RESOLVABLE GROUP DIVISIBLE DESIGNS WITH BLOCK SIZE 4

Shen Hao

Shanghai Jiao Tong University

Abstract. In this paper, various constructions for resolvable group divisible designs with block size 4 are given.

1. Introduction

A group divisible design GD(k, m; v) is a triple (V, \$, \$) where B is a set containing v points, G is a collection of m-subsets (called groups) of V and B is a collection of k-subsets (called blocks) such that

- (i) G is a partition of V;
- (ii) Each pair of elements of V from distinct groups occurs in a unique block.

A parallel class in a GD(k,m;v) is a set of blocks which partitions V. A group divisible design is called resolvable if the blocks can be partitioned into parallel classes. A resolvable GD(k,m;v) will be denoted by RGD(k,m;v).

It is not difficult to show that the following are necessary conditions for the existence of an RGD(k,m;v):

$$v \equiv 0 \pmod{k}$$
, $v \equiv 0 \pmod{m}$
 $v-m \equiv 0 \pmod{k-1}$.

A natural problem is: Are the necessary conditions (1) for the existence of an RGD(k, m; v) also sufficient?

For k = 3, m = 1 or 3, this is the famous Kirkman's schoolgirl problem. It was completely solved by Ray-Chaudhuri and R. M. Wilson in 1971 ([9]). For k = 3, m = 2, it is called a nearly Kirkman triple system and it was proved ([1],[3],[6],[7]) that, there exists a nearly Kirkman triple system RGD(3,2;v) if and only if $v \equiv 0 \pmod{6}$, v > 12.

Recently, R, Rees and D. R. Stinson ([10]) considered

the general case for RGD(3, m; v) and proved that the necessary conditions (1) are also sufficient for the existence of an RGD(3, m; v), with three exceptions (m = 2, v = 6 or 12, and m = 6, v = 18) and some unsolved cases. E. Mendelsohn and Shen Hao ([8]) considered the problem independently and constructed some new designs by different methods.

For k=4, m=1 or 4, it was proved by H. Hanani, D. K. Ray-Chaudhuri and R. M. Wilson ([5]) that the necessary and sufficient condition is

$$v \equiv 4 \pmod{12}. \tag{2}$$

In this paper, we are going to give several recursive and direct constructions for resolvable group divisible designs with block size 4.

2. General Constructions

A GD(k, m;km) is called a transversal design and denoted TD(k,m). A resolvable TD(k,m) is denoted $TD^*(k,m)$. It is well known ([2],[4]) that the following statements are equivalent:

- There exists a TD[k, m],
- (ii) There exists a TD*[k-1.m].
- (iii) There exists a set of k-2 pairwise orthogonal Latin squares of order m.

For given k and m, let RG(k,m) be the set of positive integers v for which an RGD(k,m;v) exists. Similarly, for a given k, the set of integers m for which a TD[k,m] (or a $TD^*(k,m]$) exists will be denoted T(k) (or $T^*(k)$).

Lemma 1. If $4v \in RG(4,m)$, $v \ge 4$, $v \ne 2,6,10$. Then for any integer $s \ge 0$, we have

4(3s + 1)v ∈ RG(4, m).

Proof. It is well known that for any $s \ge 0$, $4(3s+1) \in RG(4,4)$. Let (X,4,3) be an RGD(4,4;4(3s+1)), where the

elements of X are sets having v points each. For each group $G \in \mathcal{G}$, form an RGD(4,m;4v) on the union of the four v-sets of G. As we know ([11],[12]), for any integer $n \geq 4$, $n \neq 6,10$, $n \in T^*(4)$. Thus, for each block $B \in \mathcal{B}$, we can form the blocks of a $TD^*(4,v)$. Now it is easy to verify that this gives an RGD(4,m;4(3s+1)v).

Lemma 2. If $m \ge 4$ and $m \ne 6, 10$, then $4m \in RGD(4, m)$.

Proof. The existence of an RGD(4, m;4m) is equivalent to the existence of a resolvable transversal design $TD^{\#}[4,m]$. From the fact that there exist 3 pairwise orthogonal Latin squares of order m for each $m \geq 4$, $m \neq 6$, 10, the lemma is now obvious.

Lemma 3. If $v \in RG(4,m)$ and $t \ge 4$, $t \ne 6,10$, then $tv \in RG(4,tm)$.

Proof. From Lemma 2, there exists an RGD(4,t;4t) for every $t \ge 4$, $t \ne 6,10$. For a given RGD(4,m;v), we replace each point a by a t-set (a_1,a_2,\ldots,a_t) , and replace each block (a,b,c,d) by the blocks of an RGD(4,t;4t) with (a_1,a_2,\ldots,a_t) , (b_1,b_2,\ldots,b_t) , (c_1,c_2,\ldots,c_t) and (d_1,d_2,\ldots,d_t) as its groups. The obtained design is an RGD(4,tm;tv).

Let m = 1. We have the following corollary.

Corollary. If $t \ge 4$, $t \ne 6,10$, then for any integer $s \ge 0$, we have $4(3s+1)t \in RG(4,t)$.

From Lemmas 1-3, we have the following result.

Theorem 1. Let $m \ge 5$, (m,6) = 1, then $v \in RG(4,m)$ if and only if

$$v \equiv 0 \pmod{4m}, v-m \equiv 0 \pmod{3}.$$
 (3)

Constructions of RGD(4,3;v)

For the existence of an RGD(4,3;v), the necessary condition is

$$v \equiv 0 \pmod{12}. \tag{4}$$

This condition is not always sufficient. In fact, as $3 \notin T^*(4)$, there does not exist an RGD(4,3; 12). But we have the following construction for RGD(4,3;v).

Theorem 2. If there exist an RGD(4,4;u) and an RGD(4r,4;v) with $v \ge 16$, then $u(v-1) \in RG(4,3)$. In other words, if $r \equiv 1 \pmod 4$ and $s \equiv 1 \pmod 3$ with $r \ge 5$, then $12rs \in RG(4,3)$.

Proof. Let $R_k = \{(1,k),(2,k),\ldots,(3r,k)\},$ $k=1,2,\ldots,4s.$ As $r\equiv 1\pmod 4$, there exists an RGD(4,4;3r+1) on the set $R_k \cup \{x\}$, where $x\not\in R_k$ for every k. Let

$$F_{ik} = F'_{ik} \cup (x, a_{ik}, b_{ik}, c_{ik}), i = 1, 2, ..., r$$

be the r parallel classes. Omit the point x from each parallel class, we obtain a combinatorial design on R_k , which can be decomposed into r parallel classes:

$$F_{ik}^{*} \cup \{a_{ik}, b_{ik}, c_{ik}\}, i = 1, 2, ..., r.$$

Obviously, $\{a_{1k}, b_{1k}, c_{1k}\}$, $\{a_{2k}, b_{2k}, c_{2k}\}$, ..., $\{a_{rk}, b_{rk}, c_{rk}\}$ form a parallel class of R_{ν} .

Let s=3q+1, K_1,K_2,\ldots,K_{4q+1} be the 4q+1 parallel classes of an RGD(4,4;4s) on the set $\{1,2,\ldots,4s\}$, and let $\{x_{ij},y_{ij},z_{ij},v_{ij}\}$, $j=1,2,\ldots,s$ be the blocks of K_i . As 3r>4, $3r\neq 6$,10, there exists an RGD(4,3r;12r) on the set $R_{x_{ij}}$ V_{ij} V_{ij}

$$G_{ik} = \bigcup_{j=1}^{8} G_{ijk}, k = 1, 2, ..., 3r.$$

Then

$$\{G_{ik}|i=1,2,\ldots,4q+1; k=1,2,\ldots,3r\}$$

is a set of 3r(4q+1) parallel classes of $\bigcup R_k$. Let G_0 be a k=1 fixed parallel class in $\{G_{ik}\}$, without loss of generality, we may suppose.

$$G_{0} = \{\{a_{ik}, a_{i, k+1}, a_{i, k+2}, a_{i, k+3}\}, \{b_{ik}, b_{i, k+1}, b_{i, k+2}, b_{i, k+3}\}, \{c_{ik}, c_{k, k+1}, c_{i, k+2}, c_{i, k+3}\}\}$$

$$i = 1, 2, \dots, r; k = 1, 5, 9, \dots, 4s-3\}.$$

Denote

$$H_{1} = \bigcup_{k=1}^{48} F_{ik} \cup \{\{a_{ik}, a_{i,k+1}, a_{i,k+2}, a_{i,k+3}\}, \{b_{ik}, b_{i,k+1}, b_{i,k+2}, b_{i,k+3}\}, \{c_{ik}, c_{k,k+1}, c_{i,k+2}, c_{i,k+3}\}\}$$

$$k = 1, 5, 9, \dots, 48-3\}.$$

Then $\{H_i \mid i=1,2,\ldots,r\}$ is a set of r parallel classes of $As \cup R_k$. Now it is not difficult to verify that k=1 $\{H_i \mid i=1,2,\ldots,r\} \cup \{G_{ik} \mid i=1,2,\ldots,4q+1,\ k=1,2,\ldots,3r\} \setminus G_0$ is a set of r+3r(4q+1)-1=4rs-1 parallel classes of $\bigcup_{k=1}^{4s} R_k$ and form an RGD(4,3;12rs).

In the theorem, if we let s=4, then we have Corollary. There exists an RGD(4,3;v) for any $v\equiv 12$ (mod 48), $v\geq 60$.

References

- [1] R. D. Baker and R. M. Wilson, Nearly Kirkman triple systems, Utilitas Math. 11(1977), 289-296.
- [2] Th. Beth, D. Jungnickel and H. Lenz, Design theory, B. I. Wissenchaftsverlag, 1985.
- [3] A. E. Brouwer, Two new nearly Kirkman triple systems, Utilitas Math. 13(1978), 311-314.
- [4] J. Denes and A. D. Keedwell, Latin squares and their applications, English University Press, London, 1974.
- [5] H. Hanani, D. K. Ray-Chaudhuri and R. M. Wilson, On resolvable designs, Discrete Math. 3(1972), 75-97.

- [6] C. Huang, E. Mendelsohn and A. Rosa, On partially resolvable t-partitions, Annals Disc. Math. 12(1983),
- 169-183. [7] A. Kotzig and A. Rosa, Wearly Kirkman systems, Proc. Fifth S. E. Conf. on Comb., Graph Theory and Computing,
- Boca Raton, 1974, 607-614.

 [8] E. Mendelsohn and Shen Hao, A construction of resolvable group divisible designs with block size 3.
- (To appear)

 (To appear)

 (To appear)

 (To appear)
- Fure Math. 19(1971), 187-204.
- divisible designs with block size 3. (To appear) [11] D. T. Todorov, Three mutually orthogonal Latin squares of order 14, Ars Combintoria 20(1985), 45-47.
- [12] W. D. Wallis, Three orthogonal Latin squares, Cong. Num. 42(1984), 69-86.