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Abstract. Bondy conjectures that if G is a 2-edge-connected simple graph with n
vertices, then at most (25— 1) /3 cycles in G will cover G. In this note, we show that
if G is a plane triangulation with n > 6 vertices, then atmost (2n—3)/3 cyclesin G
will cover G.

1. Introduction

We follow the notation of Bondy and Murty [BM], except where noted otherwise.

An edge e of a graph G is called a multiple edge if G — e has an edge f having the
same ends as e, and in this case we say that e is an extra edge of G — e parallel
to the edge f. Graphs may have multiple edges but loops are prohibited. Let G
be a graph. For X C E(G), the contraction G/X is the graph obtained from G
by identifying the ends of each edge in X and then deleting the resulting loops.
A collection C of cycles in G is called a cycle cover (CC) of G, if every edge of
@ lies in at least one cycle in C. It is obvious that G has a CC if and only if G is
2-edge-conncected. For a graph with £'(G) > 2, define

cc(G) = min{|C| : Cisa CC of G}.
In [B], Bondy raiscd the following conjecture.
Conjecture SCC: If G is a simple 2-cdge-connnected graph with n vertices, then

2n—-1

ce(@) £ 3

If C is acollection of cycles of G and if every edge in G lics in exactly 2 members
of C, then C is called a cycle double cover (CDC) of G. The eminent cycle double
cover conjecture, duc to Scymour [S1] and Szekeres [S2], says that every 2-cdge-
connected graph admits a CDC. The following conjecture is also posted by Bondy
in [B].

Conjecture SCDC: If G is a simple 2-edge-connected graph with n vertices, then
@G admits a CDC with at most » — 1 cycles.
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Theorem 1.1. (Bondy and Seyffarth [B]) If G is a simple plane triangulation
with m vertices, then G has a CDC with at most n— 1 cycles.

In this paper, we shall show that if G is a simple planc triangulation with » > 6
vertices, then
2n— 3
3

We shall prove a multigraph version of Conjecture SCC for plane triangulations.
Let G be a graph. Define an equivalence relation on E(G) such that e is related
to ¢’ if and only if e = €’ or e and ¢’ sharc the same ends (e and e’ are parallel
edges). Let [e] denote the equivalence class containing e and [G] the collection
of all equivalence classes. Define

ce(@) €

W@ = 3 (el -D.
(el€lG]

Hence a graph G is simple if and only if x(G) = 0. We define a (multi) graph G
to be a plane triangulation if G is a plane graph each of whose faces has degree
2 or 3. In Section 2, we develop some reduction techniques, and in Section 3, we
shall show Theorem 1.2 below. Some of the routine and repeated arguments in
the proofs are omitted. Interested readers may contact the authors for details.

Theorem 1.2. If G is a plane triangulation of n > 6 vertices, then

u(G)

cc(@) < 3 -

0y

2. Reductions

Let X, Y be two sets. The symmetric difference of X and Y, denoted by XAY',
is XUY — X NY.IfG isagraphand H and J are subgraphs of G, then denote

HNAJ = GIE(HYAE(J)].

If G has 2 subgraphs G’ and G” such that G = G’ UG" and such that G' N G" is
a 2-cycle of G, then G is called a C,-sum of G’ and G

Lemma 2.1. Let G be a graph with #'(G) > 2. If G isa C, -sum of G, and
G,, where K'(G;) > 2, then
cc(@Q) < ce(Gh) + ce(Gr) ~ 1.

Proof: Let {e1,e2} be the edges of the 2-cycle C commonly shared by G and
G,. Fori € {1,2},1etC; bea CC of G;. Let Cj be a cycle in C; that contains the

cdgeej, (1<, <2).1C} =Cj,thenC = Cl Ci,andso (C; —{C}yuC>



is a CC of G and Lemma 2.1 follows. Hence we may assume that C} # Cj and
s0 B(C}) N E(C) = {e;}. Thus

is a CC of G and so Lemma 2.1 follows again. ]

Let H be a subgraph of G. The vertices of attachment of H in G, denoted by
Ag(H), are the vertices in V( H) that are incident with some edges in E(G) --
E(H).

For a graph H, H* denotes a graph obtained from H by adding an extra edge
parallel to some edge of H.

Lemma 2.2, Suppose that H = T'y or H = T (see Figure 1) with an extra
edge e that is parallel to an edge in E(T'y) — {viv2,v2v3,v3v, }, such that H is
a subgraph of G with Ag(H) C {vi,v2,v3}. Let e; be an extra edge parallel to
vivy, and ez be an extra edge parallel to vovs. Let Vy = V(H) - {v1,v2,v3}.

(@) If H=T,,thenlet G' = (G — Vy) + ey and we have
cc(G) < cc(G') + 1. )
(i) If H=T, thenlet G" = (G — Vi) + {e1,e;} and we have

cc(G) < cc(G") + 1. 3)

Proof: We shall show (i) first. Let C be a CC of G, and let C € C be a cycle con-
taining ez . LetC' = C—ez+{v2v5,vsv4,v4v6,v6v3 },and F = vy vq v vgvsva va.
Thus (C — {C}) U{C’, F} is aCC of G and s0 (2) holds.

The proof for (ii) is similar and uses the fact that we can always assume that e,
and e, are in distinct cycles of any CC of G”. ]

Lemma 2.3. Supposethat H = T; or H isT;* (see Figures 1 and 2) with an extra
edge e that is parallel to an edge of E(T;) — {vivy,v2v3,v311}, (2 < i < 4),
such that H is a subgraph of G with Ag(H) C {v;,v2,v3}. Let e; be an extra
edge parallel to vivs, (1 <1< 2),andlet Vi = V(H) — {v1,v2,13}.

(i) If H=T;, thenlet G' = G — Vy and wc have
cc(@) < ce(G') + 2. @

(ii) Suppose that H = T;*. If e in not incident with v, then Iet G" = G —
Vi + ey, and if e is incident with vy, then let G" = G — Vi + 3. In either
case, we have

cc(G) < cc(G") + 2.



Proof: We consider the following cases.
Casel:i=2.

Let C be a CC of G’ and let C be a cycle in C that contains viv3. Let C' =
C—viva+{v1ve,v6va, vavs,vsvs }, et F1 = vivavevsv; and F2 = vivavsvavr.
Then (C — {C}) U{C', Fi, F> } is a CC of G and so (4) holds.

The proof for (5) is similar and uses the fact that we can assume that e; and
vy v3 are in distinct cycles of any CC of G”.

Case2:i=13.

Let C be a CC of G' and let C, C, be cycles in C that contain v;v3 and va v,
respectively. (Itmay happen that C, = C;). Let Cj = Cy —{v1v3 }+{vivs,vavs,
vsns}, Cj = G — {vana} + {v2vs, vsv7, v1w3}, Gf C1 = G, then C] = C;
is obtained by replacing vy vs, v2v3 by the above two paths, respectively), and
let F; = vivavavyvsusy; and Fy = vyvausvgvgvy. Thus (C — {C,C ) U
{Ci{,C;, Fi, F>} is aCC of G, and so (4) holds.

Suppose that H is I';" and e is not incident with v; . Let C’ be a CC for G” and
let Cy, C, be defined as above and let C, be the cycle in C containing e; .

If E(C;) # {e1,v2v3}, then C. # C,. Since e is not incident with v , there
is a (v2, v3)-path P in I'; containing e such that the internal vertices of P are in
Vi. Thus we can define C, to be C, — e; plus the (v2,v3)-path P, and define

1,Cy, F1, F, asabove. Itfollows that (C—{C1, C2,C.DU{C}, C;,C,, F1, F> }
is a CC of G and so (5) holds.

Thus we assume that E(C;) = E(C.) = {e1,v2v3}. Without loss of
generality, we assume that e is not parallel tovs v7. Let Fs = vivavsvsvivavsvy,
Fy = vijvavsvgvrvavavy, Cf = Gy — {v1v3} + {v1v6,v6v3}, and let F5 be any
cycle containing both vsv7 and e. Thus (C — {C2,C1}) U{CY, F3, F4,Fs}isa
CC of G, and so (5) holds.

The case when e is incident with v, can be shown similarly.

Case3: i=4.

LetC bea CCof G’ and let C;, C> becycles in C containing vy v3 and v, v3, re-
spectively. (Possibly C = C2). Let C{ =C,— {v1 vi}+ {v| V4,V4V6, V603 } and
C} = Cy — {vav3} + {v2vs,vsve,vsv7,v7v3 }, and let Fi = vjv3v2v3v7vU5 V6 V]
and F> = vivavgusvavsvy. Then (C — {Cy,C2}) U{C},C3, Fi, P} isaCCof
G and so (4) holds.

The proof when H = I’} is similar to that for the Case of 1 = 3. 1

Lemma 2.4. Suppose that H = T's or H = T'§ (see Figure 3) with an extra
edge e that is parallel to an edge of E(I's) — {viva,vv3,v3v,} such that H is
a subgraph of G with Ag(H) C {v1,v2,vs}. Let Vg = V(H) — {v1,v2,v3}
andlet G' = G — Vy. Then

cc(G) < cc(@) + 3. ©)



Proof: Let C be a CC of G’ and let Cy,C2,C3 be cycles in C containing v; vs,
vpv3 and v v;, respectively.

Assume first that H = I's. Thenlet C] = C1 — {vivs} + {viva, v4vs, vevi},
Ch = Cy — {vaus} + {vavs, vsv7, 1709, v913},and C3 = C3 — {n1v2} + {v1vs,
vsvz }, and let Fi = vjvsvsvevrvavavi, F2 = vivevgvsusvsva v andlet F; be
any cycle in G containing v3v7. ThusC—-{C,C2,C3 }U{C},C;,C3, Fi, P, F3}
is a CC of G and so (6) holds.

Now we assume that H has one multiple edge e. Without loss of generality, we
may assume that e is not parallel to v3 v7. Thus one can choose F3 above so that
e,vsv7 € E(F3) and so (6) holds also. 1

Lemma 2.5. Suppose that H = {T'(6),T(6)*} (see Figure 3) such that H is
a subgraph of G with Ag(H) C {wi, w2, wa}. Let e be an extra edge not in
E(G) that is parallel to wywy. If H =T (6), thenlet G' = G — {ws, ws, ws },
and if H =T (6)* (without loss of generality, we assume that the multiple edge
in H is parallel to one of {wywa, wsws, wswe, w2 ws, w2 ws, wywe }), then let
G' = G — {wa, ws, we} + e. In any case, we have

ce(G) < cc(G') + 2.

Proof: Let F} = wiwswawswsw; and F = whwswswswawz. LetC bea CC
of G' and let C, be a cycle in C containing w) ws. Assume first that H = I"(6).
Define C{ =C) — wws + W WaWsWeW3. Then (C — {Cl}) U {C{ , B ,Fz} is
a CC of G, and so (7) must hold.

Then we assume that H = I" (6)*. Since e is parallel t0 wyw; in G, we may
assume that e does not lie in C;. Let C. € C be a cycle containing e. Let C; be
obtained from C, by replacing e by a (wy, w» )-path in H that covers the multiple
edge. Hence (C — {C,C.}) U{C;,C., Fi, F»} is a CC of G, and so (7) holds
also. |

Lemma 2.6. Let H be a subgraph of G.

(i) Supposethat H = T'¢ (see Figure4)or H = T'¢ with an extra edge e parallel
to an edge of E(T¢ — {z172,%2%3,23%4,%41}) and with Ag(H) C
{z1,72,73,24}. IfH = T, then define G, = G — {zs,z¢}, and if H =
I'¢, thendefine Gy = G —{zs,z¢} + €', where e’ ¢ E(G) is an extra edge
parallel to x; x4. We have

ce(@) < cc(Gy) + 1. @)

(ii) Suppose that H = L¢ or H = L} (see Figure 4) with an extra edge e that
is parallel to an edge of E(T's — {z1%2, 2223, 2321 }) and with Ag(H) C
{z1,%2,73,74} ande' ¢ E(G) beanextraedge. IfH = Lg, then letG3 =
G—{zs,z6}+ 3274, andifH = Lg, thenletG, = G—{zs5,T6 }+T224+¢€’,



where ' is parallel to T4 35 if e is parallel to x3T¢ Or x416; Or where e' is
parallel to z, T4 if e is parallel to T, T¢ oOr x) x5; or where €' is parallel to
x124 ife is parallel to xy x5 orx,x¢. In any case, we have

ce(G) < ee(Gr) + 1. ®

(iii) LetL € {Lg,L§, L3} (see Figure 6) and lete' ¢ E(G) be an extra edge
parallel to xyz4. If H = L or H = L* with an extra edge e that is paral-
lel to an edge of E(H — {x1%2,%2%3,T3T4,%471}) and with Ac(H) C
{z1, 72, 73, T4}, then defining G3 = G — {z5,%¢,%7,23} + €', we have

cc(@Q) < ce(G3) + 2. (10)

(iv) LetLy = L§{ — zs. If H = LY or H = LY* with an extra edge e paral-
Iel to an edge in E(H) — {z1%2,%2%3,%3%4, 2471} and with Ag(H) C
{z1, 22,73, 4}, then defining G4 = G — {zs, 76,77}, We have

cc(Q) < cc(Gs) + 2. a1

(v) LetLyg = L§ — {zs,z¢} and let Ly = Ly — {z7,z3}. Suppose that H €
{Ls,Lg} or H € {Lg,Lg"} with an extra edge e parallel to an edge in
E(H) — {1132,%2%3,Z3%4,T4 71} and with Ac( H) C {z1,%2,%3,2a}.
IfH € {L'6, g}, thenletGs = (G—-{xs,xe,z1z4,z4a:3})/{zzz4},and
ifH € {Lg,Lg*}, thenletGs = (G—{zs,Ts, T1Z4,Taz3 }+€') /{2224 },
where ' ¢ E(QG) is an extra edge parallel to =, 73 . In any case, we have

cc(G) < ce(Gs) + 2. (12)

Proof: We shall show (i) first. Suppose that H = I'¢ and that C is a CC of G,
and let C, and C, be cycles in C such that z;z4 € E(C,) and z3z4 € E(C,).
LetC] = Ci — 7174 + T125%4, Cy = Ca — Z3T4 + Z32624, and let F =
T135T2T6T3T4T1. Then (C — {C,C2 }) U{C},C;, F}isa CC of G and 50 (8)
holds.

Suppose that H = I';’. By the case when H = TI's, we may assume that e
is parallel to one of {z,xs,z5%4,T2%¢,T6Z4} and so we can replace ¢’ by a
(z2, Z4) -path that passes the multiple edge e.

To show (ji) of Lemma 2.6, we assume that H = L¢ and let C be a CC of
G1. Let Gy, G, s € C be cycles containing 1 z; , 72 4 and z; z3, respectively.
Since no cycle can contain ; z3 , T2 T4, T2 T3 simultaneously, we may assume that
either Gy # G or G, # Cs.

IfC # G, thenletC) = Cy, — 7113 + 713677 and let C) = C) — x324 +
T2Z5T6¢Ts. Lel F = 1131376 252 . Replace z2z4 by z2z674 in any cycle in



C — {C1,C:} containing z,z,4 and still denote the resulting collection by C —
{C1,C,}, for convenience. Thus (C — {C1,C2}) U{C},C;,F}isaCCof G
and so (9) must hold.

IfC, # Cs,thenletC) = Cp — x4 + T2%6z4 and let C3 = C3 — 3373 +
Ty T5TeZ3,and let F = zyzs522x33631. Thus (C — {C,C3}) U{C;,C3}isa
CC of G. Hence (9) must hold again.

When H = L{, we can replace ¢’ in the cycle containing ¢’ by a path in H
containing the multiple edge and so (9) holds again.

To show (iii), we let C be a CC of G5 and let C,, Co, C3, Cs € C be cycles that
contain €', 3 4, 2324, and T4 Ty respectively.

Assume that H = Lj or Lg*. Since [¢'] = {¢/,z274}, we may assume that
Cis #Coand C; # C.. Let F| = z117282225T6 732471 and let Gy = Cop —
T2Z4 + 2753624, C4 = C3 — 2374 + 232574, C, = C, — € + x3277374 and
C} = Cs—z431+ 347731, a0d let F; be acycle containing z; z4 and the multiple
edge (if it exists). Thus (C — {Cy,Cs,Cs,Cc} U {Cy,C3,C;,CL, Fi, B2} isa
CC of G and so (10) holds also.

The proof for the case when H € {Lg,Lg,Lg',Lg"*} is similar to that for
H € {L{,L§"} and the proof for (iv) is similar to that for (iii). Thus they are
omitted.

We shall show (v) for H € {L{,L¢*}. The proof for H € {L§, Lg } is similar.
Let Let v denote the vertex in G's to which z3 x4 is contracted. Let C be a CC of
G' and let C,, Cs be cycles in C containing e’ and vz, respectively. (If H = Lg,
then just take C3 ).

IfC, = C3, thenlet F¥ = TyT2IT3IT6TST4T], F' = T2IST3T6T4T2 and let F"
be a cycle that contains the multiple edge e. Thus (C — {C3}) U{F', F",F"} is
a CC of G and so (12) holds.

Thus we assume that C, # Cs. Let C; = G[E(C3) — vz3]. Thus either
C} + z233 or C} + T334 is acycle in G. Note that any cycle inC — {C.,C3 } can
easily be adjusted to cycles in G (still denoted by C — {C,, C; }, for convenience).

Let My = 2132 35 T6 T3 Z4 %1, o = T223T6T4Z2, and let CL be obtained from
C. by replacing ¢’ by an (z;z3)-path containing e. If C; + z;z3 is a cycle in
G, then let Cf = Cj + 12763574 73; and if Cj + z3z4 is acycle in G, then let
Cj = C; + T4z 76 T5 3. Thus in any case, (C — {C3,C.}) U{Cy,C., Fi, P2 }
isa CC of G, and so (12) holds. 1

Let C be acycle of a plane graph G. Define In¢C to be the vertices of G inside
(exclusively) C. Define ExtC similarly. The cycle C is trivial if IntC = §; and
is acyclic if the underlying simple graph of G[ IntC] is acyclic.

A k-face of aplane graph G is a face of degree k. Define L(n) as the graph in
Figure 5.

Lemma 2.7. Let G be a plane triangulation with ;(G) = 1 and with n =
[V(GQ)| > 3. If the exterior face of G is a 2-cycle C, and if C is acyclic, then



G = L(n).

Proof: Let vy, v5 be the two vertices in V(C) and let ey, e; be the two edges in
E(C). Since u(G) < 1, and since G is a plane triangulation, e; must lie in a
3-face C, inside C. Let v3 be the vertex in V(C;) — {v1,v2}. If v3 has degree
at least 4, then since G is a triangulation, v3 and two of its neighbors other than
vy, v2 would form a 3-cycle inside C, contrary to the assumption that C is acyclic.
If v3 has degree 2, then we have n = 3 and G = L(3). Hence v3 has degree 3,
and so G — v, is also a plane triangulation with C as a acyclic exterior face. Thus
by induction, G — v3 = L(n— 1) and so G = L(n). |

Lemma 2.8. Let G be a simple plane triangulation. If the exterior face of G is a

3-cycle C and if C is acyclic, then either G contains a subgraph H € {L¢,T¢}
(using the notation in Figure 4) with Ag(H) C {z1,%2,23,24} or G = ' (n),
where n= |V(G)|.

Proof: Let C = viv2v3v). Since G is a plane triangulation, v v3 lies in a 3-face
C) = vavsvyy withv € IntC. Letvy = uy,u3, ..., u, = v3 be the neighbors of
v in G such that they are ordered clockwise by the planar imbedding of G.

Since G is a simple plane triangulation, vvj us v, vus us v, . .., must be 3-faces.
Since C is acyclic, eitherm = 3,0r4 < m < 5 and u3 = v;.

If m = 5 and u3 = v;, then G contains a subgraph H = I'¢ withz; = v;, 23 =
v2,Z3 = v,74 = v3. If m = 4 and u3z = v;, then, since vvvsv and vavuz vy
are now 3-faces, G = I'(5). Hence we may asssume that m = 3. If z3 = v,
then G = I'(4). Thus we assume that z; # v, and so G — v is also a plane
triangulation with C as the exterior face. By induction, Lemma 2.8 holds. 1

Lemma 2.9. Suppose that G is a plane graph, and that G has a nontrivial 2-cycle
C with V(C) = {v1,v2} and B(C) = {e;,e2}. Let H = G — ExtC.
(i) If H = L(3)* such that the extra edge e is parallel to vyvs, then letting
G' = G/vava, we have ce(G) < ce(G").
(ii)y If H = L(4), then letting G’ = G — IntC, we have cc(G) < cc(G') + 1.
(iii)y If H = L(4)* such that the extra cdge e is not parallel to any of {e,e2},
then letting €' be an extra edge parallel to ey and letG' = G — IntC + €',
we have ce(G) < ec(G') + 1.
(iv) If H is isomorphic to T (5)*, such that the exterior face of H is C, then
letting G' = G — IntC, we have cc(G) < cc(G") + 2.

Proof: (i) of Lemma 2.9 is trivial. We now show (ii). Let C be a CC of G’ and let
C be acyclein C containing e, . Define C] = C; — e; + {vjv3,v3v4,v4v; } arid
F= G[{e;,vlv4,v4v3,v3v2}]. Thus C — {Cl} U {C{,F} isa CC of G and so
(ii) of Lemma 2.9 holds.

Now we show (iii). Let C be a CC of G'. Note that [e;] = {e1,ez2,€'} in
G’ this time. We may assume that e; and €’ are in distinct cycles C and C.,

10



respectively. Define C| and F as above. Since e is not parallel to e, there is a
(v1,v2)-path P in H — {e;,e; } containing e. Define C, = C, — €' + P. Thus
C-{G,C.}u{C|,C,F}isaCCofG.

Now we show (iv). Let C be a CC of G’ and let C; be a cycle in C containing e;,
(1 < i £ 2). Note that no matter where e;, ez liein H, H — {e;, ez } always has
a spanning cycle and so H — {e;, ez} has two internally disjoint (v;, v2)-paths
Piand P,. LetC; = C; —e;+ P, (1 <1< 2). (WhenC;, =C, =C, let
C| = P, U P,.) Thus it is easy to see that the edges in H — E(P,) U E(P,) can
be covered by two cycles in H and so (iv) follows. 1

Define plane graphs I'* "> "¢ as the graphs in Figure 6.

Lemma 2.10. Let G be a plane triangulation with u(G) < 1 and with 4 <
[V(G)| < 5. If the exterior face of G is a 3-face, then G is isomorphic to onc
graph in {T'(4),T'(5),T(4)*,T(5*,T* I’}

Proof: The proof is straightforward. |

Foreachi, (1 < i < 5),defineI'{ to be the simple plane triangulation obtained
from I'; by adding a new vertex v in the exterior face of I'; and by joining vo to
each of v}, v2, v3 with a new edge, respectively.

Lemma 2.11. : If G is isomorphic to one of the graphs below,
{risri"r‘:s(r;")*’ (1 S i S 5))r(6)xr(6)+1L(6)|L(6)+)r‘6tr6*}v

then 2IV(E 3
3 2
Proof: The proof is routine and so is omitted. |

3. The Proof of Theorem 1.2
We argue by contradiction and assume that

G is a counterexample to Theorem 1.2 (13)
such that
[V(G)| + u(G) is as small as possible, (14)
and subject to (14),
|E(G)| is minimized. (15)

If G has two 2-faces, then we pick two distinct edges, e, e’ (say), from each of
these 2-faces. Thus p(G) = p(G — {e, e'}) + 2 and so by (14) and (15), G is not
a counterexample, contrary to (13). Hence we assume that

G has at most one 2-face. (16)

11



Since G is a plane triangulation, and by (14), we have
&(G) > 2 and §(G) > 3. an

Lemma 3.1. If C is a nontrivial 2-face of G, then C is the exterior face of G.

Proof: Suppose that G has a nontrivial 2-cycle C that is not the exterior face of
G. Suppose also that C is so chosen that there is no nontrivial 2-cycle properly
contained in the interior of C.
Case 1: |[nC|=1.

By (16) and (17), G[IC U V(C)] = L(3)*. Define G' as in (i) of Lemma
29.If |[V(G")] > 6, then by (14) we have

2(n-1)-3 +p(G’)+l
3 2 ’

ce(@) € ce(G) £

and so G is not a counterexample, a contradiction.

Hence by |[V(G)| > 6, |V(G')] = 5. It follows by Lemma 2.10 and by (17)
that G’ is either spanned by I" ( 5) with 4(G") = 3 or spanned by I'’> with u(G') =
4 Thus cc(G) < cc(G') < 4, by (i) of Lemma 2.9, a contradiction.

Case 2: |IntC| = 2.

By (16), GIItC U V(C)] = L(4) or L(4)*. Define G' as in (ii) or (iii) of
Lemma2.9. If [V (G')| > 6, then by arguing as above, one can derive a contradic-
tion. Hence we assume that |[V(G')| < 5, and so by Lemma 2.10 and by the fact
that G’ must have a 2-face, G’ is isomorphic to one of {I" (4)*, ' (5)*,'* '3},
Since ce(T'(4)*) = cc(T*) = 2 and cc(I'(5)*) = ec(I"3*) = 3, and since
u(G") < 1, it follows by (ii) and (iii) of Lemma 2.9 that G satisfies (1), contrary
to (13).

Case 3: |IntC] > 3.

We may similarly assume that | ExtC| > 3. If both |IntC| = |EztC| = 3,
then G[IC U V(C)] = I'(5)* and so by Lemma 2.10 and by (iv) of Lemma
2.9,¢c¢(G) < 3+ 2= 5, contrary to (13). Thus we assume that | EztC| > 4. Let
H=G[InCUV(C)]. If|[V(H)| > 6,then by Lemma 2.1, by (14), and noting
that

p(H) + p(G - InC) = p(G) + 1,

we have

ce(@) < ce{G—IntC) + cc(H) = 1 £ ————

2n-3  u(G)

Hence we assume that |[V(H)] < 5. Since H has an exterior 2-face, it is then
easy to see by Lemma 2.9 that G satisfies (1), contrary to (13). 1
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Lemma 3.2, u(GQ) < 1.

Proof: Suppose that 4(G) > 2. Then by (16) and Lemma 3.1, G must have
parallel edges e, e} and parallel edges e, e5 with [e;] # [ez] such that, for
each i, G[{e;, e;}] is a trivial 2-cycle of G. Note that G' = G — {e],e4} isa
plane triangulation. By (17) and since [e1] # [e2], G has a cycle containing both
€} and e). Note that 4(G') = u(G) — 2. By (15),

2n—-3  p(G)-2
3 T 2 °
contrary to (13). |
Lemma 3.3. Each of the following subgraphs is forbidden in G:
() He{L(3)*,L(4),L(4)*} withAc(H) C {v1,v2}.
(i) H=T;orT} with Ag(H) C {v1,12,13},(1 <i<5).
(iii) H e {L,L*} where L € {T¢, Le, Ly, Ly, Ly, LY} with Ac(H) C {=,,

Ty, T3, T4}

(iv) H=T(6) orT(6)* with Ac(H) C {v1,v2,v3}.

Proof: Assume that H = I'; and let G’ be defined as in Lemma 2.2. If |[V(G")| =
3,then G =T orI'} and so (1) holds for G. If |[V(G")| > 6, then by (14) and
by Lemma 2.2,

co(G) L ce(G) +1 <

1,

2(n—-3)-3 + u(G) +1

1
cc(@) <ee(GY+1<L 3 ) »

and so G is not a counterexample, a contradiction. Thus by [V (G)| > 6, we have
4 < |V(G")| £ 5. Thus by Lemma 2.10, one can easily check that G is not a
counterexample, contrary to (13). :
The proofs for the other cases are similar, by using reduction lemmas in section
2. |
Proof of Theorem 1.2: Since G is a plane triangulation, the exterior face of G
is either a 2-face or a 3-face. Since |V(G)| > 6, G must have a nontrivial 3-
cycle. If every nontrivial 3-cycle of G is acyclic, then in particular, the exterior
3-face or the 3-face obtained by deleting an edge from the exterior 2-face is also
acyclic. Thus by Lemma 2.7 and Lemma 2.8, G must contain either ['s, L¢ or
" (6), contrary to Lemma 3.3. Hence G has a cyclic 3-cycle. Let Cp be a cyclic
3-cycle of G such that
|IntCo| is minimized. 19)

By (19), any 3-cycle contained in G[IntCp] is either trivial or acyclic. By
Lemmas 2.8 and 3.3, if Z is a nontrivial 3-cycle in G[ ImiC,], then

|IntZ) < 2. (20

13



Let M = G[IntCo UV (Ch)]. Let C = ujuzuzu; be atrivial 3-cycle in M
such that [V(C) NV (Cp)| = 0. Since G is a plane triangulation with 4(G) < 1,
M has a 3-cycle containing u;ui+1, (1 = 1,2,3 (mod 3)). Let C; be a 3-cycle in
M containing u;u;.1 such that E(C) N E(G[IntC; UV (C;)]) = {u;us } and
such that

|IntC;| is maximized. 1)

Case 1: Fori # j, BE(C;) N E(C;j) = 0.

Let C1 = ujuzusur, Co = uaususuz, and Cs = ujuzuguy. Thus ug, us, ug
are distinct.

Suppose first that | [2C;| = 0, (1 < i < 3). Define

Go = (G — {u1ug, usus,uaus }) /E(C), 22)

and let u denote the vertex in G, to which C is contracted. By (21), no new
multiple edge will be produced by the contraction, and so

B(Ga) < (). (23)

Since G is a plane triangulation and since the boundarics of other faces not incident
with V(C) are unchanged, G, is also a plane triangulation. We shall show

cc(@Q) < ce(G,) + 1. 24

"Let C be a CC of G,, and let C; € C such that uu; € V(C;), (4 < j < 6).
For any cycle L in G,, L can be extended to a cycle L' in G, by using edges in
E(Q), if neccessary.

It is easy to sec that we can extend Ci, Cs, Cs 0 Cj, Cs, Cg so that any spec-
ificd edge in E(C) can be covered twice by Cj, Cs, C.

In fact, without loss of generality, we may assume that [[uju2]| = 2. Define
L;j = G[E(C;) — {uuq, uus, uue}). When Cy, Cs, Ce are distinct, L; is a path
in G joining u; to a vertex u; € V(C), (4 < j < 6). If Cs = Cs, then define

4, Cé as follows:

if ug = uy, then G} = L4 + usuzujusus and C§ = Lg + uguzuau;;

ifu'6 = uy, then Cé = L4 + ugujuzuzus and C{; = Lg + ugusuiuy;

if ug = u3, then G} = L4 + uguzujuzus and Cg = Lg + ugujupu3.

When Gy, Cs, Ce are all distinct, define Cj, Cs, C§ as follows:

if us = u;,then G5 = Ls + usuauguy;

if u§ = uz, then C§ = Ls + usuzu uz;

if u§ = u3, then C§ = Ls + usua ujus;

ifu'6 = ul,ﬂ'len% = Lg + ugusuzuy;

ifug = uz,then Cg = Lg + uguuaus;

if ug = u3, then C = L¢ + usuiup ua;

14



and choose C; so that the remaining edge in E(C), if there is any, is covered by
C.

Let Fi = ujuquzususuguy. Then {L’' : L € C}U{F}isa CCof G and so
(23) holds.

If [V(G,)| > 6, then by (14), (22) and (23),

2An—2) -3 WA

cc(G) < cc(Go) +1< 3 > ,

contrary to (13). .

If [V(G,)| < 5. then since |[V(C) N V(Cy)| = 0 and since u is a vertex of
degree at least 3 in G, it follows by Lemma 2.10 that G € {I',I}",I'},(I'{)*}
and so by Lemma 2.11, G is not a counterexample, either.

By (20), we need to consider the cases when exactly & of the C;’s are nontrivial,
where 1 < k < 3. The proofs for these subcases are similar to that when k = 0
and so are omitted.

Case 2: For some i # j, E(C;) N E(C;) # 0.

If B(C;)NE(Cj) # @, foreveryi # j,thenus = us = ug, contrary to Lemma

3.1 or to the assumption that » > 6. Hence we assume that

E(G3) N(E(C1) UE(C,)) = Band us = us. (25)

(2A) IntCy # @ and InC, # @ or |ICs| > 1 and IntC, = IntC, = §.
Then GLIntCy U IntCy U {uy1, uz, u3, us }] contains a subgraph isomorphic to
oneof {I's,I'g", L7, L7" }, contrary to Lemma 3.3. Thus we assume that

IntC, = 0. (26)

(2B) |[IntCy| = 0 and [IntC,| > 0. Then G has a forbidden subgraph H
isomorphic to one of {Lg, L¢}. This case can be excluded by applying (v) of
Lcmma 2.6.

(2C) IntC) = IntC; = IntC3 = @ and us € It Cy.

Since G is a triangulation, there arc u; and ug in V(G), such that Gy =
ujurusuy and Cs = uzuguguz are 3-cycles satisfying (21). Applying the previ-
ous argument to the 3-cycles C4 and Cs, we conclude that IntCy = IntCs = 0.
Let H = G[{u1,u2,u3,us}] and let Gy = (G — {u1ue,u7us,usus })/E(H).
Imitating the proof for (24), we can similarly show first that

#(Gh) < u(G) and cc(G) < cc(Gh) + 2, @7

and then that G is not a counterexample, contrary to (13).
(2D) IntCy = IntCy = ItCs = P and ug & IntCo.
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Thus u4 € V(Co). It follows from Case 1 and Cases (2A) - (2C) that for
any trivial 3-cycle C' = 2123 232; in G[ IntCy], there must be 24,25 € V(Cp)
such that z4 23 21 24, 24 23 23 24 and 2} 23 25 2 are trivial 3-faces in M, with z; = u;
(1 € i< 4) and 25 = ug. Note that C" = 2 25 24 z; must be a trivial 3-face since
otherwise G contains a L¢, contrary to Lemma 3.3. Call G[{z), 22, 23, 24,25 }]
an associated I" (5) with edge z4 25 € E(Cp) . Foreachedge in E(Cp), there is at
most one associated I' (5) with the given edge. Delete 2y, 25 from the associated
I' (5) with z425, and do the same for other associated I (5)’s with other edges
in E(Cp), (if there are any). Then the resulting graph is again a triangulation in
which Cp is an acyclic 3-cycle, and so by Lemmas 7 and 8, either M contains a
trivial 3-cycle that satisfies Case 1 or one of Cases (2A) - (2C), or G contains Lg
orI'(6),or M — E(Cy) is isomorphic to the graph L;; in Figure 8.

Thus we may assume that M — E(Cop) = L11. Let G. = G — {z3,29,210}.
Then it is easy to see that

cc(G) < cc(G.) + 2. (28)
Thus by (14) and since |V (G.)| > 7, G must satisfy (1), contrary to (13).
Since every case lcads to a contradiction, Theorem 1.2 is proved. 1
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