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Abstract. We give a list of all graphs of maximum degree three and order at most
sixteen which are critical with respect to the total chromatic number.

Introduction

A total colouring of agraphGisamap ¢ : E(GYUV(G) — C,where( isasetof
colours, such that no two incident or adjacent elements of E(G) U V(G) receive
the same colour. The total chromatic number xr(G) of G is the least value of [C|
for which G has a total colouring. The maximum and minimum degrees of G are
denoted by A (G) and 6(G) respectively.

In 1965 Behzad {1] conjectured that, for a simple graph G

A(G) +1 L xr(G) LA(G) +2.

The lower bound is trivial, but the upper bound has so far been intractable. If
x7(G) = A(G) + 1, then G is Type I, and if xp(G) = A(G) + 2, then G is Type
2. So far no simple graphs have been found which are not Type 1 or Type 2. The
total chromatic number conjecture of Behzad [1] is known to be true for graphs G
salisfying A(G) < 4 orA(G) > 2|V(G)|([9)). Ithas also been proved for quite
a large number of other classes of graphs. McDiarmid and Sanchez-Arroyo [10]
have recently shown that the problem of determining the total chromatic number
of cubic bipartite graphs is NP-complete.

A graph G is critical with respect to the total chromatic number if it is connected
and

xT(G\e) < xr(G)
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for each edge e of G. In this paper we give a list of all critical graphs of maximum
degree three and order at most sixteen. The graphs are listed overall according to
the number of vertices they have (i.e. their order). Subject to that, they are listed
in eigenvalue order, with the graphs with largest eigenvalue preceding graphs of
lower eigenvalue; when the largest eigenvalues are the same, the second largest
eigenvalue is used to determine the order. The critical graphs of maximum degree
three and order at most ten were found earlier by Chetwynd [3].

This list suggests various constructions for obtaining critical graphs of maxi-
mum degree three, and we hope to describe some of these constructions in a later
paper. For the most part, the graphs have been drawn so as to suggest the most
obvious construction.

There is little in the literature concerning critical graphs. However it is shown
in [4] that the circuits C, are critical if and only if n £ 0 (mod 3), n > 3. Also
in [4] it is shown that the Md&bius ladders M, are critical if n > 2,n # 3
(see 8.1, 10.7, 12.9, 14.5 and 16.11 in the attached list), and that 6.1 and 10.6 are
critical. It is well-known that, for n > 1, K, is Type 2, and it follows from the
result in [7] that if J is a subgraph of K, with j + |E(J)| = n— 1, where j is
the maximum size (i.e. number of edges) of a matching in J, then K2,\E(J) is
critical. It similarly follows from the result in [8] that if H is a subgraph of K5,
with h + |E(H)| = n— 1, where h is the maximum size of a matching in H,
then K, \E( H) is critical. Bor Liang Chen and Hung-Lin Fu [2] have recently
proved aresult which implies that if G is a graph of order 2 n and maximum degree
2n—2 then G is critical if and only if G consists of the star K 5,3 and a disjoint
K.

2. Production of our list

Our raw material was the list of all cubic graphs of order N < 14 produced
by Halberstam and Quintas [6]. Initially a computer program was written to test
whether a graph was critical. Applied directly to Halberstam and Quintas’ list,
we found that the number of cubic graphs of order N < 14 compared with the
number of critical cubic graphs of order N was as given in Chart 1. By applying
the method described in this paper, we also found the number of critical graphs of
order 16.

‘We used the list to generate all cubic graphs of order 16 by taking in tun each
pair of edges from each cubic graph of order 14, inserting a vertex into each edge
of each such pair, and joining the two inserted vertices. We need the following
lemma.

Lemma 1. The only simple cubic graph of order 16 which cannot be obtained
from a simple cubic graph of order 14 by the process described is the graph A of

Figure 1.
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N Cubic Critical Cubic
2 1 1
6 2 0
8 5 1

10 19 8

12 85 14

14 509 6

16 - 14

Chart 1
A:
Figure 1. The graph A.

Proof of Lemma 1: Let B be a cubic graph of order 16 which cannot be produced
by our process. Then the removal of any edge and the replacement of each of the
pair of edges joined to cach of the resulting vertices of degree two by single edge
yields at leat one double edge. This removal and replacement process is illustrated
in Figure 2.

If the two resulting edges, say e; and ez, meet in two vertices, so that e; and
ez together form a double edge, then originally we had the graph I of Figure 3.

If the two resulting edges e; and e; meet in one vertex, so that, for example,
c = d, then originally B contained as a subgraph the graph of Figure 4. But since
at least one double edge is produced, ¢ must be joined to at least one of f and g,
say f; then we may suppose that originally we had the graph 1 of Figure 3.

If the two resulting edges do not meet, but we now have a double edge joining,
say, c and f, then originally B contained as a subgraph the graph of Figure 5, with
¢, d, f and g all distinct.
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By applylng the earlier argument to different edges we see that c and f are both
joined to the same further vertex ( h), so that we again have one of the diamond
shapes of Figure 3 with cf as the central edge; we also see that either d and g are
joined, and that dg is a central edge of a diamond, or that d and ¢ are not joined,
but there is a diamond on d and on g.

In the latter case there is no way of completing the subgraph to form a cubic
graph of order 16 which cannot be produced by our process (although it can be
completed to form a cubic graph of order 14, for example, which cannot be pro-
duced by our process from a graph of order 12).

Thus we must have a second diamond with dg as the central edge. It now fol-
lows easily that B = A. |

Our procedure normally produces several copies of the same graph. We tested
each copy for criticality, and then removed duplications. By this means we found
the 14 critical cubic graphs of order 16.

It is obvious that critical graphs with maximum degree three are connected and
have minimum degree at least two. If we take a connected graph of maximum
degree three and minimum degree two, and then ‘forget’ the vertices of degree
two [i.e. replace a pair of edges e; and ey incident with vertices a, b and b, ¢
respectively and replace them by an edge e incident with a and ¢, and then repeat
this operation as necessary], we may produce some multiple edges. But since our
data base is only a list of simple cubic graphs, we need to examine carefully how
to produce all critical simple graphs of maximum degree three and order at most
sixteen from this list.

We shall call vertices of degree two diodes. If G is a graph of maximum degree
three and minimum degree at least two, let G, be the cubic (multi-)graph obtained
from G by forgetting the diodes. We first notice that if we can produce a double
edge by ‘forgetting’ one diode, then the graph cannot be critical. We state this
formally in Lemma 2.

f
B:
F 2’4 204 ﬂ
a b c d
Figure 6. The graph B.

Lemma 2. Ifagraph G of maximum degree three contains the graph B with f
as a diode of G, then G is nof critical,

Proof: Suppose that G is a critical graph with maximum degree three which con-
tains B as a subgraph, with f as a diode of G. Then G\{f} can be coloured with
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4 colours, say 1, 2, 3 and 4. If a and d have the same colour, then we may sup-
pose that a, ab, cd, d are coloured 1, 2,2, 1 or 1, 2, 3, 1 respectively. But in both
cases, the colouring can be extended to a colouring of G. If e and d have different
colours, then we may suppose that a, ab, cd, d are coloured 1, 2, 1, 2, or 1, 2,
3,2,0r1,3,3,2o0r1, 3,4, 2, respectively. However the first possibility can be
excluded, for there is no way of extending this to a colouring of the path a, ab,
b, be, ¢, cd, d; in the other three cases, the colouring can be extended to a total
colouring of G. This contradiction proves Lemma 2. 1

By contrast, if there are no single diodes which can be ‘forgotten’ to produce a
double edge, but there are two adjacent diodes which can be forgotten to produce
a double edge, then the graph may well be critical. Thus we have to allow for the
replacement of an edge e = £m in a cubic simple graph by the graph C of Figure 7.

c d
C:
O o O -0
e f g m
Figure 7. The graph C.

As it turns out, we only need to consider graphs obtained from simple cubic
graphs by inserting one or two vertices in some edges, and by replacing some
other edges by the graph C. But this is not obvious.

To show this, we first observe that a critical graph cannot contain three diodes
a, b, ¢ with b adjacent to both a and c.

E:  o— o— —o- o0— —o
g a b c £
Figure 8. The graph E.

Lemma 3. Ifa G of maximum degree three conlains the graph E as a subgraph,
with a, b, ¢ as diodes of G, then G is not critical.

Proof: Suppose that G is critical. Then G\{bc} can be totally coloured with four
colours. But it is easy to verify that, whatever the colours of f and g and the edge
incident with them, the colouring can be extended to a total colouring of G. |

Next we show that if a critical graph contains C, then £ and m must have degree
three.
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Lemma 4. Ifa graph G with maximum degree three contains the graph C as a
subgraph, with c and d as diodes of G, and if £ or m is a diode, then G is not
critical,

Proof: Suppose that G is a critical graph and that £ is a diode of G. Then G\{cd}
can be totally coloured with four colours. It is a simple matter to check that no
matter what colours are used on m and the edges incident with m, and whatever
colours are used on £ and the edges of G incident with m other than £, then the total
colouring can be extended to a total colouring of all of G. This is a contradiction.
Therefore G is not critical. |

We next observe that if a graph G contains any of the following subgraphs, then
it cannot be critical.

b
F:
G:
8
b c
o f a d g
h e
Figure 9.
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Lemma S. Ifagraph G of maximum degree three contains any of the graphs F,
H, J as subgraphs, with b, c, e, h (as appropriate) as diodes, then G cannot be
critical.

Proof: This is similar to the proof of Lemma 3. 1

It follows from Lemmas 2, 3, 4, and § that, if G is critical and G contains a
double edge joining two vertices f and g, then, in G, f and g are joined as in
the graph C, and it also follows that £ and m are not diodes. If in Gy £ and m are
non-adjacent then the subgraph C in G can be obtained by replacing a simple edge
joining £ and m in an appropriate cubic graph. This is not possible, though, if £
and m are adjacent in G (the case £ = m clearly does not occur if G is critical).

The next lemma shows that this exceptional case does not occur.

c d

L. a b
o— o —0
1 f a m

C d

M: a b
o— o —0 o -0
1 f e a m

c d

N: a b

o— o o
1 f e h g m
Figure 10.

Lemma 6. Ifagraph G of maximum degree three contains any of the graphs L,
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M and N as subgraphs, with c, d, e, h (as appropriate) as diodes, then G is not
critical,
Proof: This is similar to the proof of Lemma 2. [ |

We conclude that if G has maximum degree three and is critical, and if G
contains a double edge joining, say, vertices f and g, and if the other vertices
adjacent to f and g are £ and m respectively, then there is a cubic graph with £ and
m joined by a simple edge e from which G can be formed by replacing e by the
graph C.

The following lemma shows that in fact we can assume that the double edges
in Gy are not linked together by an edge. It follows that if G’y contains double
edges then G can be formed from some simple cubic graph G* by replacing some
simple edges of G* by the graph C and by inserting one or two vertices in some

other edges of G*.
a b c d
P:
c; A - T - - q

Figure 11,

Lemma 7. If a graph G of maximum degree three contains the graph P as a
subgraph, with a, b, c, d as diodes, then G is not critical.

Proof: This is similar to the proof of Lemma 3. ]

If G is critical, then Gy is not the graph consisting of two vertices joined by
three edges. For it is easy to check that all simple graphs obtained from such a
graph by inserting one or two vertices into at least two of the edges are Type 1.
This final remark proves the following lemma.

Lemma 8. Each critical graph of maximum degree three can be oblained from
a simple cubic graph by replacing some of the edges by the graph C, and by
inserting one or two vertices in some other edges.

Lemma 8 is of course the key to our method. From the list of cubic simple
graphs of order up to 14, we first generated all the critical cubic graphs of order
16, as described earlier. We then generated the critical graphs with one dlode, then
those with two diodes, then those with three diodes, etc.. The method was s:mply
to insert into different edges of each simple cubic graph of the appropriate orders
either one vertex, or two vertices, or to replace the edge by the graph C, in such
a way that the graph obtained has the required number of diodes. The graph was

then tested for criticality.
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3. The list of critical graphs

The graphs are listed according to the number of their vertices, and, subject to
that, in the order of their largest eigenvalues; when the number of vertices and the
largest eigenvalue is the same, the second largest eigenvalue is used to decide the
place in the list. Each graph is given with an indication of which graph in Hal-
berstam and Quintas’ list it is derived from (by inserting vertices and by replacing
edges by the graph C). For example graph 12.18 has, in brackets, N3 = 4. This
indicates that 12.18 is derived from the fourth graph of order eight in Halberstam
and Quintas’ list.

We first collect together some facts which can be gleaned from the list. The
number of critical graphs with a given order and number of diodes is given in
Figure 12; note that the number of diodes necessarily has the same parity as the
order.

Number of diodes Total
Order | Oor 1 2or3 | 4o0r5 25
1 0 0 0 1

5 0] 0] 0] 0 0]
6 0 1 0 0 1
7 1 0 0 0 1
8 1 o 0 0 1
9 3 1 0] 0] 4
10 8 0] 0 0 8
11 0 1 0] 0 1
12 14 10 0 0 24
13 3 0 0 0 3
14 6 12 1 0 19
15 71 2 0 0 73
16 14 14 1 0 29

Figure 12. The number of critical graphs with given order and number of diodes.
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Despite the irregularities at the start, it seems highly likely that the number of
critical graphs of maximum degree three with a given number d of diodes increases
monotonically with the order (of the same parity as d) from some point onwards.

We now give the list of critical graphs (note that there are critical graphs with
maximum degree less than three, namely K> and Capm+1,Camsz (m=1,2,3,...);
these are not included in the list below):
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