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Abatract. In this paper, various constructions for
resolvable group divisible designs with block size 4 are

given.

1. Introduction

A group divisible design GD(k,m;v) is a triple (V,$%,R)
wvhere B is a set containing v points, G is a collection of
m-subsets (called groups) of V and B is a collection of
k-subsets (called blocks) such that

(i) G is a partition of V;

(i1) Each pair of elements of V from distinct groups

occurs in a unique block.

A parallel class in a GD(k,m;v) is a set of blocks
which partitions V. A group divisible design is called
resolvable if the blocks can be partitioned into parallel
classes. A resolvable GD(k,m;v) will be denoted by
RGD(k, m;v).

It is not difficult to show that the following are

necessary conditions for the existence of an RGD(k,m;v):

v 2 0 (mod k), v 20 (mod m)
(1)
v-m 2 0 (mod k-1).

A natural problem is: Are the necessary conditions (1)
for the existence of an RGD(k,m;v) also sufficient?

For k = 3, m = 1 or 3, this is the famous Kirkman’s
schoolgirl problem. It was completely solved by Ray-
Chaudhuri and R. M. Wilson in 1971 (19)), For k = 3, m = 2,
it is called a nearly Kirkman triple system and it was
proved (111,031,161, [7)) that, there exists a nearly Kirkman
triple system RGD(3,2;v) if and only if v 2 O (mod 6),

v > 12,

Recently, R, Rees and D. R. Stinson ([10]) considered
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the general case for RGD(3,m;v) and proved that the
necegsary conditions (1) are also sufficient for the
existence of an RGD(3,m;v), with three exceptions (m = 2,
v =6o0or 12, and m = 6, v = 18) and some unsolved cases.
E. Mendelschn and Shen Hao ([81) considered the problem
independently and constructed some new designs by different
methods.

For k = 4, m = 1 or 4, it was proved by H. Hanani, D.
K. Ray-Chaudhuri and R. M. Wilson ([5]) that the necessary
and sufficient condition is

v £ 4 (mod 12). (2)

In this paper, we are going to give several recursive
and direct constructions for resolvable group divisible
designe with block size 4.

2. General Constructions
A GD(k,m;km) is called a transversal design and denoted

TDlk,m). A resolvable TD(k,m] is denoted TD*[k,m]. It 1is
well known ([2],[4]) that the following statements are
equivalent:

(1) There exists a TD(k, m],

(1)  There exists a TD"([k-1,m].
(1ii) There exists a set of k-2 pairwise orthogonal
Latin squares of order m.
For given k and m, let RG(k,m) be the set of positive
integers v for which an RGD(k,m;v) exists. Similarly, for a
given k, the set of integers m for which a TD[(k,m] (or a

TD'[k,m]) exists will be denoted T(k) (or T*(k)).

Lemma 1. If 4v € RG(4,m), v 2 4, v # 2,6,10. Then for
any integer s 2 0, we have

4(38 + 1l)v € RG(4,m).

Proof. It is well known that for any s = 0, 4(3s+1) €
RG(4,4). Let (X,%,%) be an RGD(4,4;4(3s+1)), where the
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elements of X are sets having v points each. For each group
G € ¢ form an RGD(4,m;4v) on the union of the four v-gets
of G. As we know ([11],[12]1), for any integer n 2 4,

n # 6,10, n € ™). Thus, for each block B € 8, we can

form the blocks of a TD*t4,v]. Nowv it is easy to verify
that this gives an RGD(4,m;4(3s+1)v).

Lemma 2. If m =2 4 and m # 6,10, then 4m € RGD(4,m).

Proof. The existence of an RGD(4,m;4m) is equivalent
to the existence of a resolvable transversal design

TD"(4, m). From the fact that there exist 3 pairwiee
orthogonal Latin squares of order m for.each m 2 4,
m # 6,10, the lemma is now obvious.

Lemma 3. If v € RG(4,m) and t 2 4, t # 6,10, then
tv € RG(4, tm).

Proof. From Lemma 2, there exists an RGD(4, t;4t) for
every t 2 4, t # 6,10. For a given RGD(4,m;v), we replace
each point a by a t-get (al,az,...,at), and replace each
block {(a,b,c,d} by the blocks of an RGD(4, t;4t) with
(al,az,...,at), ‘bl'bz""'bt)' (cl,cz,...,ct) and
{dl,dz,...,dt) as its groups. The obtained design is an
RGD(4, tm;tv).

Let m = 1. We have the following corollary.

Corollary. If t 2 4, t # 6,10, then for any integer
8 2 0, wve have 4(3s+1)t € RG(4,¢t).

From Lemmas 1-3, we have the following result.

Theorem 1. Let m 2 S5, (m,6) = 1, then v € RG(4,m) if
and only if
v =0 (mod 4m), v-m = 0, (mod 3). (3

3. Constructions of RGD(4, 3;v)

For the existence of an RGD(4,3;v), the necessary
condition is
v 2 0 (mod 12). (4)
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This condition is not alwvays sufficient. In fact, as

3¢ T‘(4), there does not exist an RGD(4,3; 12). But we
have the following conatruction for RGD(4,3;v).

Theorem 2. If there exist an RGD(4,4;u) and an
RGD(4r, 4;v) with v 2 16, then u(v-1) € RG(4,3). 1In other
words, if r = 1 (mod 4) and 8 = 1 (mod 3) with r > 5, then
12rs € RG(4, 3).

Proof. Let Rk = ((1,Kk), (2,K),...,(3r,Kk)},

k=1,2,...,48. As r 2 1 (mod 4), there exists an
RGD(4, 4;3r+1) on the set Rk U (x}, where x ¢ Rk for every k.
Let

Fik = Fik U (x'aik'bik'cik)' i=1,2,.¢0,T

be the r parallel classes. Omit the point x from each

parallel class, we obtain a combinatorial design on Rk'
vhich can be decomposed into r parallel classes:

Fl

ik U {a

1k'b1k'°ik)' i=1,2...,r.

Obviously, ‘alk'blk’clk)' (azk'b2k'c2k)""'{ark'brk'crk)
form a parallel class of Rk‘

Let 8 = 3q+1, KI'KZ""'K4q+1 be the 4q+1 parallel
clasges of an RGD(4,4;48) on the set (1,2,...,48), and let

(xij'yij'zij'vij" j=1,2,...,8 be the blocks of K,. As 3r

i
> 4, 3r # 6,10, there exists an RGD(4,3r;12r) on the set
R UR UR UR . Let 6 , 6 PRI {c} be the
xij Yij z1J ViJ 131’ 71j2 2i, 3r
3r parallel classes of this design. Denote
8
Gik = JEaGiJk, k=1,2...,3r.
Then
(Gikli = 1,2,...,4q%1; k = 1,2,...,3r}
4
is a set of 3r(4q+l) parallel classes of U Rk' Let Go be a
k=1
fixed parallel class in (Gik), without loss of generality,

ve may suppose.
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Go = 18 )08y k1734, ka2’ By, kea)

{b }

1k’ P14, ke 17 Py, ko2 Pa, ked?? (Cakr O, ka1’ €4, ka2’ C1, ko |

i=1,2...,r3 k=1,59,...,48-3}.
Denote

4
H =

UF,, U (la
17,0 ik

1k’ %1, k+1’ B4, k2’ B4, ke3)"

{ ! )

Pik Pi, k12 Pi, ko2 Py, ko3’ Ca1r Ok, e’ ©4, ka2 O4, ko3

k=1,359...,48-3).

Then (Hili =1,2,...,r) is a set of r parallel classes of

48
] Rk' Now it is not difficult to verify that

k=1
(Hyl4 = 1,2,...,r} U (G, |1 = 1,2,...,4q+1, k=1,2,...,3r)\G
48

is a set of r+3r(4q+1)-1 = 4rs-1 parallel classes of | Rk
k=1

0

and form an RGD(4,3;12rs).
In the theorem, if we let s = 4, then we have

Corollary. There exists an RGD(4,3;v) for any v = 12
(mod 48), v > 60.
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