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ABSTRACT Orthomorphism graphs of groups are defined and a
correspondence, between cliques of orthomorphism graphs and
difference matrices and generalized Hadamard matrices, is
established. Some examples of orthomorphism graphs are given.

Also, for A = 1, known values and bounds for clique numbers of
orthomorphism graphs of groups of small order are surveyed.

1. INTRODUCTION.

Let G be a finite group and let I = {1, -+, A}. We shall
use g; to denote the element (g,i) ¢G x I. There is a natural
"binary operation” (G x I) x (G x I) + G defined on G x I, given by.
g;h; = gh. Similarly g;' = ¢ ' and gh; = gh.

8: Gx I « G is a A-orthomorphism of G (or @ ¢ OrthA (G)) if
in each of the lists 8(g;), g;¢6 x I, and g;l 6(g;), g;e Gx I,
each element of G occurs exactly A times.

Let 8, ¢ ¢ OrthA Q). He.say that 6 is adjacent to ¢
(written 8 ~ #) if each element of G occurs exactly A times in the
list 8(g;) ™" #(8;), 8,¢G x I. Note that 8~¢ if and only if ¢~0.

The A-orthomorphism graph of G has as its vertex set the
A-orthomorphisms of G, adjacency being defined as above. We shall
use OrthA(G) to denote both the set of A-orthomorphisms of G and.
the A-orthomorphism graph of G. A A-orthomorphism graph of G is
any induced subgraph of OrthA(G).

An r-clique of an orthomorphism graph # is a set of r -
mutually adjacent orthomorphisms of ¥ and w(¥X), the clique number
of X, is the largest value of r for which an r—clique of # exists. .

Given an orthomorphism graph X, there are two questions that
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most concern us; what is the value of w(¥), in particular is w(X) =
A|G]-2, and can we find cliques in ¥ with certain preassigned
properties.

An (n, r; A, G)-difference matrix is an r x nA matrix (aij)
with entries in the group G, |G|=n, such that, for all i,k, i # k,
each element of G occurs exactly A-times in the list °i31 850 j=
1, ¢+, nA, An (n,A)-generalized Hadamard matrix is an (n,nA;
A,@)-difference matrix.

In the next section we give some results on orthomorphism
graphs, including the correspondence between difference matrices
and cliques of orthomorphism graphs. In the third section we list
the known values and bounds for «o(or(:h1 (G)), |GI<15, and in the

fourth section we give several examples of orthomorphism graphs.

2. Orthomorphisms and difference matrices.

In this section we give some basic results on orthomorphisms
and difference matrices. We show a correspondence between cliques
of orthomorphism graphs and difference matrices, and we give some
constructions of orthomorphisms and cliques from other

orthomorphises and cliques. In the first result we esteblish a

correspondence between cliques of orthomorphism graphs and
difference matrices.
Theorem 2.1. Any (n,r;A,G)-difference matrix corresponds to an r-2
clique of OrthA(G) and any r—2 clique of OrthA(G) corresponds to an
(n,r; A,G)-difference matrix.
Proof. If A is en (n,r; A,G)-difference matrix then so is any
matrix obtained from A using the following operationms.

a. permuting rows

b. permuting colummns
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c. multiplying all the elements of a row on the right by an
element of G.

d. multiplying all the elements of a column on the left by
an element of G.

Thus, without loss of generality, we may assume that alj=l
for all j. Thus each element of G Sccurs exactly A times in
81,7 83 npr If 8y 5(i)°8 for i =1, *++, A then identifying
a, 3(i) with g and setting ek(gi) = 840 i) k=1,+-,r—2 gives
rise to an r-2 clique, 61,-'-,8r_2 of OrthA(G).

Conversely, let 81,~~-,6r_2 be an r-2 clique of OrthA(G). We
can construct an (m,r;A,G)-difference matrix as follows. Set a1j=l
for all j. Let e:GxI+{l,'--,nA} be a bijection and set
8y; = ¢ 1(j), for all j, and ag; = 03 p(8p;) for i =3, =+, r and
all j. (aij) is an (n,r; A,G)-difference matrix. 1]
Corollary 2.1. A (G,A)-generalized Hadamard matrix corresponds to
a A|G|-2 clique of OrthA(G) and a A|G|-2 clique of OrthA(G)

corresponds to a (G,A)~generalized Hadamard matrix.

Corollary 2.2.
u(OrthA(G)) < AlG)-2.

Proof. Jungnickel ([12] showed that if an (n,r; A,G)-difference
matrix exists then
r £ A n = AlG|. o
In the next three theorems and their corollaries we give some
methods for constructing new orthomorphisms, cliques end difference
matrices from old ones. The proofs of these results are

straightforward and are left to the reader.

Theorem 2.2. Let 8¢ OrthA(G) and let HA4 G, |H| = m. Let ¢:G-+G/H

be the canonical homomorphism. Let I'={l,::+, m A} and let
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#':G/H x I' + GxI be a bijection satisfying 0'(hi) = gj

#(g) = h. Then #8¢'c Orthm(a/ﬂ). Further, if 6, ¥e OrthA(G).

only if

8 ~ P, then #6¢'~$¥$'.

Corollary 2.3. (See Jungnickel (12]).

If there exists an (n,r; A,G)-difference matrix and if H 4 G,
|H} = m, then there exists an (n/m,r;A,G/H)-difference matrix.
Theorem 2.3. Let 6 ¢ OrthA(G) and fe Orth”(n). Let I' =
{1,++,Au} and Let e:I'+{1,--+,A} x {1,°--,u} be a bijection, (i)
= (a(i),B(i)), and define 8 x P:(GxH) x I' - @ x H by
e x? ((8.h)i) = (O(ga(i)), ?(hp(i))).‘rhen 6xte OrthA“(GxH).
Further, if 8,0'e OrthA(G) and f,?'e Orth u(H), 8 ~ 8', ¢ ~ ¥,

then 8§ x ¥ ~ 08' x ',

Corollary 2.4. (See Jungmickel [12]).

If there exists an (n, r; A,G)-difference matrix and an
(m,r;u,H)-difference matrix then there exists an (nm,
r; An,GxH)-difference matrix.
Theorem 2.4. Let 8 ¢ OrthA(G) and Pe Orth“(G) and let I =
{1,°+<,A+u}. Define (8,P): G x I + G by
(8,?) (g;) = (o(g,) if = 1,000,4,

P(g;_))  if i = ML A

Then (6,P) ¢ OrthM”(G). Further, if 8,0'c OrthA(G) and ¥,P'c

Orthu(G), 8 ~8', ¢~ ¥, then (8,¢) ~ (8',9').

Corollary 2.5. (See Jungnickel [12]).
If there exists an (n,r; A,G)-difference matrix and en (n,r;
#,G)-difference matrix then there exists an (n,r;

A + u,G)-difference matrix.
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3. a(Orthl (@)) for |G| =< 185.

By corollary 2.2, u(Orthl(G)) £ |G|-2. Equality is known to
hold if G is an elementary abelian group, and the Bruck-Ryser
theorem rules out equality for many values of |G|. Hall and Paige
{10) proved that Orthl(G) = @ if the Sylow 2-subgroup of G is
cyclic.

We list below the known values or bounds for w(Orthl(G)),
|G|<15, G not an elementary sbelian group, and the Sylow 2-subgroup

of G trivial or mon-cyclic.
1. u(Orthl(Z2 X Zq)) = 2. This was proved by Johnson,

Dulmage and Mendelsohn (11} in 1961, using machine computation.
This was later reproved by Cheng, Hsiang and Tai (3] in 1964, using
"massive computation" and "proof by exhaustion”.

2. (.)(Orth1 (Dq))'-". This was proved by Chang and Tai (4] in

1964 using the same methods as Chang, Hsiang and Tai (3].

3. w(Orthl(OB)) 1. See Chang and Tai (4].

4, u(Orthl(Zg)) 1. See Chang, Hsiang and Tai {3].

5. w(Orth1 (DG)) = 2. See Chang, Hsiang and Tai [3]. This
was later reproved by Baumert and Hall (1] in 1973, using machine
computation.

6. w(Orthl(A4)) =1 or 2? Chang, Hsiang and Tai [3] found
the answer to be 1. Later, Baumert and Hall [1] reported that no
3~clique could be found, using machine computation.

7. u(Orth1 (Z6 X Zz)) = 4. 4-cliques of Orthl (Z6 X Zz) were
constructed by Bose, Chakravarti and Knuth [2] in 1960, using
machine computation, and by Johnson, Dulmage and Mendelsohn [11],
using hand calculations. That no larger cliques existed was
established, using machine computation, by Parker and VanDuren
(cited in Johnson, Dulmage and Mendelsohn {11]) in 1961 and later
by Baumert and Hall [1].
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8. 3« u(Orthl(Zl5)) £ 12. A lower bound of 2 was
established by Keedwell (14] in 1966, using his "column method”.
This was improved to 3 by Schellenberg, Van Rees and Vanstone (18]

in 1978. The upper bound was established by Delauney [5) in 1984.

4. Some Examples of Orthomorphism Graphs.

We now list some known exemples of orthomorphism graphs.

1. Let ao.-'-,aq be a planar difference set modulo v = q2 +
q+ 1 and let M = (m(i,j)) be a (q+l) x (q+l) matrix with entries
from {0,:--,q}. Define OM:ai_aj* am(i,j)_aj' Then OMe Orthl(zv)
if and only if M is a latin square satisfying m(i,i) = i for all
i(See Evans [7]). )8, if and only if M is orthogonal to K.

Note, in particular, that if H denotes the orthomorphism graph
induced by {GM; M a latin square satisfying m(i,i) = i for all i}
and if N(n) denotes the maximum possible number of mutually
orthogonal latin squares of order n then N(q+1l)-1 < w(H) < N(q+l).

2. Let al,-'-,aq be an affine difference set modulo v = qz-l
and let M = (m(i,j)) be a q x q matrix with entries in {1,:--,q)}.
Define

BM'¢: ai—a‘j - am(i,J) - aj

i(g+l) » (q+l)e(i), i=0,--+, q-2.

Then GM’ée Orthl(zv) if and only if M is a latin square,
satisfying m(i,i) = i for all i, and ¢e Orthl(Zq_l). GM,¢~ GK,? if
and only if M and K are orthogonal and ¢ ~ ¥. See Jungnickel [13)
for a difference matrix version of this.

3. lLet G & GF(q)+, q odd.

Set OA,B:X - 4 Ax X a square.

Bx X a nonsquare.

0 x = 0.
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OA,B € Orth1 (G) if and only if both AB and (A-1)(B-1) are
squares. eA.B ~ eC,D if and only if (A-B)(C-D) is a square. (See
Evans [6] and Mendesohn and Wolk [16]).

{eA,A; A# 0,1} is a q-2 clique of Orth1 (G) and if q = pr, P
prime, r > 1, then {OA,AP; A+ 0,1} is also a q-2 clique of
Orth1 G).

It is natural to ask, if q is prime, what the largest
possible number n could be for which OA(I), B(1)* LN aA(n),B(n)
is a clique of Orthl(G) and A(i) ¢ B(i) for some i.

Mendelsohn and Wolk {16] showed, using machine computation,
that for q = 13, n = 5 and for q = 17, n = 7. They speculated that
for some prime q, n = q-2. This would imply the existence of a
non-Desarguesian projective plane of prime order q. Evans (7}
showed, by simple calculations, that n # gq-2 for q < 47.

4. As a generalization of the above example, let G & GF(q)+,
q = ef+l, and let g be a primitive element of GF(q). The sets Ci =
{gej+i; j=0, -+, £-1}, i=0,*--,e-1 are called cyclotomy classes.

For A(0),---,A(e-1) e GF(q) define GA(O) as follows.
‘ ’

oo, A(e~1)
OA(O),---,A(e-l)(x) = A(i)x if x e c;
0 if x = 0.
eA(O),---,A(e—l) e Orth, (G) if and only if the mappings c, » A(i)Ci
and Ci - (A(1) -1) Ci are both permutations of the cyclotomy
classes (See Evans [B]).

9A(0),---,A(e-1)~ OB(O),-‘-,B(e—l) if and only if the mapping

ci -+ (A(i) - B(i))ci is a permutation of the cyclotomy classes.
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Niederreiter and Robinson [17] have given implicit constructions of
some orthomorphisms of this type.

5. If a ¢ Aut(G), the automorphism group of G, then
ae Orthl(G) if and only if « is fixed point free, i.e. a(x) = x
implies x is the identity element of G. Further, if we define «
by & (x) = a(x)7), a e Aut(G), then a'e Orth, (6) if and only if

1

a(x) =y x-ly implies that x is the identity element of G. For

a,B ¢ Aut (G) the following hold.
i) a~ B if and only if a 8! is fixed point free.

(ii) «a~ g if and only if aﬂ.l is fixed point free.

(iii) o~ B if and only if A la(x) = y '« ly implies

that x is the identity element of G.
Aut (G) N Orthl(G) was studied by Mann (15] and (Aut (G) N

Orth,(6)) U ({a™; a e Aut (@)} N Orth,(G)) by Evans [9].
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