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ABSTRACT

A group satisfies PP3 (the permutation property of degree 3)
if any product of 3 elements remains invariant under some
nontrivial permutation of its factors, or equivalently, if G
has at most one nontrivial commutator of order 2. A PP3
group is elementary if it is a finite group of exponent at
most 4. There is an algorithm that associates an elementary
PP3 group to an arbitrary graph. It follows, for instance,
that almost every nontrivial graph automorphism has order a
power of 2 and that the first-order theory of (elementary)
PP3 groups is hereditarily undecidable.
1. INTRODUCTION

It is a well-known fact that the first-order <theory of
the class of all abelian groups is decidable [16], even in
triple exponential Turing time [8]. On the other hand, A.
Malcev[10] established that the first order theory of
metabelian groups of exponent a prime p > 2 is essentially
undecidable. A. Tarski raised the question whether every
variety of groups properly containing the variety of all
abelian groups has an undecidable elementary theory. J.
Ershov [2] observed that if such a variety contains a
nonabelian finite group then it has an undecidable theory.
This result led him to conjecture that every nonabelian
variety of groups is undecidable (This result is established
in [18)). Ershov's proof consists in proving that (a) the
varieties of 2-nilpotent groups of exponent p > 2, the

variety of 2-nilpotent groups of exponent 4 with
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commutator subgroup of exponent 2, and the variety generated
by the Frobenius groups zpb(zq (P,q > 2 are distinct primes)
have hereditarily undecidable theories; and (b) every
nonabelian variety of groups must contain one of them.

The purpose of this note is to establish an effective
correspondence between the class of graphs and a certain
class of almost abelian groups. Among other things, this
correspondence strengthens Ershov's result and establishes a
Galois-type connection between well-known problem
combinatorial problems in group and graph theory. This note
can be regarded as a preliminary report on this connection.
Full proofs and further results will be contained in an

upcoming paper ([5].

2. ELEMENTARY PP3-GROUPS

Permutation properties (here denoted PP) of groups and
semigroups has been studied in (1), [13]) and [14]. They were
apparently first introduced by Restivo and Reutenauer [13],
who show that the strong Burnside Problem for semigroups
(viz., is every finitely generated torsion semigroup
finite?) has a positive solution for semigroups with the

permutation property (for a survey, see [14]).

Definition 2.1. Let n22 be a positive integer and s a
semigroup. An n-tuple (xl,xz,...,xn) of factors of S
satisfies PPn -the permutation property of deqree n- if
there exists a nontrivial permutation otS, of its factors

such that

(1) xlxz...xn = xc(l)x,(z)...x‘(n).
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S satisfies PPn if every n-tuple of elements of S satisfies
PPn. ©O

The objects of interest here are groups satisfying PP3.
Recall that the commutator subgroup G' is the subgroup of G
generated by all commutators [x,yl=xyx ly~l. For undefined
algebraic terminology and notation see [7] or'[15].

The next 3 results have been established in (4] or [5].
Theorem 2.2. A group G satisfies PP3 if and only if |G'|<2.D

Lemma 2.3. There are exactly three isomorphism types of two

generator nonabelian PP3 2-groups which are presented by

2

r =]
Gy = <x,ylu?,x%",y%%, [u,x), [u,y]>,

Gy = G1/<xYx2r-1'1>

r s r-1l
= <x:Y|u21x2 ,y2 :xy = x2 +1,[u,x],[u,y]>,

s-1.
Gy 1= Gy/<y¥y? 1,

r r-1
2 277141 ox

= <x,ylu?,x2%,y2% x¥ = x yzs-1+1,[u,x],[u,y]>.

where u abbreviates the commutator [x,y]. O

The latter two possibilities in the lemma actually give
rise to nonisomorphic groups since the quaternion Q and
dihedral group D, are their homomorphic images.

The class of PP3 groups is closed under subgroups and
homomorphic images but not under direct products. However it
is closed under a slight variation of the direct product
operation, which is in fact a generalization of the direct
product of abelian groups. As it turns out, this is the

basic construction needed to build arbitrary PP3 groups.
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Definition 2.4. Let u (respectively v) be a central
involution in a group G (H, respectively, of the same
order as u). The amalgamated direct product of G and H
(with u and v amalgamated) is the quotient of GxH by the
normal subgroup {(1,1),(u,v)). o
The definition can be obviously extended to any finite

number of factors. Note that if the involutions are both

trivial then the amalgamated product is (isomorphic to) the
ordinary direct product. Informally, the amalgamated product
is obtained from the ordinary product by identifying the two

involutions u and v.

Now it is possible to give a general structure theorenm
for PP3 2-groups. Note that an arbitrary finitely generated
PP3 group is nilpotent, and thus is a direct sum of
finitely generated free abelian and finite PP3 2-groups and

odd order abelian groups.

Theorem 2.5. The following conditions are equivalent on a
finitély generated group G:
(1) G is a PP3 2-group.
(2) G is an amalgamated products of cyclic 2-groups and
groups of type (*).
(3) G is (isomorphic to) a group presented by

ti a

aj
2 7%= O'il[xi'xj]=u jr[xilu]>

(%*) <u,x1,...,xn|u2,xi

for some (unique) positive integers t; (1¢i¢n) and
ajy equal to 1 or 0 (according as whether u is a

power of X4, if  i=0, or whether x; and x4
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commute, if i>0).
The set (tl,...,tn,[aij]) forms (up to a
permutation of the indices) a complete set of

invariants of the group G.o

Although PP3 groups are almost abelian they can be quite
complex. In fact, there is no upper bound on the degrees of
irreducible representations of PP3 groups. The degree of a
nonlinear absolutely irreducible representation of a finite
PP3-group equals the square root of [G:Z(G)] (6, lemma 2.3])
which is a perfect square and can be made arbitrarily large

(see groups G; and Gy above) .

DEFINITION 2.6. An elementary PP3 group is a finitely

generated PP3 2-group of expenent 4. o

An elementary PP3 group is finite and is completely
determined up to isomorphism by its matrix of invariants
[aij]. This matrix is essentially the adjacency matrix of a
graph. The graph, however, is a pointed graph, i.e., it has
a distinguished vertex preserved by all graph isomorphisms.
(It is possible to consider instead arbitrary PP3 groups and
vertex-colored (vec-) graphs with colors from the set N of
positive integers but the elementary class will suffice
here). In the remainder of this section 7 denotes a group
presentation or its associated group and I denotes a
(finite) graph.

The proof of the next theorem is contained in the

following correspondence.

119



CONSTRUCTION. Let ¥ be the presentation of an elementary PP3
group (**) with invariant matrix [aij] (ty=...=t;=1). Let
F(¥) be the (unlabeled) pointed graph (V,E,u) with' vertex
set the generators of v, distinguished vertex u and with
adjacency matrix [aij]’

Conversely, given a pointed graph r = (V,E,u) with
adjacency matrix [aij] let #(T') be the group presented by

(**), with generating set V and invariant matrix [aij]' o

IHEOREM 2.7. Two elementary PP3 groups are isomorphic if and
only if the associated pointed graphs are isomorphic. n

In particular, to every isomorphism of the graph = there
corresponds an isomorphism of the group I (w) by Von Dyck's
theorem. Clearly this correspondence is one to one. Note,
lﬁowever, that this correspondence is very rarely onto
because there are asymmetric graphs (i.e., having only
trivial automorphisms) but, on the other hand, every group
of order at least 3 has a nontrivial automorphism.

The CONSTRUCTION and most of its consequences carry over
to arbitrary finitely generated PP3 groups if one allows vc-
graphs, where the colors are positive integers corresponding

to the orders of the generators of a canonical presentation

similar to (**).
3. THE ORDER OF GRAPH AUTOMORPHISMS

It is  well-known that not all groups occur as
automorphism groups of a group. Thus the following corollary

is of interest in its own right. Related results have been
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established by [17] in the case of torsion-free class 2

nilpotent groups.

COROLLARY 3.1. Every finite group is (isomorphic to) a
subgroup of the automorphism group of an elementary PP3
group. O
On the other hand, in a very precise sense([1l2] almost all

graphs are asymmetric (i.e., have no nontrivial

automorphisms). However, this result ignores the question of
the nature of nontrivial symmetries of graphs. The following
corollary follows easily from [11, Theorem 1], which, in
particular, states that almost all d-generator groups of
Frattini class 2 have no autdmorphism of odd order. The
corollary provides an asymptotic result on the above
question. Of course, the odd order of a graph automorphism
on n vertices divides IGLn(Z)l, the number of nonsingular
nxn matrices over the field of 2 elements, but there is
little hope for a precise result since every group occurs as

the automorphism group of some suitable graph. o

COROLLARY 3.2 If a, (respectively, e,) 1is the number of
nontrivial automorphism groups of (unlabeled) graphs on n
vertices (which are 2-groups, respectively), then

ey/ap 4+ lasn- o, 0

Sketch of proof. Every automorphism of a graph ¥ induces an

automorphism of group I'(w) and every grodp automorphism is

realized by a graph automorphism df some graph w. o
Thus almost all nontrivial automorphisms of a graph have

order a power of 2.
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4. UNSOLVABLE PROBLEMS

It follows from theorem 2.2 that many decision problems
of infinite PP3 groups are solvable in polynomial time; for
instance, properties that follow from properties of the
abelianized quotient (finiteness, triviality, word and
conjugacy problems). Global properties in the class of PP3
groups, however, are not as immediate since it is not a
variety (although it is properly contained in the variety
defined by the law x2y=yx2) and the above theorem of Ershov
(2] does not apply.

Nonetheless, structure theorem 2.5 makes it possible to
save the proof of the key argument in [2]. 1In fact, Theorem
2.5 can be regarded as a relatively elementary embedding (in
.the sense of Ershov [2]) of the first-order theory of graphs
ior a reflexive, symmetric binary relation) in the first-
order theory of elementary PP3 groups. Therefore, most of
his results can be strengthened to classes of 'groups

containing the class of PP3 groups. For instance,

COROLILARY 4.1 The first-order theory of elementary (and
hence arbitrary) PP3 groups is hereditarily undecidable.
In way similar to [2] one can establish the undecidablity
of the first-order theory of finite (elementary) PP3 groups.
Since PP3 groups are PPn groups for all n 2 3 similar
results follow for all layers in the PP hierarchy. 1In fact,
it follows that any class of groups containing the class of
PP3 groups has a hereditarily undecidable first-order

theory.
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A different problem is whether or not the first-order
theory of a fixed PP3 group is decidable. Ershov (3] has
shown that the first-order theory of a finitely generated
nilpotent group is decidable if and only if the group is
center-by-finite. It has been shown in [1] that the class of
finitely generated PP groups coincides with the class of
center-by-finite groups. Obvioulsy a finite extension of a
group with first-order decidable theory has a decidable
theory. 1In particular, each finitely generated PP group has
a decidable first-order theory. It would be interesting to
characterize the class of groups each of which has decidable
first-order theory, or in particular, its relation to the

class of PP groups.
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