Scheduling Conditional Branching using
Representative Task Graphs

Hesham El-Rewini and Hesham H. Ali

Department of Math and Computer Science
University of Nebraska at Omaha
Omaha, NE 68182-0243

Abstract. We study the problem of scheduling parallel programs with conditional
branching on parallel processors. The major problem in having conditional branching is
the non-determinism since the direction of a branch may be unknown until the program
is midway in execution. In this paper, we overcome the problem of non-determinism
by proposing a probabilistic model that distinguishes between branch and precedence
relations in parallel programs. We approach the problem of scheduling task graphs that
contain branches by representing all possible execution instances of the program by a
single deterministic task graph, called the representative task graph. The representative
task graph can be scheduled using one of the scheduling techniques used for determin-
istic cases. We also show that a schedule for the representative task graph can be used
to obtain schedules for all execution instances of the program.

1. Introduction

A recent survey by Casavant [3] and related studies [6,15] have shown that the
problem of optimally scheduling parallel program tasks on parallel computers is
NP-hard in its most general form as well as many special cases. The complexity of
the problem rises even further when some important factors such as communica-
tion and conditional branching are considered. Several researchers have studied
restricted forms of the problem by constraining the task graph representing the
parallel program or restricting the parallel system model [8,9,10,11,12].

An optimal schedule is an allocation and ordering of parallel program tasks
on multiprocessor system such that the tasks complete in the shortest time. We
distinguish between allocation and scheduling. An allocation is an assignment of
the program tasks to the processors [1,2,5,13]. An allocation may result in a non-
optimal schedule, because the order of execution of each task plays an important
role in determining the completion time of the program. Scheduling determines
both the allocation and the execution order of each task in the parallel program.

Few researchers have investigated the problem of scheduling task graphs that
contain conditional branches. This is mainly due to the difficulty in modeling the
problem in its general form as well as the associated non-determinism since the di-
rection of a conditional branch is unknown before execution. In [14], Towsley in-
troduced a computational model of a distributed program containing probabilistic
branches and an allocation algorithm based on the shortest path method. Chou and
Abraham [4] considered a computational model that includes conditional branch-
ing and concurrent execution of modules. The models given in [4,14] are not

JCMCC 10 (1991), pp. 151-160

general enough to accommodate the most general form of the problem and lack
the distinction between branch relations and dependency relations among tasks.
Both methods can be classified as allocation techniques rather than scheduling
techniques.

In this paper, we propose a new model to represent parallel programs contain-
ing conditional branching in the most general form. The model consists of two
graphs; the Branch Graph and the Precedence Graph. We also introduce a new
approach to deal with the non-determinism in scheduling conditional branching.
Our approach is based on representing all execution instances of the parallel pro-
gram by one representative task graph. A deterministic scheduling technique can
then be applied to schedule the representative task graph. The obtained schedule
is used to generate schedules for all possible execution instances of the program.

The paper is organized as follows. In Section 2, the new parallel model is de-
scribed. Section 3 introduces the new scheduling approach. We give an illustrative
example in section 4 and the concluding remarks are given in Section 5.

2. The Parallel Program Model

In this model, the behavior of a parallel program is represented by two acyclic
directed graphs called the Branch Graph, G = (T, Ey) and the Precedence Graph,
H = (T, E,), where T is asetof M vertices representing the program tasks, E is
a set of branch edges, and E, is a set of precedence edges. An execution instance
of a program is defined as the set of tasks that are selected for execution at one
time for some input.

A branch edge (T;,Tj) € Es implies that there exists some execution instance
of the program that includes the tasks T; and Tj. It also implies that there is a
conditional test associated with T; that decides whether task Tj is going to be
part of the same execution instance. Associated with each branch edge (T3, T})
is P(T;,Ty), the probability of having T} in the same execution instance with T;.
Let IMS = {vy,v3,...,vn} be the set of all immediate successors of vertex u in
the Branch Graph, then Y"1, P(u,v;) = 1.

A Branch Graph consists of a collection of connected components. Each com-
ponent is a Fan Graph, which can be defined recursively as follows. A directed
acyclic graph with n+ 2,n > 1 nodes is called a Fan Graph iff it has = inde-
pendent nodes with one common parent (s) and one common child (¢) as shown
in Figure 1. If G is a Fan Graph, then a graph obtained from G by replacing any
node by a Fan Graph is also a Fan Graph. It can be noticed that Fan Graphs form
a special class of Series-Parallel graphs. Fan Graphs are typical in expressing se-
lections (branching) in structured programming. Figure 2-a shows an example of
a Branch Graph, consisting of 21 nodes, that represent branching in a parallel pro-
gram. The number shown inside each node is the node title and the number next
to an edge (i,) represent the parameter P(4, 7). For example P(1,3) = 0.2.

152

A precedence edge (T3, T;) implies that Task T} cannot start execution until af-
ter the completion of task T;. The precedence edge (T}, T;) might also represent
data flow between tasks T; and T;. Associated with the edge (T, T;) is the data
size D(T;, T;), which might have the value zero if there is no dataflow between
the two tasks. Associated with each task T; is the number of instructions to be exe-
cuted IN S(T;). Figure 2-b shows an example of a Precedence Graph, consisting
of 21 nodes, that represent precedence relations as well as dataflow in the parallel
program. The number shown in the upper portion of each node is the task title,
the number in the lower portion of node 1 represents the parameter I N S(1), and
the number next to an edge (4, 7) represents the parameter D(4,). For example
INS(4) = 11 and D(4,5) = 10 while D(18,19) = 0 indicating that task 18
must precede task 19 and there is no dataflow between them.

(2)
® @ ©

Figure 1 Fan Graph

3. Scheduling Task Graphs with Branches

In this section we introduce a new approach to handle conditional branching in the

scheduling problem. In this approach, the probabilistic task graph is approximated
by exactly one deterministic task graph, called the Representative Task Graph, that
represents all possible execution instances. Each node in the representative task
graph represents one or more tasks of the original set of tasks. Similarly, each edge
represents one or more precedence relations in the original Precedence Graph. The
representative task graph is selected such that any one of its feasible schedules
provide feasible schedules for all possible execution instances of the program.
The conventional techniques used for scheduling deterministic task graphs without
branching can be used to schedule the obtained task graph [7,8,9,12].

In order to achieve that, we add one restriction to the Precedence Graph. We
assume that if two nodes u and v have a common parent and a common child
in the Branch Graph, then there exists no node z such that (z,) and (v, z) are
edges in the Precedence Graph. This is typical in several applications in which the
alternative modules of a selection are related in a similar way with other modules

153

(a) The Branch Graph (b) The Precedence Graph
Figure 2 A Parallel Program Model

in the program. We also assume that the branching in the prograrn is free of nested
conditional selections. This restriction implies that the branch graph consists of a
collection of components. Each component is a Restricted Fan Graph, which is a
Fan Graph with the restriction that if a node has only one parent, it cannot have
more than one child. At the end of this section this restriction will be relaxed and
a method will be suggested to accommodate nested branches.

The basic idea in this approach is to find some tasks with common properties in
order to be able to represent several tasks by one task. These properties express
the way each task is related to other tasks in the program. A task can be related
to other tasks in several ways including precedence relation, data dependency and
occurrence in some execution instances. The following definitions will be used to
describe these properties.

Similar nodes. Two nodes u and v are said to be similar if they have the same sets
of successors and predecessors in the Branch Graph. In other words, similar nodes
are those that are related in the same way to all other nodes in the Branch Graph.
Notice that the concept of similarity is transitive.
Twin nodes. Two nodes u and v are said to be twins if they satisfy the following
conditions:

1 u and v are similar

2 u and v have the same sets of successors and predecessors in the Precedence

154

Graph
3 D(z,u) = D(z,v), Vz such that (z,v) € E,
4 D(u,y) = D(v,y),Vysuchthat(v,y) € E,

In other words, twin nodes are those that are related in the same way to all other
nodes in both the Branch Graph and the Precedence Graph.

The scheduling technique used in this section is based on the following Lem-
mas. The proofs of Lemmas 1 and 2 follow immediately from the above defini-
tions.

Lemma 1. Given a Branch Graph, G = (T, Ey) and u,v € T, if u and v are
similar then there exists no execution instance that contains both of them.

Lemma 2. Given a Branch Graph, G = (T, E;) and u,v € T, Iif u and v are
twins and they require the same amount of computation, then an optimal schedule
for an execution instance, E1, containing u can be obtained by replacing v by u
in an optimal schedule for an execution instance, EI,, containing v, where (EI,U
EL) — (EI, N EL) = {u,v}.

Corollary 1. Given a parallel program model represented by Branch Graph, G =

(T, Ey) and Precedence Graph, H = (T, E;), if every pair of similar nodes are
twins with the same amount of computation, then the parallel program model can
be reduced to exactly one deterministic task graph called the Representative Task
Graph, F = (V,E), where V C T and E C E,. An optimal schedule for the
tasks contained in any execution instance can be obtained from scheduling the
tasks contained in the representative task graph.

Proof: The Representative Task Graph, F' = (V, E), can be constructed as fol-
lows. The set of tasks V' can be obtained from the Branch Graph by removing
all nodes except one from every set of twins. The obtained set of nodes, V' forms
an execution instance that is isomorphic to all possible execution instances of the
program. Consequently, using the same scheduling technique, the schedules of
all possible execution instances are also isomorphic. The set of edges E can be
obtained from the Precedence Graph, H = (T, E;) as follows. If two nodes
u,v € V and the edge (u, v) € E, then we add the edge (u,v) to the set E.

Given the optimal schedule of the tasks of the representative task graph, we can
construct an optimal schedule for other tasks as follows: if task v € V is scheduled
on processor P, then any twin of v will be assigned to the same processor P
with the same execution order. Recall that two twins can not belong to the same
execution instance (Lemma 1).

Lemma 3. Given a parallel program model represented by Branch Graph, G =
(T, By) and Precedence Graph, H = (T, Ep). If every pair of similar nodes
are twins, then then the parallel program model can be reduced to exactly one
deterministic task graph called the Representative Task Graph, F = (V, E), where

155

V C T and E C E,. Anoptimal schedule for the tasks contained in any execution
instance can be obtained from scheduling the tasks contained in the representative
task graph.

Proof: The Representative Task Graph, F = (V, E), can be constructed as fol-
lows. The set of tasks V can be obtained from the Branch Graph by removing all
nodes except the one with maximum computation time from every set of twins.
The execution instance corresponding to the set V' is isomorphic to all possible ex-
ecution instances of the program in all aspects except the amount of computation
needed at each task. Using the same scheduling technique, feasible schedules of
all possible execution instances can be obtained from a schedule for the represen-
tative task graph. The task with maximum amount of computation is selected from
every set of twins to guarantee feasible schedules for all other tasks. Selecting a
different one might generate schedules that are not feasible for other tasks. Given
a schedule of the tasks of V', we can construct a feasible schedules for other tasks
as follows: if task v € V is scheduled on processor P, then any twin of v will be
assigned to the same processor P with the same starting time of execution.

In the general case, the similar nodes might not be twins. Extra edges might be
added and the parameter D(¥,) associated with some edges might be modified in
the Precedence Graph in order to guarantee that every pair of similar nodes are also
twins. Adding the new edges should not create conflicts with the original set of
edges. We define the Augmented Precedence Graph to be the original Precedence
Graph along with the new added edges and modified parameters. The following
theorem defines the Augmented Precedence Graph formally and describes how to
handle the general case of scheduling parallel programs with branches.

Theorem 1. Given a parallel program model represented by Branch Graph and
Precedence Graph, the parallel program model can be reduced to exactly one de-
terministic task graph, called the Representative Task Graph after augmenting the
Precedence Graph. The schedule obtained from scheduling the representative task
graph can be used to schedule the tasks contained in other execution instances.

Proof: The proof is divided into two steps; constructing the Augmented Prece-
dence Graph and using the previous Lemmas to generate the Representative Task
Graph.
Step 1: Given the Branch Graph, G = (T, E;) and the Precedence Graph, H =
(T, E,) the Augmented Precedence Graph AG = (T, E,;) is constructed as fol-
lows:

- Ep— Ep

- If two nodes u and v are similar but not twins in G, then for any node z in

T, we do the following to force the twin relationship:
* If (z,u) and (z,v) € Eyp and D(z,u) < D(z,v) then D(z,u) «
D(z,v) :

156

* If (u,z) and (v, z) € Egp and D(u,z) < D(v,z) then D(u,z) «
D(v, z)
* If (z,u) € Egp and (z,v) ¢ Eqp, then Eyp — EU{(z,v)}
* If (u,x) € Eop and (v, z) & Eqp, then E,p — EU{(v, 1)}
Step 2: Having the Branch Graph and the Augmented Precedence Graph, the con-
ditions in Lemma 3 are satisfied and the Representative Task Graph can be used
to find a schedule for all possible execution instances.

In the above approach, we assumed that the parallel program model did not in-
clude nested branching. An example of nested conditional branching is shown in
Figure 3. We suggest a method to accommodate nested branching in parallel pro-
grams. In this method, the twin relation is applied to the similar nodes of the inside
branch (nodes z and y in the Figure). These nodes are replaced by just one node as
discussed earlier and then this node along with the common parent and the com-
mon child are composed into a unified node. This unified node will be similar to
the nodes of the outside branch (node z in the Figure). The composition process is
repeated until the branch graph is free of nested branching and the approach men-
tioned earlier can be applied. Having done the composition in the Branch Graph,
the Precedence Graph needs to be modified accordingly. If nodes uy,u2,..., 4,
are combined innode u then INS(u) «— INS(u;)+INS(uz)+---+INS(un),
and the union of predecessors (successors) of nodes uj, u3, ..., u, will form the
predecessors (successors) of node u.

Figure 3 Nested Conditional Branching

4. Example

In this example, we construct a unified schedule for the parallel program repre-
sented by the Branch Graph and the Precedence Graph, shown in Figure 4, on a
target machine consisting of two identical processing elements. We assume that

157

the processing elements have unit speed and the communication links have unit
transfer rate. Thus, we can deal with the parameters I N S(*) and D(*, *) as units
of time. Notice that tasks 2 and 3 are twins while tasks 7,8 and 9 are similar but
not twins.

To construct the Augmented Graph, the two edges (1, 8) and (7,9) are added
with the parameters D(1, 8) = 4 and D(7,9) = 10. Also some parameters are
modified; D(1,6) = 4 and D(6,9) = 10. The Augmented Graph is given in
Figure 5 where the added edges are given in bold and the modified parameters are
underlined. Notice that tasks 7, 8 and 9 are twins in the Augmented Precedence
Graph. Using Lemma 3, the Representative Task Graph consists of the set of tasks
{1,3,4,5,7,9}. Figure 6 shows the obtained Representative Task Graph and the
corresponding schedule generated by the deterministic scheduling method given
in [7]. The nodes 2, 6 and 8 are scheduled by replacing nodes 3, 7 and 7 in the
schedule, respectively.

(a) The Branch Graph (b) The Precedence Graph
Figure 4 A Program Model

Figure 5 The Augmented Precedence Graph for Precedence Graph of Figure 4

158

5. Conclusions

In this paper, we introduced a new model for representing parallel programs that
contain conditional branching. This model captures all the information needed to
deal with the most general form of the scheduling problem. The model consists
of two acyclic directed graphs called Branch Graph and Precedence Graph. We
also introduced an approach for scheduling task graphs with branches on parallel

P1 P2
0
1 5
5
7
7 3
17
19
9 4
27

Figure 6 The Representative Task Graph and the corresponding Schedule

machines. In this approach, all execution instances are represented by a single
task graph, called the representative task graph, and a schedule for this graph is
used to obtain schedules for all execution instances.

References

1. S. Bokhari, A Shortest Tree Algorithm for Optimal Assignments Across Space
and Time in Distributed Processor System, IEEE Transaction on Software
Engineering, vol. SE-7, no. 6 (1981).

2. S. Bokhari, On the Mapping Problem, IEEE Transactions on Computers,
C-30 3 (1981), 207-214.

3. T. Casavant and J. Kuhl, A Taxonomy of Scheduling in General Purpose
Distributed Computing Systems, IEEE Transaction on Software Enginecring,
vol. SE-14, no. 2 (1988).

4. T.ChouandJ. Abraham, Load Balancing in Distributed Systems, IEEE Trans-
action on Software Engineering, vol. SE-8, no. 4 (1981).

5. W. Chu, L. Holloway, M. Lan and K. Efe, Task Allocation in Distributed
Data Processing, IEEE Computer (1980), 57-69.

6. E. Coffman, “Computer and Job-Shop Scheduling Theory”, John Wiley &
Sons, 1976.

159

7. H. El-Rewini and T.G. Lewis, Scheduling Parallel Program Tasks onto Arbi-
trary Target Machines, Journal of Parallel and Distributed Computing (1990).

8. H. El-Rewini, Task Partitioning and Scheduling on Arbitrary Parallel Pro-
cessing systems, Ph.D. thesis, Department of Computer Science, Oregon State
University (1989).

9. T. Hu, Parallel Sequencing and Assembly Line Problems, Operation Re-
search 9 (1961), 841-848.

10. B. Kruatrachue, Static Task Scheduling and Grain Packing in Parallel Pro-

cessing Systems, Ph.D. thesis, Department of Computer Science, Oregon
State University (1987).

11. C.Y. Lee, J.J. Hwang, Y.C. Chow, and ED. Anger, Multiprocessor Sched-
uling with Interprocessor Communication Delays, Operations Research Let-
ters, 7, 3 (1988), 141-147.

12. V. Linnemann, “Deterministic Processor Scheduling with Communication
Cost”, Fachedaling Informatik Universitat, Frankfurt, 1985.

13. V. Lo, Heuristic Algorithms for Task Assignment in Distributed Systems,
Proc. 4th Int. Conf Distr. Comput. Syst. (1984), 30-39.

14. D. Towsley, Allocating Programs Containing Branches and Loops Within a
Multiple Processor System, IEEE Transaction on Software Engineering, vol.
SE-12, no. 10 (1986).

15. J. Ullman, NP-Complete Scheduling Problems, Jounal of Computer and Sys-
tem Sciences 10 (1975), 384-393.

160

