ARC-MINIMAL DIGRAPHS OF SPECIFIED DIAMETER
R. Dawes and H. Meijer
Department of Computing and Information Science
Queen’s University

Kingston, Ontario

ABSTRACT: 1In this paper we consider the problem of
characterizing directed graphs of specified
diameter. We are especially interested in the
minimal number of arcs ald,n) required to construct
a directed graph on n vertices with diameter d.
Classes of graphs considered include general
digraphs, digraphs without cycles of length 2, and
digraphs with regular indegree or regular outdegree.
Upper bounds are developed in cases where the exact
solutions are not known.

1: Introduction
Let D be a directed graph. We define dCu,v), the distance
from vertex u to vertex v, to be the number of arcs in a
shortest uv—-path in D in which no arc is traversed against

its orientation. If no such path exists, d(u,v) = ®

The diameter of a directed graph d(D) is defined as follows:
d(D> = max{dCu,vd)

u, v

The use of directed graphs rather than undirected graphs to
model communications networks is suggested by a practical
consideration: the implementation details are simpler. The
network will require less physical space and less

message—management overhead.

The problem of orienting a given undirected graph in such a
way that the resulting digraph has the least possible
diameter seems to be very difficult. In fact, Chvatal and
Thomassen (1] show that the problem of determining if a given

graph has an orientation with diameter 2 is NP-hard.
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We address the related problem of determining the minimum
number of arcs required in a digraph on n vertices with
diameter d. More precisely, we define a(d,n) to be the least
integer such that there exists a directed graph with. diameter
d on n vertices with add,n) arcs. A restricted form of this
question was posed by Erdds, Rényi, and S6s [2]. We discuss

this variant in Section 6.

Let {0,1,...,n—-1) represent a set of n vertices. Let
Sx = {a,b,c,...) represent arcs from vertex x to each of a,
b, c, etc. Then finding a directed graph which realizes
add,n) is equivalent to the following:
Find S = {SO’SI""’Sn—i} such that both
ad for 0 £ i,jsn-1, 3 Ty,Pp,c ¢, T, k<d
where Ty € Si
T, € S
2 Ty

Ty = J

AND b) 3 |S;] is minimized.
i

Then add,nd = 3 |Si|, and a directed graph realizing this
i
value may be constructed in the obvious way.

In the following three sections, we present a number of
results and bounds related to add,nd. In the subsequent
sections, we present results concerning variants of this

problem.

2: The restricted case d = 2
Theorea 1: al2,n) = 2(n-1)>, n 2 4
Proof: Consider the following sets:

Sp = €1,2,... ,n-1>

Si =40}, 1 s i =< n1
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Clearly these satisfy requirement a) above. It remains to
show that 3 |S;| is minimal.

t

Suppose al2,n) < 2C(n-1). Let D be a directed graph of
diameter 2 with n vertices and ad2,n) arcs. A trivial
counting argument shows that at least one vertex of D must
have outdegree 1. (In fact, at least three vertices must
have outdegree 1, but we require only one for this proof.)
Let x be such a vertex, and let ((xy> be the only arc
originating at x. Consider the breadth-first spanning tree
of D rooted at x. Because the graph has diameter 2, this
tree must have the form illustrated in Figure 1. This
partial subgraph contains n-1 arcs. Each of the n-2 leaves
at the bottom in Figure 1 must have outdegree at least 1.

This brings the number of arcs to at least 2(n-1>-1. If any

arc originating at a leaf z of the rooted tree has x as its
X

n-2 vertices

Figure 1

other end-point, then z must also be the origin of another
arc (else there cannot exist paths of length < 2 from 2z to
all other leaves of the treed. Thus no arc from the vertices
at the bottom enters x (else the number of arcs is at least
2Cn-1)). But x must have indegree 2 1. Thus there must be
an arc from y to x, which again brings the number of arcs to
at. least 2(n-1).
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3: The restricted case d n 3
Theorea 2: a(3,n) = 2(n-2) + 1, n 2 B.
Proof: Consider the sets So = {1,2,...,n-2>
Si {n-1), 1 s i < n-2

Sp_q = €0

Again it is clear that these sets satisfy the first
requirement.,, and we need only show the minimality. The
argument, is similar to the previous theorem. If ad3,nd) =<
2(n-2), then there exists at least one vertex of outdegree 1.
Let x be such a vertex, and let (xy) € A(D), the set of arcs
of the digraph D. Let the outdegree of y be k. Thus if we
construct. a breadth-first spanning tree rooted at x, it will

resemble the graph in Figure 2. If n—<k+2) < 1 the proof is

Level 2 : k vertices

. Level 3 :
n-(k+2) vertices

Figure 2

trivial. VWe therefore assume that n-Ck+2) > 1. The number
of arcs from vertices of level 2 to vertices of level 3 must
be at least n—(k+2>. Let it be n(k+2> +a, a 2 O. Each
vertex on level 3 must have outdegree 2 1. Let b be the

number of arcs from vertices on level 3 to x (b 2 0. Using
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these arcs, at most a + b vertices on level 2 are connected
by paths of length 3 to vertex v. Thus k—Ca+b) vertices on
level 2 each require at least one more arc to be
appropriately connected to vertex . Finally, we observe
that each of the b vertices in level 3 that has an arc to
vertex x must also be the origin of at least one other arc,
to allow paths of length < 3 to the other vertices in level
3. Summing, we find the number of arcs to be at least

1 + k + (n—(k+2>+ad + (n<k+2)) + (k—Ca+bd) + b = 2n -3 ,

which yields a contradiction.

4: The general case: d > 3
Here we have no formula for add,n), but give an upper Abound

linear in n.

Theorem 3: add,nd < n -1 + (n - 1) + OC1L) , dz4d

d

Zz
Proof: If d is even and (n-1) is a multiple of % , we
construct the digraph illustrated in Figure 3, formed by

n - 1

identifying one vertex of each of directed cycles,

)
each of length <1 + ;o. Clearly this digraph has diameter d

and uses no more than the specified number of arcs. For odd

values of d, and other values of n, the construction proceeds

in a similar manner.
Ve conjecture that this is best possible.

8: Regularity of outdegree
A feature of the digraphs constructed above is the presence
of one vertex at which the outdegree is a function of d and
n, while the outdegree of all other vertices is 1. . In short,
one vertex forms a bottleneck, which renders these graphs

undesirable as prototype network designs. We therefore now
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cycle of
length 1+ d/2 .ooooo.

.o cycle of

length 1 + 4/2

L4

( ]

L)

.0. .
cycle of
- length 1 + d4/2

Figure 3

address the problem of determining a’Cd,n), the least number
@f arcs required to construct a digraph with diameter d on n

vertices, such that all vertices have the same outdegree.

da + 1
Theorem 4: a’dd,nd 2 n

i
2 d
Proof: Let D be an outdegree regular digraph of diameter d
on n vertices with a’d{d,n) arcs. Let the outdegree of each
vertex be k. Let v be any vertex of D, and consider the
breadth—-first spanning tree Tv rooted at w. Since D has
diameter d, we know that the depth of Tv is at most d, and
that at depth i from v, T, has at most ki vertices. Since
the number of vertices in Tv is n, we observe that
1 +k+Kk2+Kk3+...+k%2n

> 20k9 2 n

1
> k2 (2)¥
d + 3
Thus a’dd,n) = n*k 2 n d .
-
29



d + 1
Theorem 8: a’dd,n) < d#Cn d -nd) +n

Proof: Ve give a constructive proof for values of n that are
d-powers (i.e squares for d = 2, cubes for d = 3, etc.).
The modification of the construction for other values of n is
straight—forward, and is treated briefly at the end of the
proof. Consider first the case d = 2. Assumg as before that

the vertices are {0,1,...,n-1). Let S be the set
i i L i i i
€1,2,...,n%-1,n%,2#n%,3%n?, ..., (n?-1>#n?>.

For each vertex i, let S; =4k | k=di + PDPmodn, j € S

-

The corresponding digraph is partially illustrated in Figure
4. Ve see immediately that this digraph has diameter = 2,

and by the definitions of S and Si, we see that the outdegree

"

of each vertex is 2~(n5 - 1>. Thus the number of arcs is
1._

2#n*xCnZ - 1). ]

For arbitrary d > 3, the construction is similar. We let

Figure 4
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1
S be the set €1,2,3,...,n9-1,

1 1 1 1
nz,Z&n:,...,(na-a)un?,

2 2 1 2
n?,znnz,...,(na-d)anal

cd-1)3 (d-1) 1 cd-1)
n 9 ,2%n d ,...,(nz—i)-n d >

Again, letting Si =<k | k = (i+jd mod n, j € S>

for 0 £ i £ n-1 constructs a digraph with diameter d, and as

1

d

each vertex has outdegree d»(n“-1), the number of arcs is

d + 1

1
d~n~(n3—1> = d=(n T _ nd

It can easily be shown by a similar construction that for
1
other values of n, a’dd,n) < dt(nmlpai - n) + n, from which

the theorem follows.

. 6: Regarding cycles of length 2

One of the significant reasons for using digraphs rather than
undirected graphs as network models is that two—-way
communications between nodes may be prohibitively expensive
or impractical. Thus it is appropriate to consider digraphs
without cycles of length 2. The constructions given in the

last section do not. satisfy this requirement. For example,
d-1 d-1
the arcs (0,(n-n d 2> and ((n-n d )>,0> are both found in all

the digraphs constructed in Theorem §.

Another variant of the problem is to relax the regularity
constraint, while prohibiting cycles of length 2. Letting
a”{n) be the least number of arcs required to cqnstruct a
digraph on n vertices with diameter = 2 and no cycles of
length 2, Katona and Szemerédi [3] provide a lower bound on

a"(n).
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Theorem 6 [31: a"Cn) 2 ; »log

T

Clog base 2).

The proof of this theorem is analytic and yields no immediate
evidence that a"C(n) = 0CZ+log .

We define a’”’¢d,n) to be the least number of arcs required
to construct an outdegree-regular digraph of diameter d on n

vertices, with no cycles of length 2.

It is clear that Theorem 4 gives a valid lower bound on

a’’’dd,nd). Ve restate this result only for completeness.

d + 1
Theorea 7: a’’’dd,nd 2 n d
= 1
2 d
We now show that the upper bound derived in a previous
section is also valid for a’’’(d,n) for some values of d and
n. Ve will modify the construction given in the proof of

Theorem 8, and thereby eliminate the cycles of length 2.

Theorem 8: For n a perfect d—power,
d + 1

a’’’¢d,n> < d#Cn 9 - nd

Proof: We examine the case d = 2 in detail, and give only an
outline for other values of d. ‘
As before, we will construct a set S, and connect each vertex
i to 511 vertices k such that k = Ci+jdmod n for some j e S.
A cycle of length 2 will result from this construction if and
only if there exist p,q¢ € S such that 0 = Cp + gdmod n. Thus
we require that

O=C(p+g@gdmod n=>p &Sor geasSs I
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Ve modify the set S used in Theorem 8, so as to avoid this
condition, while still ensuring that the constructed digraph

has diameter 2. This is equivalent to requiring that
k
it jt=C3ydmodn, ks2, vy €85r=4{1,2,...,n1) <Im
i=1
That conditions C(I) and (II> are sufficient can be seen as
follows: due to the symmetry of the digraph, we need only
show that d(O,v) < 2 for all other vertices v, and that
d<0,0> 2 3. Thus for each v € {(1,2,...,n-1) there must be
either an arc (0,v) or a pair of arcs ((0,x),(x,v)) for some
x e {1,2,...,n-1). Thus either v € S, or x € § and (v-xdmod
n € S, which is equivalent to (II) above. Clearly, d(0,0> 2

3 is ensured by condition CI).
1
Let S = €1,2,...,n%-2,

L L L s

n%-1,2#n%-1,...,C(n%2-1den%-1,
1 L

(nZ-1>#n%>

and define Si as before. It can easily be verified that the
set S satisfies (I) and (II), so the constructed digraph will
have diameter 2. It is also trivial to show that there do

not exist p,¢ € € such that (p + gdmod n = O.

For d 2 3, condition (II) generalizes to
k
Lt | t=0C3 y,dmod n, k sd, y, €S> 2€1,2,...,n-1) (IID
i=1
Ve define S as shown below, and use § to construct the
digraph as before. Again, little effort is required to show

that S satisfies conditions (I)> and C(IIDD.
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1
S =41,2,...,n%-2,
8 1 3
na—i,ztna;a,...,(nali)-n -1,
2 1
nd-1,2en74,...,nT-1>en%1,

afe

(YY)
4N

d-2 d-1 1 d-1
n S -1,2en % -1,...,Cn%-1>en 9 -,
41 d-1
¢n9-15en 9 3.

T7: Remarks
Theorem 1 may be viewed as a special case of Theorem 3, in
which equality is achieved. It appears that Theorem 2 wmay

represent an exceptional case.

Inspection of a’’’(d,n) for small values of d and n suggests
that the lower bound of Theorem 7 is tighter than the upper

bound of Theorem 8.

To construct a regular digraph with diameter d it suffices to
find any set S that satisfies properties (I) and (III) as
developed in the proof of Theorem 8. For values of n that
are not perfect powers of d, we can construct such a set S
with the following algorithm:

Not _Used « (1,2,...,n-1>

if n is even, then Not_Used « Not_Used - ¢ 2>

Reached ¢« @

S «~9

repeat ,
randomly choose i e Not_Used (€ )
Not_Used ¢« Not_Used - {i,n-i)
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S « S u {i>
Reached ¢ Reached u
4 | t=C3ydmodn, ksd, y €S
i=1
until (1,2,...,n-1> < Reached.
It can be shown that the algorithm may be expected to

1
terminate after approximately ce(n=log n): iterations, for

some constant c.

Obviously this algorithm can easily be improved. Selecting
random elements from Not_Used is not very effective once
Reached is a large set. A better algorithm <(that is, one
which may be expected to construct a smaller set S) will
result if we replace line (%) by

pick i e Not_Used such that the size of the set
x
t | t=C3 yi) mod n, k < d, y, € Su iy
i=1
is maximized

1
¥hether or not this leads to a set S of size O(nd):is not. yet

known.

References )
(1] V. Chvatal and C. Thomassen, Distances in orientations of
graphs, J. of Comb. Theory(B), (1978)>, 61-78.
(2] P. Erd6s, A. Rényi, and V.T. Sés, On a problem of graph
theory, Studia Sci. Math. Hungar. 1, (1966), 215-238.
[3] G. Katona and E. Szemerédi, On a problem of graph theory,
Studia Sci. Math. Hungar. 2, (1967>, 23-28.

96



