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1. Introduction

Unlike classical algebraic coding theory which is concerned with the possi-
bility of error in the transmission of single digits, synchronizable coding is con-
cerned with "misframingerrors in the transmission of block codes. It is the pur-
pose of synchronziable coding to construct codes which permit the correction of
this kind of error.

In this survey we will consider only synchronizable codes with length n.
The study of synchronizable codes with codewords of varying wordlengths is of
separate interest in problems involving data compression, for example, but
requires methods different from those discussed here.

To construct codes with synchronization properties, we must find a set of
codewords which may initially allow "misframings” to occur but must detect the
"misframing” in bounded time. The set of all English words with just three
letters does not have this property, for example. Consider the message stream
formed by repeating the codeword "EAT". If decoding were to begin with, say,
the second letter transmitted, framings of length three would yield the incorrect
message "ATE".

2. Synchronization

We will consider only those synchronizable codes which have the property
that, for some positive integer d, knowledge of d consecutive digits of any
encoded message is sufficient to establish the separation of codewords. These
have also been called codes with bounded synchronization delay [17). The
integer d is called the synchronization delay of the code. It is difficult, in gen-
eral, to determine the synchronization delay of a synchronizable code.

Let 3 be a finite alphabet with ¢ elements and };" denote the words or
strings of length n with letters taken from };. Given a word w=a,::"a, ¢ 3"
we obtain n—1 other words

@ " 8,a,,a3° " 8,043, """, 8a@) """ Gpy (2.1)
by cyclic permutations of the entries of w. If w coincides with one of the words
(2.1), say,

w=a, ""@,218;" "8 1<p<n

then w is said to be periodic. There are several interesting studies of periods in
words [19,21], but our interest here is in aperiodic words. If w is not periodic
then w is said to be aperiodic and the words (2.1) are distinct and form a com-
plete orbit of the action of the cyclic group C,<(12..n)> acting on the set 33".

Proposition 2.1. No synchronizable code contains a cyclic permutation of one
of its words.
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Proof. If a,: -4, is a code word then the message sequence
BT FS IR M JI RN S RN W PRI TIRY. R SRR

could be decoded incorrectly if a;a;,, - - - a;_, is also a code word. That is, there
exists an infinite ambiguous message generated by any code which contains a
word together with any of its cyclic permutations.

Proposition 2.2. No synchronizable code contains a periodic word.
Proof. Any periodic word is a cyclic permutation of itself.

Theorem 2.3. The number of w(n,s) of complete orbits under the action of C,
on 3" is

w(n,o) = %Ry(n/d)a‘. (2.2)

Proof. Consider the set of all o” words of length n over the alphabet 3. Each

word has some period. (An aperiodic word has period n.) If P,(o) is the number
of words with period d then

0" = 3 Pyo).

dln

Therefore,
P,(o) = leﬂ(n/d)v",
din

where u is the MGbius function of elementary number theory. Since each com-
plete orbit of C, acting on 3" has n words we conclude (2.2).

Example 2.4.
C, acts on {0,1}*

0000

0001 0010 0100 1000
0011 0110 1100 1001
0101 1010

0111 1110 1101 1011
1111

Each row of the above is an orbit of this action. We see that the orbit of
0101 consists of only two words, each an overlap of the other. Thus, neither of
the words in this orbit can occur in a synchronizable code. The code of non-
constant weakly increasing sequences of O's and 1's of length obtained by choos-
ing the first word in each of the aperiodic orbits in Example 24 is a
synchronizable code. Indeed, an immediate corollary of Theorem 2.3 is:

Corollary 2.5. The maximum number of words in any synchronizable code in

3o* is w(n,0).

Proof. Since we can choose at most one word for a synchronizable code from
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each complete orbit of the action of ¢, on Y, we conclude the maximum
number of of codewords in a synchronizable code is at most w(n o).

Consider the code obtained by choosing from each complete orbit of the
action of C, on Y} that word which is least in the lexicographical ordering of
3" induced by a fixed ordering of 3. It was first proved by Golomb and Gor-
don [17] that this code is synchronizable.

It has been shown that the synchronization delay d of a synchronizable
code with w(n,0) words is bounded above by 2(n-1) when n is odd and (n2)e"2
when n is even [17].

With the notable exception of the code mentioned in the proof of Corollary
2.5, relatively few constructive techniques are known for maximal synchronizable
codes. We turn now to comma free codes, the class of synchronizable codes
which has been most widely studied and for which the synchronization delay
and some constructive techniques are known.

3. Comma-Free Codes

One solution to the synchronization problem is to construct codes which do
not contain "overlaps” of two codewords. Thus, no "misframing"” will be a code-
word and no confusion can result in a noiseless channel. Such a code is called
comma-free.

Definition 3.1. Let }; be a finite set of o elements called the alphabet. 3° is
the set of all words of length n with symbols from 33. A subset Cc ¥ " is a
comma-free code with block length n if

6, -y, b b, (C
always implies that
PR W I PRERY- W N PACEEY W NERRY W - 4 o) (3.1)

The words (3.1) are called overlaps. An alternate definition which is appli-
cable to variable word length codes as well is given by:

Definition 3.1'. If « and v are any words then a word w = up, is an overlap of
u and v provided there exist non-empty words u;,v;;i = 1,2 such that u = u,u, and
v = v, A code C is comma-free if for any two words u = u,u, and v = v,v, with
v;,v;f = 1,2 nonempty it follows that uv is not in C.

In any comma-free code with block length u the synchronization d delay
will be at most 2n-1. That is, after at most d symbols have been received from
any message stream, synchronization can be established. This is almost obvious
since a complete word of the code must have been received after 2n-1 symbols of
any message stream has been received.

Let CF(n,0) denote the set of comma-free codes over an alphabet of ¢ sym-
bols with block length n. A code in this set is said to be a CF(n,0) code. The
maximum number of words in any CF(n,s) code will be denoted by c¢f(n,0). In
this more restricted class of codes we shall see that Corollary 2.5 no longer holds
but (2.2) is still an upper bound.
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Lemma 3.2.
cf(n,o) < wlnpo). (3.2)
Proof. See Proposition 2.1 and Theorem 2.5.

In 1958 Golomb, Gordon, and Welch [15] conjectured that equality holds in
Lemma 3.2 whenever n is odd. In 1965, W. Eastman resolved this issue by giv-
ing an construction which produced a comma-free code with w(n,c) words for
every odd word length n. We will not discuss Eastman’s somewhat awkward
construction, but rather an easily implemented algorithm which was published
by R.A. Scholtz [28] a year after Eastman’s paper appeared.

Scholtz’s algorithm is recursive. Define a sequence of sets X; as follows:
X=X (3.3)
Xin= '-’i.(xf"ri)
where the words =z, are chosen from X; with the additional requirement that
they have non-decreasing odd word length. (Here the notation z; denotes the
set {0,z,77,zzz,..}. The empty word is 0. The ‘multiplication’ indicated in (3.3) is
concatenation. This means that the preceding set with z; deleted is contained

in X;,,. Except for X, the sets X; are infinite. To obtain finite codes let
S = UX;. Then, for odd n, it can be shown that

C=5nY"

is a comma-free code with w(n,c) words [28]. An example of Scholtz’s algorithm
is given in Example 3.3 with initial alphabet size 3 and the sets X; being trun-
cated at length 4. The column of words of length 3 is a maximal comma-free
code with w(n,) = 8 words.

Example 3.3

len d 1 2 3 4
length 1 2 3 L3
[*]
Y. 1
° 2
:ooo
1 o1 001 0001
le 2 02 €02 0002
xl-l
2 12 112 112
¥yt 101 1101
102 1102
1001
1002
e
201 2201
202 2202
212 2212
YJ H . 2001
2002
2112
2101
2102

Here Y, = X, and Y; = X;=X;,, for i >0. If the algorithm is continued then
the next choice, z, must be one of the length 3 words.

70



4. Comma-Free Codes with Even Word Length

In section 3 we saw that for comma-free codes with odd word length there
are constructive techniques which produce maximal CF(n,) codes with w(n,c)
words. While w(n,) remains an upper bound for the number of words in a
comma-free code with even word length, we shall see in Theorem 4.2 that, for a
sufficiently large alphabet, no maximal comma-free code with even word length
has w(n,s) words. There are no general techniques for the construction of maxi-
mal comma-free codes with even word length except for n = 2.

Golomb, Gordon, and Welch [15] first proved that cf(2,0) = [%2 . With A.
Ball we found all inequivalent maximal CF(2,¢) comma-free codes. We call two
codes equivalent equivalent if one can be obtained from the other by a permuta-
tion of the alphabet }; and/or a simultaneous reversal of all code words. The
inequivalent CF(2,0) codes are easily described graphically as subgraphs of K,,
the complete directed graph on ¢ vertices. Here, the vertex set of K, is taken to
be 33 ={0,1,....0-1}. The pairs zy with z,y ¢ 3] will be taken as the edges of the
graph K,. Thus, CF(2,¢) codes correspond to sets of edges in KX,

The defining condition of a comma-free code is that no overlaps of code-
words may appear in the code. This condition has an easy interpretation in X,
A collection of edges in K, represents a CF(2,6) code if and only if it does not
contain 3 edges which form a directed path of length 3. (The middle edge would
represent an overlap of the first and third codewords.) Of course, a comma-free
code corresponds to an asymmetric digraph; i.e., ab and ba cannot both be edges.

Define the subgraph G,(¢) of K, by the edges

zy = 01,02,0r12 (mod3)

where, by an abuse of notation, zy = ab if z =a and y = b (mod3). It is not diffi-
cult to see that {01,02,12} is a maximal CF(2,3) code. Similarly, define a subgraph
Gys) of K, by edges

zy = 10,02,0r12 (mod3)
and a subgraph Gy(o) by edges
zy = 01,02,0r21 (mod3).

Theorem 4.1. An asymmetric digraph without loops or multiple edges which
contains the maximal number of edges with respect to the property of contain-
ing no directed path of length 3 is isomorphic to

G,(0),if 0 = 0 (mod3)
Gy(2), GAo)or G\(¢),if 0 =1 (mod3)
G,(0), Gs(o) or Gy(o), if 0 = 2 (mod3).

Here, G (o) is the reversal of G,(o).

A proof of this theorem may be found in [4]. Representatives of these
codes for o = 34,5 and 6 are given in Figure 4.1. Figure 4.2 illustrates embed-
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dings between these digraphs and hence embeddings of the corresponding maxi-
mal CF(2,0) codes into maximal CF(2,7) codes with alphabet size r > 0.

There are always ¢+1 distinct embeddings corresponding to each of the
lines. It is known that the digraphs G,(3¢),G43¢+1), and Gs(3g+2) are isomorphic
to their reversals.

We turn now to CF(2k,) codes with k >1 where known results are much
less comprehensive.

In example 3.3 the 15 words of length 4 form a comma-free code but the
value of w(4,3) is 18. Indeed, an early result due to Jewett [20] states that
Theorem 4.2. If n = 2m then c/(n,¢) < w(n,c) whenever

o> 2"4m, (4.1)

A backtracking program reported in [26] has shown that a maximum CF(4,4)
with 57 < w(4,4) words exists.

It has been known for some time that for words of length 2
ef(20) = [nT"’]

where [z] denotes the integral part of z [14]. All comma-free codes with words
of length 2 were first constructively classified in [3].

“ 3
2
4
L)
S
€ (8l
4 L) 4
4 2 9 4 J - ‘( 3 4
° L o ‘ 1
GI(S) 63(5) Gl(S)'
3 3 3
1 2 1 2 1 H
[-] ° o
Gl(ll) Gz(k) Gl(li)'
1 2
o
. Gl;(a)
Figure 4.1
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61(3q¢a) /53(302)\\ / q:
\ K

Gl(3q01) 62(3101) Gl(Bq‘!)‘

1( q)
FIGURE 4.2

There are always ¢+1 distinct embeddings corresponding to each of the
lines. It is known that the digraphs G,(3¢),G«3¢+1), and G(3¢+2) are isomorphic
to their reversals.

If we consider only the binary alphabet maximal then CF(n,2) codes have
been constructed for n = 248810 [15,26]. Niho [26] constructed a2 maximal
CF(10,2) with 99 words by a program which involved extensive backtracking. It
happens that w(10,2) = 99. Similarly, the bound (2.2) is met by the constructions
for n = 2,4,6,8. This naturally suggests

Conjecture 4.2. (Niho) cf(2n,2) = w(én 2).

~ Important recent work on the construction of comma-free codes with even
word length is due to Golomb, Graham and Tang [18]. They improved (4.1) to

e—m > mlsmAT,
If we measure the density of codewords in comma-free codes by the limit

a, = lim £L(20)

n—oo o"
then, since the right-hand side of (2.2) is asymptotic to o"/n , we have that
a, <1/n whenever n is odd. On the other hand, Golomb, Gordon, and Welch
proved that a, > 1/ [15]. For n even they proved:
Theorem 4.3. If n = 2m and 2 <m then
1/ne < a, < 1/n,
where ¢ = 2.71828 ... is the base of natural logarithms.

5. Cosets of Linear Codes

In a linear code the codewords form a subspace of the finite vector space of
n-tuples over GF(q) for some prime power ¢ = p™. Codes with extremely good
error-correcting properties, such as the BCH codes, are linear codes. Clearly no
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synchronizable code can be linear since the n-tuple 0...0 is periodic. This obvi-
ous fact does not end the matter, however. Synchronizable codes can be found
as cosets (i.e., translates by a single vector) of linear codes. This is particularly
convenient because the error-correcting properties of a linear code are inherited
by each of its cosets. Finding synchronizable codes as cosets of linear codes pro-
vides codes with both error-correcting and synchronization properties. This was
realized quite early and word synchronization was established in the 1069
Mariner IV Mars mission with a coset of the (32,6) biorthogonal Reed-Muller
code [36).

J.J. Stiffler [20] first studied the error-correcting properties of comma-free
codes. He proved that only the trivial (3,1) Hamming code can have a comma-
free coset. Figure 5.1 shows why the coset of the Hamming (7,4) code resulting
from translation by the vector 0000001 is not comma-free. The indicated
matrices, Hy; and G,, are the parity-check matrix and the generator matrix
respectively of the (7,4) code. Hamming further showed that for linear codes
which are cyclic of dimension k, there is a comma-free coset if and only if
k < (n-1)/2 [29). The question arises whether the comma-free codes obtained in
this way are maximal. The answer to this question is essentially negative:

HAMMING (7,4) CODE

[T 1011 007

et 011010
o1 1100 I

—- ode has 2 = 16 wre

[T 101000 1101001

‘,.IOIOlOOIOIOlOl
o1too0to o110011
L t1o000tf 1110000
0111100 01111091
1011010 1011011
0011001 00131000
1100110 t1o0011t1
0100101 0100100
1000011 1000016
0001110 0001111
0101011l 0101010
1001101 19011060
6010111 0010110
Pt 111 111t
0 000000C 0000001

overiao imcoset: 100001010101 01
Ql1ototo
et

FIGURE 5.1
Theorem 5.1. Any comma-free code C with word length n over 3 which has
wingo) = —1-2 uin /d)o®

ﬂ‘h
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words is a coset of a linear code iff
(n,e)=(22) and C = {01} or C = {10}
or
(n,e)=(3,2) aud 2 isoneof
{001,011},{010,011},{100,101}
{001,101},{010,110},{100,110}
{001,110},{100,011}.

The proof of Theorem 5.1 [8] follows easily from a number theoretic result
of independent interest proved by V. Kumar and Ram Murty:

Lemma 5§.2. For positive integers o,n
w(n,o) = Lzy(n/d)a‘ e
"dh

if and only if
(n,0) = (2,3),(3.2),0r(2,2).

In practice, large comma-free codes are found as cosets of powerful error-
correcting codes, as indicated by Stiffler’s result, and are useful in applications
in spite of Theorem 5.1.

8. Isomorphism Classes of Comma-Free Codes.

The isomorphism classes of CF(2,6) codes are determined by representing
the codes as sets of directed edges in the digraph K, and applying Theorem 4.1.
Curiously, the isomorphism classes of CF(3,/) codes were studied first because
they figured in early theories of the genetic code. The first work concerning
comma-free codes was published in 1957 [6] by a group at the Cavendish labora-
tory in England. At that time it was thought genetic coding should involve
some synchronization device. It was known experimentally that there were 4
bases or nucleotides appearing in the DNA molecule namely, adenine, thymine,
guanine, and cytosine. The Cavendish group, which included F.H.C. Crick, pro-
posed the comma-free hypothesis in opposition to the “overlapping” codes notion
which had been suggested in Nature by George Gamow [14]. They speculated
that amino acids were coded by triplets of the bases. Having defined comma-
free codes, they determined by elementary arguments that a maximal such code
with words of length 3 using 4 symbols must have exactly 20 words, which was
precisely the number of amino acids. They also constructed a family of maximal
CF(3,0) codes for each ¢ as follows:

0 0
o .
0 0 . .
o 1 1 1 2 1 eee o 0=1 . (601)
2 . .
0-2 0-~1

where say, the configuration
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0
1 2

= O

represents the six codewords
020 021 022 120 121 122,

We now know that the genetic code is "degenerate". It uses all 64 of the
triplets on 4 symbols and different triplets yield the same amino acid with one
triplet, called the terminator, acting as a comma. This does not end the matter,
however, since some biologists argue that at one time in its evolutionary history
the genetic code was comma-free. Clearly there are

Ti+1) = 222 - wizo)

=] 3
codewords in (6.1) and so it represents a maximal CF(3,0) code provided it can be
shown to have the comma-free property. This follows easily because of the
structure of suffixes and prefixes of (6.1).

All isomorphism classes of maximal CF(3,4) codes with 20 words were deter-
mined by Golomb, Welch, Gordon, and Delbruck [16]). In Figure 6.1, a represen-
tative for each of the 5 isomorphism classes of maximal CF(3,4) codes is given
with the number of distinct codes of each class noted at the bottom.

408 CF(3,4) copes

1 11 111 v v
0 0 0 ) 0 0 0
1,9 1,9 1, 3 1 31 1 3 1
2312 232 2 3 3 2 3 2
3_2 3 3
) 0 0 0 o o 0 0
129 129 2, 1 2 1 1 2 1
2 1 2 2 3 2 3
0 0 0 0 110
%10 110 219 910 11
192 (28] | (48] [24]

Figure 8.1

The isomorphism clases of CF(3,3) codes in Figure 6.2 were determined by A. Ball
(2]

In his thesis at the University of Waterloo (2] A. Ball proved that every
maximal CF(3,0) code is either an extension of a maximal CF(3,0—1) or a maximal
CF(3,0-2) code. (See also [1].) If T is the number of isomorphism classes of maxi-
mal CF(3,6) codes then Ball's proof shows that

T, = T,_l + T,_g (6.2)
with initial values (from Figures 6.1 & 6.2) Ty = 3 and T, = 5.

Since the recurrence relation (6.2) yields a Fibonacci sequence it follows
that:
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42 ¢r(3,3) CODES

1 I1 111
0 0 0 0 1]
1oz 1 2 2 2
2 2 1
0 0
- 1
0 1 1 0 2 2
1 o
1 0 o0 1
[24] 1zl _[el

Figure 8.2

Theorem 6.1 (Ball). The number of isomorphism classes of maximum CF(3,0)

codes is:
-1 241 o+l —l—\/g o+l
.- 1_\}_[ [224)] s

7. Synchronizable Codes in the DeBruijn Graph

The de Bruijn graph, G, ,, is the directed graph whose vertices are the o"
words of length n>1 over the alphabet ¥ = {0,....,0—1). There is a directed edge
froma@=a,---a, tob=5,---b, in G,,, precisely when ay---a, =, - - b,_,. The
edge may be labelled by a,---a,b,. The de Bruijn graph is thus regular with
indegree and outdegree equal to ¢ at every vertex. It contains o"*' directed
edges among which are o loops at each vertex a® =a---a,a ¢ Y. Figure 7.1
shows Gy, Gy,3°

—1+V5
2




It was established in [25] that the only planar de Bruijn graphs are:
Gt G12G 5G4 Gap Goy Gy

For arbitrary o, T. van Aardenne-Ehrenfest and de Bruijn [10] proved that
if n >1 then G,_,, contains (¢)" o= Euler circuits. Each Euler circuit in Gaoio
determines a circular word of length ¢* over Y with the property that all the 0"
words of length n appear as subwords precisely once. In G,, there is only one
Euler circuit which determines the circular word 00110. In G,, there are two
Euler circuits corresponding to the circular words 0001011100 and 0001110100.
Over the binary alphabet there are 222 Euler circuits in Gp-12 8nd these
determine all circular words with the aforementioned property. Although the
binary result is usually attributed to de Bruijn, according to de Bruijn's pam-
phlet [12], R.P. Stanley discovered that the problem of constructing such circu-
lar words had been proposed in 1894 by A. de Riviere and in the same year a
solution was given by C. Flye Sainte-Marie in the French problem journal
"I'Intermédiaire des Mathématiciens”.

The existence of circular words over ), in which all ¢* words of length n
appear was first shown by M.H. Martin [24]. Lempel [22,23] has extended this
work.

Any code over 3, with block length n may be represented as a set of ver-
tices in G,, or, equivalently, as a set of edges in G,_,,, whenever 1 <n. For
example, with the binary alphabet, the synchronizable code mentioned after
Corollary 2.5 has, for each n, a striking representation as a collection of edges in
Gu-1.0» 88 we will see in Theorem 7.2 below.

Definition 7.1. The canonical synchronizable code, A(n,¢) is the set of words of
length n which are lexicographically least in the orbits containing aperiodic
words in 3.

Golomb and Gordon {17] have shown that, for every n and ¢, A(n¢) is a
synchronizable code with bounded synchronizable delay.

Theorem 7.2. If the binary canonical code, A(n,0), is considered as a collection
of edges in G, , then it is a union of disjoint paths.

The proof of Theorem 7.2. appears in [10]. Figure 7.2 shows A(7,2) as a sub-
graph of G,, with the vertex labels suppressed.

For alphabets with ¢ > 2 the subgraphs of G,.,, determined by the canoni-
cal code A(n,0) are not easily characterized. Figure 7.3 shows the subgraph of
G,3 determined by A(4,3).

We offer the following theorem as a first step toward understanding the
structure of these graphs.

78



0000001 0000011 0000111 O0C01lll 001111l 011111;

0000101 0001011 0010111 0101111

0001101 0011011 0110111

00010601 0010011

0010101 0101011

0011101

Gr—lp—y

FIGURE 7.2

Theorem 7.3. If n >1 and ¢ > 2 then the subgraph G,_,, determined by edge
labels in A(n,0) contains a unique path, P, of maximal length (¢o—1)}(n—1). For
each n > 1 the set of vertices G, , determining P,,, is P, N {a":a ¢ ).

Proof. F; is the path

-1 -1 -1 -1 -]
atlas a2 ... ,0,037 01057, a3 7a, . . . 6,027,

Since the words of P, with first letter a;,i =1,...,0~1 form a set of n—1 words,
P, has (o-1)(n-1) edges. The uniqueness of P, is established by induction on n.

FIGURE 7.3

We give the proof for n = 2 and suppress the induction step. Assume
bidobobs, . . . boibadociboibs Doy,
is a path of length o or greater in A(2,0). Since b;b; ¢ A(2,0) we have
b Kby - by < boyy
which is impossible since }; has only o elements.
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Any word of weight 2 in A(n,2) has the form 0°10'1 where p4+g = n-2 and
p>q20.

The number of such words is %] where [-]is the ceiling function. This pro-
vided a crude lower bound for the paths determined by A(n,2).

Problem 7.6. Determine the number of paths and the cardinality of the
weight classes in A(n,2).

The condition of comma-freedom naturally imposes a more restricted struc-
ture on the corresponding subgraphs of G,o. We restate here two important
theorems about maximal CF(n,) codes, both due to Golomb and Welch [15] as
results about edges in G,_,,.

Definition 7.3. By a bipartite subgraph of G,¢ we shall mean a collection of
edges in G, , not containing a directed path of length 2.

The example of a maximum CF(5,2) code considered as a set of edges given
in Figure 7.4 is a bipartite subgraph of G,,.

Theorem 7.4 (Golomb,Gordon) In G,, with 2<e, a collection of
¢/(3,0) = (¢°~0)3 edges is a maximum CF(3,) code if and only if it is a bipartite
subgraph of G,,.

Proof. If a = a,a,05 and b = 4,bb, are edges of the collection then neither of the
edges labelled asa;b, and asb,b, can appear in the collection. Since the number of
edges in the collection is the upper bound (3.2), the edges form a maximum
CF(3,0) code.

We show the converse by contradiction. Suppose vertices abe and bed are
codewords. The code would contain an overlap if it contained vertices with a
label ending in a or beginning with d. In particular, « and d must be distinct.
From word complete orbit

aaz aza zae z¥a (7.1)

only aaz can appear in the code. Similarly only ydd can appear in the code from
the complete orbit

ddy dyd ydd y # d. (7.2)
Since 2 <o choose z ¢ }; distinct from a and ¢ and consider the complete orbit
adz dza zad. (7.3)

If z=d in (7.1) and y = z in (7.2) then edge ad: is an overlap of aad and zdd.
Therefore adz is not a vertex of the code. Similarly, zad is an overlap of saz and
add. Finally, dza cannot be a codeword because its label ends in a. We conclude
that the complete orbit (7.3) contains no codeword. Therefore the code cannot
be a maximum CF(3,¢) code.

For ¢ = 2 Theorem 7.5 is not true. All nine choices of a pair of vertices,
one from each of complete orbits of 001 and 011, form CF(3,2) codes with the
exception of the pair {010,101}, Of the eight remaining pairs, only the pairs
{001,011} and {100,110} are not bipartite subgraphs of G,,. :
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1000

0100

FIGURE 7.4

The theorem is not true in Gy, either since the directed edges in the path
of Figure 7.4 are a2 maximum CF(4,2) code.

Figure 7.4

Theorem 7.6. (Golomb,Gordon) Let n > 5 be an odd integer. If a collection of
edges C in G,_,, is a comma-free code with w(n,0c) words then C is a bipartite
subgraph of G, _,,.
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Proof. Suppose two edges of C form a directed path of length 2. Then by
definition there are symbols a,b ¢ T such that the edges are aw and wb where w
has length n-1. Since C is a comma-free code no edge of C can terminate in a
nor begin with 4. Because C is comma-free with w(n,¢) words it must contain
precisely one edge from every complete orbit. In particular, only the edges with
the following labels can be chosen from the complete orbits which contain them:

aa....ab

Now consider the complete orbit containing abab..5. The only edges of this
orbit ending with b are abab..b and ab..bab. But C cannot contain abab..b since it
is an overlap of a..ab and ab..b. The edge ab..bab is excluded similarly. This
means that C can contain no edge from the complete orbit containing abab..b and
therefore does not have w(r,¢) words.

Corollary 7.7. If 5<n and 2 <o then no maximum CF(n,¢) code can contain
the directed path of n-1 edges between a..ab and ab..b where a b ¢ Y and a # 6.

We have been able to extend Theorem 7.6 to even word length [9]. But in
view of Jewett’s result in Theorem 4.2 our extension can only apply to finitely
many cases for each even n.

Theorem 7.8. If n >3 and o >2 then any collection of w(n,c) edges in Gpo0
which form a comma-free code is a bipartite subgraph.

Figure 7.5 gives an example of a bipartite subgraph of G, with w(5,2) edges
which does not determine a CF(n,0) code. Obviously, an additional condition is
needed to characterize all maximal CF(n¢) codes.

8. Summary

This brief survey is intended to convey a flavour of the subject and some of
the directions it has taken. Much work remains for the interested reader which
can only be hinted at here. For comma-free codes, finding maximal codes of
even word length remains the premier task. Ball [2] has given an algorithm for
constructing all isomorphism classes of odd word length maximal comma-free

codes, but the algorithm requires sorting partitions and is useful only for rela-
tively short word lengths.
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