graph (Figure 28) is isomorphic to the
one in Figure 27. If (8,5) and (9,4) are joins, we obtain the graph in
Figures 29A and 29B.
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Figure 29A Figure 29B
If (11,5) is a join, (7,5) must also be. Now, if 6 is joined to 3, then 8

must be joined to 4. Then the join (7,4) is forced, as is (9,3). The
completed graph (Figure 30) is isomorphic to the one of Figure 24.

1
Figure 30

If (6,4) is a join, so must (7,3) be. The distance property requires
(3,8) and (4,9). This case is represented in Figures 31A and 31B.
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Figure 31A Figure31B
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Case 3.5. Figure 32 shows another possible initial configuration.

To begin, we join 6 to 2 and 4. If 2 and 4 are also joined to 7, the
distance property for 2 and 4 requires (3,11); then S must be joined to
8, 9, and 10. The completed graph (Figure 33) is isomorphic to the
graph in Figure 16.

Figﬁre 33

Let us now join 7 to 2 and 5. The distance property for 2 requires
(3,11). In order for 4 to reach 7 and 10, it must be joined to10. Then
5 must be joined to 8 and 9. Figures 34A and 34B display the graph.

If 7 is joined to both 3 and 5, we take (8,2) so that 8 may reach 3 in two
steps. Since 3 is connected to all but 11, we must take (4,11). Then 5
must be joined to 9 and 10 (Figure 35). The graph is isomorphic to the
- one in Figure 19.

Instead of joining 6 to 2 and 4, suppose we join 6 to 2 and 5. Three
possible new cases result. If we also join 7 to 2 and 5, 3 must be joined
to 11 to satisfy the distance property for vertex 2. To allow 5 to reach
11 in two steps, take (5,10); then 4 is joined to 8 and 9. The completed
graph (Figure 37) is isomorphic to the graph of Figure 31.
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Figure 36

Now let 7 be joined to both 3 and 5. Since 8 must reach 3 in two steps,
it must be joined to either 2 or 4. If 8 is joined to 2, then (4,11) is
needed to satisfy the distance property for vertex 3. Since 4 must
reach 6, we need (4,9) and (5,10). This graph (Figure 37) is
isomorphic to that of Figure 29.
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Figure 37

Now consider joining 6 to 2 and 5, and 7 to 4 and 5.

If 8 is joined to 4, the distance criterion for 2 requires (2,10). Figures
38A and 38B display the graph resulting from (9,3) and (11,5).
Figure 39 displays the graph when (9,5) is a join; it is isomorphic to
that in Figure 38.

If 9 is joined to 4, 10 must be joined to 2 to satisfy the distance cri -
terion for 7. Figures 40A and 40B and 41A and 41B present the cases
where (5,8) and (3,11) are joins, and when (5,11) and (3,8) are joins,
respectively.

i
2

Figure 38A Figure 38B

Figure 39
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Figure 41A Figure 41B
Case 3.6. Figure 42 displays the next case in our discussion.
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Figure 42

We commence by joining 6 to vertices 2 and 3. Since 6 must reach 4
and 5, there is no loss of generality if we form (8,4) and (9,5).
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Now join 7 to 3. The distance property requires (2,11). If 7 is joined
to 4, 5 is joined to10 (Figure 43); the graph is isomorphic to that in
Figure 41 .

Figure 43

The graph that results from joining 7 to 5 (leaving 4 to join 10) is
presented in Figure 44, and is isomorphic to the graph of Figure 23 .

Note that vertex 7 may not be joined to both vertices 4 and 5 (since
three triangles would be formed through vertex 5).

Figure 44

Consider now joining 6 to both 2 and 4. Vertex 7 can not be joined to
both 2 and 4, since 2 and 4 would not be able to reach vertex 11. Thus,
we first join 7 to both 2 and 5. To satisfy the distance property for 2,
we must join 3 to 11. Now, either 8 or 10 may be joined to 3. Since
the permutation (6 7)(4 5) leaves the graph unchanged, 6 and 7 are
symmetric. Hence, take (8,3) without loss of generality. Since 4 must
reach both 10 and 11, we require (4,10), and thus (5,11). Figures 45A
and 45B display the graph.

~ Let us now join 7 to 3 and 5. Since (2,4) and (3,5) are symmetric
pairs, 8 must be joined to either 2 or 3.

Suppose (8,2) is a join. If 3 is joined to 10, (4,11) is required by the
distance property for 4; this forces (5,9) and the distance property for
5 is not satisfied. Hence, 3 must be joined to 11, and this forces (5,10),
and then (4,9). Figures 46A and 46B depict the completed graph.
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Figure 46A Figure 468

We may also join 3 to 9. The only non-isomorphic case arises when 4
is joined to 10. The graph is shown in Figures 47A and 47B.

9 A
Figure 47A Figure 47B

42



Now, let us join 8 to 3 instead of to 2. We can not join 2 to 10 since the
distance property would not be satisfied for 4 (or 5). If 2 is joined to
11, no new graph is obtained; hence we must join 2 to 9. The graph
that results from joining 4 to 10, and 5 to 11, is shown in Figures 48A
and 48B. Figures 49A and 49B illustrate the graph if (4,11) and (5,10)

°S 4
Figure 49A Figure 49B

Case 3.7. Figure 50 shows the next initial level-1 and level-2

configurations.
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Figure 50
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From symmetry, there are only three possibilities that avoid three
triangles through a vertex. The first possibility is to join 6, 10, and 11
to 5. To avoid three triangles through a vertex, 7 must be joined to 2
and 4; but then, only one of 10 and 11 can reach 3 in two steps.

Next consider joining 5 to 6, 7, and 11. If (7,3) is a join, there is no
loss of generality in taking (6,2). The distance criterion forces (2,10);
s0 4 is joined to 8 and 9. The graph (Figure 51) is isomorphic that in
Figure 24,

Figure 51

If 7 is joined to 4 rather than to 3, then (2,10) must be a join. So that
11 may reach 3, take (8,3). Then we either have (4,6) and (2,9); or we
have (4,9) and (2,6). The respective graphs (Figures 52 and 53) are
isomorphic to the graphs in Figures 23 and 22.




Finally, join 7, 9, and 11 to 5. To avoid three triangles through a
vertex, join 6 to 2 and 4. If 7 were joined to 3, 10 could not reach 2
and 4 through two edges; so join 7 to 4. Then the distance property for
7 requires (2,10) and (8,3). The graph (Figure 54) is isomorphic to
that in Figure 17.

Case 3.8. Figure 55 displays another initial case.
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Figure 55

First, consider joining 6 to 2 and 3, and 7 to both 3 and 4. There is no
loss of generality in joining 2 to 10, since it must reach both 10 and 11.
Since 8 and 9 must be joined to 4 and 5 to satisfy the distance property
for 6, we require (5,11). The joins (5,8) and (4,9) give a graph
(Figure 56) that is isomorphic to that in Figure 27; the joins (5,9) and
(4,8) give a new graph shown in Figures 57A and 57B.
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Figure 57A Figure 57B

Another possibility is to join 6 to both 2 and 3, 7 to both 4 and 5. To
avoid forming three triangles through a vertex, we may, without loss
of generality, take edges (8,4), (9,5), (10,2), and (11,3). See Figures
58A and 58B.

Figure 58A Figure 58B

Consider next joining both 6 and 7 to both 3 and 4. If both 10 and 11
are joined to 5, 8 and 9 must be joined to 2. The graph (Figure 59) is
isomorphic to that in Figure 19.

Figure 59
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Figures 60A and 60B illustrate the graph that results when both 11 and

9 are joined to 5, leaving 8 and 10 to be joined to 2.

Another graph results if 8 and 11 are joined to 5; then 9 and 10 are
joined to 4. The graph (Figure 61) is isomorphic to that in Figure 46.

Now consider joining 6 to 2 and 4, while joining 7 to both 3 and 5. We
first select (11,4). If (5,8) is a join, then we require (9,3) and (10,2).
The graph is shown in Figures 62A and 62B.

Figure 62A Figure 62B
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If (5,9) is a join, then the edges (2,8) and (3,10) give the graph shown
in Figures 63A and 63B. The joins (2,10) and (3,8) give the graph
shown in Figures 64A and 64B.

i 9
Figure 65A Figure 65B

The case of a join (5,11) need not be discussed, since we merely switch

the roles of (2,3) and (4,5). Hence, we finally consider joining 6 to 3
and 4, and joining 7 to 3 and 5. Without loss of generality, we select
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(2,8). So that 8 may reach § in two steps, we take (9,5). The selection
(10,2) and (11,4) gives the graph shown in Figures 65A and 65B.

The selection (10,4) and (11,2) gives Figure 66, which is isomorphic
to that in Figure 47. If (11,5) is a join, the distance property requires
(9,4) and (10,2). The completed graph (Figure 67) is isomorphic to
the graph of Figure 23.

Case 3.9. The ninth (and penultimate) major subcase is shown in
Figure 68.

Figure 68
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First, we note that both 6 and 7 can not be joined to both 2 and 4 (if
they do, there is no loss of generality in joining 8 to 3; but then 10 can
not reach 3 in two steps). If 6 is joined to 2 and 4, and 7 to 4 and 5, the
distance property for 7 allows us to select (9,2) arbitrarily. Then the
distance property for 3 requires (3,11); so 8 and 10 must both be
joined to 5. Figures 69A and 69B display the completed graph.

LY
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9 B
Figure 69A Figure 69B

If 6 is joined to both 2 and 4, and 7 to both 3 and 5, then 10 may be
joined to 5 so that 6 can reach 5 in 2 steps; then 10 can not reach 3 in
two steps.

If 6 is joined to 2 and 5 and 7 is joined to 3 and 5, the distance property
for 6 allows us to select (10,4). Then we require (4,8), and (9,2) is
needed as a direct join. Then the distance property for 11 can not be
satisfied.

Thus we join both 6 and 7 to 2 and 5. So that 6 may reach 4 in two
steps, take (9,4). Now 4 may not be joined to 11 (it would not reach 6
in two steps); hence, with no loss of generality, we choose (11,3) and
(10,5). The final join is (8,4). The graph (Figure 70) is isomorphic to
that in Figure 43.
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Case 3.10. The final (8,8,2) subcase is illustrated in Figure 71.
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Figure 71

Both 6 and 7 can not be joined to both 2 and 3 (one may not have three
triangles through a vertex). If 6 is joined to 2 and 3, and 7 to 3 and 4,
then 6 must reach 4 and 5 in at most two steps. From symmetry, take
(8,4) and (10,5); then vertices 9 and 11 can not reach 2 in two steps.

If we join 6 to 2 and 3, 7 to 4 and 5, the distance property for 6 allows

us to take (8,4) and (10,5). The distance property for 7 requires (9,2)
and (11,3). The graph is shown in Figures 72A and 72B.

1

Figure 72A Figure 72B

Now join both 6 and 7 to 3 and 4. Without loss of generality, we select
(11,5). Now, 5 may reach 9 by a join to 8, 9, or 10. Since (5,8) and
(5,10) are symmetric, select (5,10). The other edges are (8,2) and
(9,2), and the graph is shown in Figures 73A and 73B. If 5 is joined to
9, 8 and 10 must be joined to 2, and the graph is shown in Figures 74A
and 74B.
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Figure 74A Figure 74B

Suppose we now join 6 to both 3 and 4, and 7 to both 3 and 5. Since
two of 8, 9, 10, 11, must be joined to 2, take (8,2) arbitrarily. Then
(2,10) is not possible (11 would not reach 4 in two steps). By
symmetry, we take (9,2). The distance property requires (10,4); the
final edge is (11,5). The graph (Figure 75) is isomorphic to the one in
Figure 47.




Finally, join 6 to 2 and 4, 7 to 3 and 5. If (8,2) is an edge, symmetry of
(9,5) and (11,5) in satisfying the distance criterion for 8 allows us to
take (9,5).

Figure 76A Figure 76B

Figures 76A and 76B present the graph when (3,10) and (4,11) are
edges; Figures 77A and 77B when (3,11) and (4,10) are edges.
1

4 3

o 9
Figure 77A Figure 77B

Instead of joining 2 to 8, we may join 2 to 9. So that 2 may reach 11,
take (3,11). Without loss of generality, we now take (8,4) and (10,5).
Figure 78 illustrates the completed graph, which is isomorphic to that
in Figure 76.

We summarize the results of this section in
Theorem 2. If (a,b,c) = (8,8,2), there are 33 non-isomorphic
tetravalent GM graphs that are not subsumed in the earlier (9,6,3)

case.

Note that these graphs, unlike the graphs in Theorem 1, do not have
three triangles at any vertex.
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4. The (7,10,1) Case.

If (a,b,c) = (7,10,1), there are only seven subcases.

Case 4.1. We start with the situation of Figure 79. To avoid
forming two triangles (or more) through any vertex, 6 must be joined
to2,3,andS.

To avoid two triangles through a vertex, 7 can not be joined to 3. If
(7,2) is a join, the distance criterion requires 8 or 9 to be joined to 2.
.This creates two triangles through 2; hence 7 must be joined to 4.

So that 10 may reach 6 in two steps, take (10,3); similarly, take (11,5).
In order for S to reach 10, and for 2 to reach 11, in at most two steps,

take (5,9) and (2,8), without loss of generality. The'graph (Figures
80A and 80B) is completed by edges (10,2) and (11,4).

o 41

Figure 79
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Figure 80A

If we join 11 to both 2 and 5, and join 10 to 2, there is no loss of
generality in taking (8,3) so that 10 and 11 can reach 3 in two steps.
The distance criterion for 9 requires (9,4). The edge (10,5) completes
the graph (Figure 81), which is isomorphic to that in Figure 74.

Figure 81
Case 7.2. Figure 82 presents a different level-2 configuration.
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Figure 82
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We must join 6 to 2, 3, and 5 to avoid creating two triangles through a
vertex. Since 11 can not be joined to both 3 and 4, it must be joined to
2 or 5; choose (11,5).

If we choose (10,2), so that 6 may reach 10 in two steps, we take (7,2)
to avoid two triangles through 10. Now 8 can not be joined to both 3
and 4, nor to 2; so we take (8,5). To avoid two triangles through 11,
we need (8,4). Joins (9,3) and (11,4) give the graph in Figures 83A
and 83B. Joins (9,4) and (11,3) give a graph (Figure 84) isomorphic
to that in Figure 80.

Figure 84

If 10 is joined to 3 so that 6 can reach 10 in two steps, and if 5 is joined
to 7 to reach 8 through at most two edges, then 8 must be joined to both
2 and 4. The joins (4,9) and (2,11) give a graph (Figure 85)
isomorphic to that in Figure 84. The joins (4,11) and (2,9) give a
graph (Figure 86) isomorphic to that in Figure 83.

Vertex S can also be joined to 8. To avoid obtaining a previous

graph,we must take (7,4). This forces the edge (11,4); then 8 and 9
must be joined to 2. The graph is displayed in Figures 87A and 87B.
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Figure 87A - Figure 87B

Case 7.3. Figure 88 presents the next possible level-2 configuration.

Vertex 6 must be joined to 2, 3, and 5 (to avoid two triangles at a
vertex). Similarly, 7 must be joined to 4. Since 3 can not be joined to
both 10 and 11 (this would result in two triangles through 4), 3 may be
joined to either 8 or 9; we choose (3,8), forcing the join (4,11).
Vertex 10 can only be joined to 2'and 5; since 2 and 5 are symmetric as
regards 11, take (11,2), and hence (9,5). The graph (Figure 89) is

isomorphic to that in Figure 83.
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Figure 89

Case 7.4. Another level-2 configuration is displayed in Figure 90. '
o A

8 9
6 T
1
Figure 90

If 6 is joined to 2 and 3, and 7 to 2 and 4, then the distance property for
6 and 7 forces 8 and 9 to join 5. Now, joining either 10 or 11 to 5
forces two triangles through the same vertex.
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If 6 is joined to 2 and 3, and 7 to 2 and 5,we require (9,4). To avoid
two triangles through 4, we require (8,4). Without loss of generality,
we take (3,10). Then 11 must be joined to 2 and 5, and 10 to 5. But
then 10 can not reach 2 through two edges.

Thus, 6 must be joined to 2 and 3, and 7 to 4 and 5. The distance
criterion for 6 and 7 requires (8,5) and (9,2). Since 10 and 11 are
symmetric, form (10,3) and (11,4); finally, choose (10,2) and (11,5).
The graph (Figure 91) is isomorphic that in Figure 80.

Figure 91

Case 7.5. Figure 92 displays another possible level-2 configuration.
1
3<‘ ;I » 10
7
1

Figure 92

Only one new case results from this configuration. This graph occurs
when 6 is joined to 2 and 3, and 8 to 4 and 5. If 7 is joined to 4, then 3
must be able to reach both 10 and 11. To avoid previous graphs, join 3
to 10, and 7 to 2. There is only one set of joins that avoids two
triangles through a vertex, namely, (11,2), (9,5), and (10,5). Figures
93A and 93B present the graph; any other graph is isomorphic to
either Figure 83 or Figure 87.



Figure 93A Figure 93B

Case 7.6. Figure 94 displays the penultimate level-2 configuration.
o

Figure 94

Both 6 and 8 must be joined to both 7 and 11 without forming any
more triangles; the pigeon-hole principle shows this to be impossible.

Case 7.7. The last (7,10,1) case is illustrated in Figure 95.

First,we join 6 to 2 and 3. If 8 is joined to 2 and 4, the distance
property for 8 requires (9,5). In order for 9 to reach 3 in two steps,
take(7,3). Joining 7 to 5 produces two triangles through a vertex; so
we take (7,2). But then we have (10,5) and (11,5), and this gives two
triangles through 5.

If 8 is joined to 2 and 5, take (9,4) so that 8 may reach 4 in two steps.
Since 7 and 10 may not be joined to 4, take (11,4). If 3 is joined to 7,
then 7 can not reach 2 and 5 in two steps; if 3 is joined to 11, we need
(7,2), (7,5), and (10,5). This gives two triangles through 3 and 4.



6 7
5
2 3
1
Figure 95

If 8 is joined to 4 and 5, then 3 can not be joined to 11 (this forces (4,9)
and thus two triangles through 4). If 3 is joined to 9, the distance
criterion for 4 requires (4,11). Then (7,2) and (7,5) are forced. The
joins (11,2) and (5,10) give a graph (Figure 96) isomorphic to that in
Figure 87; the joins (5,11) and (10,2) give a graph (Figure 97)
isomorphic to that in Figure 83.

Figure 97

If 3 is joined to 7, then 11 may be joined to 2. If 7 is joined to 2, we
need (9,5). To avoid two triangles at a vertex, we require (10,4) and
then (11,5). The graph (Figure 98) is isomorphic to that in Figure 83.

If we take (7,5), we need (10,5) and (11,4) to avoid two triangles at a

vertex. Take (9,2), and the graph (Figure 99) is isomorphic to that in
Figure 93 .
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Figure 99

We now summarize the results of Section 4 in

Theorem 3. If (a,b,c) = (7,10,1), there are four tetravalent GM
graphs that are not subsumed in the earlier (9,6,3) and (8,8,2) cases.
No vertex has more than one triangle through it.

5. The (6,12,0) Case.

In the (6,12,0) case, there are only five subcases.

Case 5.1. The first subcase is shown in Figure 100; since there can
be no triangles in the figure, only one interconnection is possible.

e 1o 44

Figure 100
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Vertex 6 must be joined to all the level-1 vertices. To avoid triangles,
10 and 11 must be joined to the same level-1 vertex, say 5. We may
arbitrarily join 7 to 2 and 3; then 8 must be joined to 2 and 4,and 9 to 3
and 4. The graph is shown in Figures 101A and 101B.

i
% 2
6
3
4 7
8
Figure 101A Figure 101B
Case 5.2. Figure 102 shows the second level-2 configuration.
10 UM
8
6 ¥
WS
i
Figure 102

Vertices 6 and 7 can not be joined to the same three vertices (if they do,
8 and 9 are joined to the same vertex and a triangle is formed). Hence,
join 6 to 2, 3, 4, and join 7 to 3, 4, 5. The distance criterion requires
(8,5) and (9,2). Vertices 6 and 11 must be joined to the same level-1
vertex. Since they may not be joined to 2 (a triangle is formed), and
since 3 and 4 are symmetric, take (11,3); similarly, take (10,4). To
avoid triangles, join 10 to 2; then we need (11,5) and obtain the graph
shown in Figures 103A and 103B.
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8 9
Figure 103A Figure 103B

Case 5.3. Figure 104 shows the third possible level-2 configuration.
io U

BAN V-
¥ 1
Figure 104

Take (6,2), (6,3), and (6,4),with no loss of generality; this forces
(7,5). Now 8 and 9 may not be joined to 5; so 10 and 11 must be (this
forms a triangle).

Case 5.4. The fourth level-2 interconnection is shown in Figure 105.
With no loss of generality, join 6 to 2, 3, 4; this forces (7,5). We are
unable to join 7 to another level-1 vertex without forming a triangle.

u

9 10
8
K4

23 -4 25

i
Figure 105
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Case 7.5. The fifth and last (6,12,0) case is shown in Figure 106.

10 4

Figure 106

With no loss of generality, join 6 to 2 and 3. To avoid triangles, 7 and
8 must be joined to 4 and 5; then 9 and 10 are joined to 2 and 3, and11
is joined to 4 and 5. The graph (Figure 107) is isomorphic to that in
Figure 101.

Figure 107

We summarize the discussion of this section in

Theorem 4. If (a,b,c) = (6,12,0), and there are no triangles in the
graph (that is, the graph is not subsumed in an earlier case), then there.
are two tetravalent GM graphs. o
We now combine the results of Theorems 1,2,3,4.

Theorem 5. There are 47 non-isomorphic tetravalent GM graphs.
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