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Abstract. An infinite class of graphs is constructed to demonstrate that the differ-
ence between the independent domination number and the domination number of 3-
connected cubic graphs may be arbitrarily large.

1. Introduction

A set D of vertices of a graph G = (V, E) is a dominating set of G if each vertex
in V-D is adjacent to at least one vertex in D. A sct I of vertices is independent
in G if no two vertices in I are adjacent. If, in addition, I is also a dominating sct
then I is called an independent dominating set of G. Note that the independent
dominating sets of G are exactly the maximal independent sets of G (see [3, p.
309]). The domination number ~(G) (independent domination number i(G)) of
G is the smallest number of vertices in a dominating (maximal independent) set of
G. Since every maximal independent set is a minimal dominating set (3, p. 309],
it follows that v(G) < i(G) for any graph G. A dominating set D of a graph G
such that | D| = 4(G) is also called a y-set of G.

Various authors have found sufficient conditions under which equality of the
domination and independent domination numbers occurs. In particular, Allan and
Laskar [1] proved that if G is K 3 -free, theni(G) = 4(G). This extended an ear-
lier result by Mitchell and Hedetniemi [6] that if G is the line graph of a tree, then
i(G) = 9(G). Harary and Livingston characterised the trees and the caterpillars
for which 1 = - in [4] and [5] respectively.

The study of the difference between ¢ and -y for cubic graphs was initiated by
Barefoot, Harary and Jones [2] who constructed an infinite class of cubic graphs of
connectivity 2 in which i — 4 becomes unbounded, and conjectured that a similar
class of cubic graphs of connectivity 1 existed. This conjecture was settled when
such a class of graphs was constructed in [7]. Barefoot et al. [2] further conjec-
tured that the only cubic graphs of connectivity 3 for which i # 4, are the graphs
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K3 3 and Cs x K. That this conjecture is false can be seen by noting that (see [7])
ifk =5 (mod 12), then i(C; x K3) = [k/2] + 1 while v(Ci x K3) = [k/2].

In this paper we construct an infinite class of cubic graphs of connectivity 3 in
which the difference ¢ — y can be made arbitrarily large.

2. Construction

Let G have vertex set UUVUWUX UY U Z, where

k
U=JUu; with Uj={uji,..., ks
jal

v={Jv; with V;={vp,...,un}

W-‘-‘UVV; with W; = {w,-;,...,wjg};

j=t
X= Ox- with X; = { {zjn,zp} U7 <k,

=l {zn} ifj=k;

k e s

. {yjl;yjz} lf] < k’

Y=|)Y; wih Y;= { s

,.L,J, ’ Tl {wn)y  ifi=k
Z=CJZ- with Z)_={{zﬂ,z}l,zj2,z}2} 7 <k,

jal ’ {zﬂsz}l} ifj = k.

Add edges such that for each j € {1,..., k}, the induced subgraph (U; U V; U
W;) ({X; UY; U Z;) respectively) is isomorphic to the graph H; (F;) depicted in
Figure 1. For each j € {1,...,k — 1}, add the edges wj2z;1, zj1 wj3, w3 T;2,
Zja wj+1)1 and z}zz(,-ﬂ)l. Finally, add the edges w3211, w12}, We2Zk1 and
T w3 . The graph G, is illustrated in Figure 2.

Note that Gy is 3-regular. In the next three sections we prove that Gy, is 3-
connected and that if k is even, then i(Gx) — Y(G) = k/2.

3. The domination number of Gi

In order to determine the domination number of G, we first prove that the dom-
ination number of Hj is three and that any dominating set of Gk also contains at
least three vertices of H; for each j.

Lemma 1.
(@) Foreach j € {1,...,k},Vj is the only ~y-set of Hj; hence v(Hj) = 3.
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Figure 1. The graphs H; and F; used in the construction of G.

(b) If D is any dominating set of G, then, forany j € {1,...,k},
IDAV(H| > 3.

Proof: (a) Since V; dominates Hj, it follows that 4( H;) < 3. Suppose D
with [D| < 3 is a dominating set of H;. If vj3 ¢ D, then wj3 € D. Since
{wj3,uj1,u52} {wjs,u3, uja} respectively) does not dominate H;, D does not
contain both u;; and uj, (u;3 and u;4). Hence in order to dominate u;3 and uj4, D
contains exactly one of u;; and uj>. Butif u;; € D (uj2 € D respectively), then
no single vertex dominates {uﬂ, vj2, Wj2, Wwj1 } ({uﬂ » Vi1, Wi, Wi2 }. Hence
vj3 € D.

If vj1 ¢ D, then since w;; is dominated, at least one of w;; and wj, isin D. If
wji € D (wj2 € D respectively), then no single vertex dominates {u;1, uj2,vj2}
({yj1,452,v;1}). Hence D contains v; and, similarly, vj;. Hence D = V; and
9(Hy) =3.
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Figure 2. The graph G fork= 2.

_(b) Note that v({U; U V;)) = 3 and that no vertex of Gy — V( H;) is adjacent
toa vertex in U; U V;. Also, no vertex in W; is adjacent to more than one vertex in
U; U V;. Hence in order to dominate U; U V;, any dominating set of G contains
at least three vertices of H;. 1

Theorem 1. Forevery integer k > 1,4(Gy) =Sk — 1.

Proof: Theset V UY dominates Gy and therefore y(Gi) < 5k — 1. Let D be
any dominating set of Gx. By Lemma 1(b), |[DN(UUV UW)| > 3k. Also, if
Dn{yje, zje, 2jy} = ¢ for some j and £, then z,¢ belongs to D in order to dominate
yie. Hence |IDN(XUY UZ)|>2k—1anditfollowsthat|D| > 5k—1. |

4. The Independent Domination Number of G (k Even)

In this section we prove that if k is even, then i(Gi) = (11k/2) — 1. It can be
shown in a similar way that i(G}) = (11(k — 1) /2) — 1 if k is odd. However,
for the sake of brevity and since the latter result is not required for the purpose of
this paper, the proof is omitted here. We first need three lemmas.

Lemma 2. If I is an an independent dominating set of Gy, then for any j €
{1,...,k},IINV(H;)| > 4 unless at least one of wj) and wj, is dominated by
I — V(Hj) (in which case |I NV (H;)| > 3).

Proof: Let I be an independent dominating set of G, such that neither w;; nor

176



wj is adjacent to a vertex in I — V/( H;). As in the proof of Lemma 1(a), if either
wj3 Or vj3 belongs to I, then |INV ( Hj)| > 4. Hence suppose IN{wj3,vj3} = .
In order to dominate v;3 at least one of u;; and u;4 belongs to I. Since [ is
independent, I N {u;1,uj2} = ¢ and hence {u;3,uja} C I since {uj3,ujs} is
dominated. Then {vj1,wj2} C I or {vj2, w1} C I since {vj1,vj2, wj1,wj2 } is
dominated; consequently |I| > 4. The last part of the statement follows directly
from Lemma 1(b). 1
In what follows, we shall also denote z;; by x> for the sake of convenience.
Foreach j € {1,...,k}, let L; denote the subgraph of G induced by V( H;) U
{z¢j-n2,Z1}-
Lemma 3. Let I be an an independent dominating set of Gy, and let

Aj = {z-n2,zn };
Aj2 = {z(j-n2,wj2} and
Ajz = {wj1, ;1 }.

If, forany j € {1,...,k} and any m € {1,2,3}, the set A;y, is contained in I,
then
V(L) NI >s.

Proof: If Ajy C I, the result follows immediately from Lemma 1(b). Suppose
Ajz C I If v belongs to I, then either {u;1, u; } or {v;1,u;2 } is contained in
I to dominate {u;j1,u;2}. If {vj3, wj3} NI = ¢, then, as in the proof of Lemma
2, {uj3,4ja,v;1 } C I. Finally, if w;3 belongs to I, then one of {u;3,ujs,v;1},
{uj1,uj2} and {v;1, uj2 } is contained in I. In each of the above cases, |V(L;) N
I| > 5. Similar arguments yield the desired result if Aj3 C I.

Lemma 4. Let I be an independent dominating set of Gy such that for some
JE{2,...,k-1},

IN{yG-n1,2-v1,%j_1y1} = ¢ and
In{yjz,ij,z;-z} =¢.
Then |INV(Lj)|>5.

Proof: If I does not contain any of the vertices {y;2, y(j-n1, 22, (-1, Zj2,
zz;’—l)l}’ then T(i-11 and T2 belong to I since yi-n1 and yj2 are dominated.
Also, since 2(;_,, and z;; are dominated, z(;1)2 and 2}, belong to I. Therefore
IN {y-n2,yj1} = ¢ because I is independent. Hence in order to dominate
zj-1)2 (zj1 respectively), I contains exactly one of the vertices z¢;_1)2 and wj
(w;2 and z; respectively), but not both w;; and w;>. The desired result is ob-
tained by applying Lemma 3. |

Qur next result concerns the path Py,_; and will also be used in our determina-
tion of the lower bound for the independent domination number of G.
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Proposition 1. Suppose £ + s + 1 vertices are chosen on the path Pag_\ which
has vertex sequence 1,...,42 — 1, in such a way that each of the £ + s subpaths
between pairs of consecutive chosen vertices has length at least three. Let a be
the number of these £+ s subpaths with length exactly three and vertex sequence
2i—1,...,2i+2 forsomei€ {1,...,2¢£—2}. Then

a>2s+1.

Proof: Let a subpath of length three of the type mentioned in the hypothesis be
called a subpath of type a. Further, among the £ + s subpaths, suppose there are
also
b subpaths of length three with vertex sequence 21,...,21+ 3, called subpaths of
type B;
¢ subpaths of length at least five-type «y subpaths.

Hence there are
£+ s— (a+ b+ c) subpaths of length exactly four, of type §.

Then the £+ s subpaths induced by the pairs of chosen vertices form a sequence
of length £ + s with elements from the set {«, 8,4, §}.

By counting chosen vertices as well as the vertices between them, we obtain

42—-1>2+38+1+2(a+Dd)+3(l+s—a—-b—c) +4c
=42+4s—(a+b)+c+1

so that
(a+b)>4s+c+2. . ¢y
Now notice that between any two 8’s there must be an « or a . Hence
e+c>b-1. €5
By adding (1) and (2) we obtain that
a>2s+1.
|

‘We are now ready to determine the independent domination number of Gy, for
any even positive integer k.

Theorem 2. Forany positive integer £,i(Gag) = 11— 1,

Proof: Since the set
L

(U {0(2;'-1)1 y U(25)1, B(2;-1)2, Y(25)2, V(2j-1)3, W(25-1)2,
j=1

2-1
w233, T2j-12, Z25-n1 22 }) | (U {!Junz})

j=1
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is an independent dominating set of G2 of cardinality 11£ — 1, it follows that
1(Gap) < 11£2-1.

Suppose there exists an independent dominating set I of G2, with |I] < 11£-2.
Lemma 2 implies that | N V(L;)| > 4 foreach j € {1,...,2£} and therefore

2L
11 (U m,)) | 282
j=1

Let s be a non-negative integer such that

2L
Ify (U V(L,-)) |=82+s. ®

j=l

Then e
33—3—2 le(zolgI

IN(Yuz)|<

and hence there are at least

3—s5—2 ifz I
(4.4-1)—{ , f“”¢
32—'8—'1 lfz(ZZ)IEI
Tle+s  ifzy, €1

pairs of integers (j,t) with j € {1,...,2£},t € {1,2} (but (;,2) # (2£,2))
such that
In {Z"h y]'szt} = ¢

Let Byt = { jtr Yits z,g} IfIn(B,lUsz) =¢ fOl‘SOTﬂCJ(Iﬂ(B,zUB(,+1)1) ¢
for some j, respecuvely), then z; i1 and z zjy (zj2 and z(j41y1) are not dominated. If
IN(Bjt U Bgje1yt) = ¢ for some J and some ¢, then since zj, and z(j.1); are
dominated, both z;; and z}, ift = 1 (both 2(;,1); and 2y lft = 2) belong to
I. This is impossible since I is independent.

Let P be the path with 42 — 1 vertices obtained from the subgraph (Y U Z) of
G2 by identifying the vertices of B,-t for each j and . Say P has vertex sequence
(bu, blz yba1,..., b2g1), where bj, is the vertex obtained by identifying z,g, yjt
and 2! jee BY the above, ifIN(B; VU B,rg) = ¢ for some j, ' and some t,t, then
the distance between b;c and bj»y on P is at least three. We consider two cases.
Casel. z(,5; ¢ I

Then I N Bj; = ¢ for at least £+ s + 1 pairs of integers (j,t). Consider the set
Q consisting of the corresponding £ + s + 1 vertices bj; on P. By Proposition 1,
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there exist at least2 s+ 1 pairs of consecutive vertices of Q of the form bj1, d(j+1)2
forsome j € {1,...,2£—2}. By Lemma 4 there exist at least 2 s + 1 subgraphs
Lj; such that

[ INV(Lj)|>5.

So, if we let
S={je{l,...,28}: |[InV(Lj)| > 5}

then |S| > 2s + 1. However, it follows from the definition of s (see (3)) that
|S] < s. This contradiction establishes Case 1.

Case 2. Let S bedefinedasin Case 1. If 1 € S, let S’ = S — {1} and note that
8 =|8|<s—1.ThenINBj; = ¢ foratleast £+ s’ + 1 pairs of integers (J, t)
and we may proceed exactly as in Case 1 to prove that this is impossible.

Hence suppose 1 ¢ S. Since z,5, = z02 € Tand [V(L1) NI| = 4, it
follows from Lemma 3 that I N {zy;, w12} = ¢. Now I N By, # ¢ for otherwise,
since yy; is dominated, z;; must belong to I which is impossible. Furthermore, if
INB; = ¢, then 12 belongs to I since yi, is dominated; hence wys ¢ I because
I is independent. Similarly, y1;; ¢ I since z}, belongs to I in order to dominate
212 But now I contains neither z1; nor any of its neighbours, which is impossible;
hence I' N By # ¢. Itis also clear that I N Biag1)2 # ¢ for otherwise 2(,,_,y,
is not dominated.

Consider the subpath P’ of P with 4(£ — 1) — 1 vertices and vertex sequence
(b21,...,bc2e-1y1). Recall that I N Bj; = ¢ for at least £ + s pairs of integers
(j,t) and, by the preceding paragraph, the set Q' of corresponding vertices of P
is contained in P'. Notice that £+ s = (£ — 1) + s + 1. We may therefore apply
Proposition 1 to P’ and assert that there are at least 2 s + 1 pairs of consecutive
vertices of Q' of the form b;;,b(j+1)2 for j € {2,...,22 — 3}. This gives a
contradiction as in Case 1.

Therefore i(Gog) > 11£— 1 and hence §(Gag) = 114 — 1. 1

5. The Connectivity of G

It remains to be shown that G, is 3-connected. In order to do this, we use Tutte’s

characterisation of 3-connected graphs (se¢ [8]) which we state here in slightly
different form. By N(u) we denote the open neighborhood of a vertex u of a
graph G = (V, E), where N(u) = {w € V : uw € E}.

Tutte’s Theorem. A graph G is 3-connected if and only if G is a wheel or a
wheel can be obtained from G by a segence of operations of the following two
types:
1. the deletion of an edge;
2. the identification of two adjacent vertices u and v of degrees at least three
such that N(u) N N(v) = ¢ (where the resulting loop is deleted).
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By inspecting the graph G2, or G\ for other small values of k, it seems rea-
sonable to expect that Gy, is 3-connected. We now prove that this is indeed the
case.

Theorem 3. For every integer k > 1, the graph G\, is 3-connected.

Proof: 'We prove that G, is 3-connected by giving the sequence of operations
of the above types by which the wheel W (= K + Cai_1) is obtained from G.
Any vertex obtained by identifying two adjacent vertices may be referred to by
using any of its former labels.

L. Identify z1; and w3, wn and z,, and then for j € {1,...,k — 1}, the
vertices z}, with 22 and z;-z with 2(j+1)1.

Delete the edges zj; zj; for j € {1,...,%k — 1} and the edge 2wy, .
Identify zj1 and yjl,j € {1,...,’3}.

Forj € {1,...,k — 1}, identify y;; and z;, Also identify y;; and wy;.
Delete the edges yj1ysni11, 7 € {1,...,k—1}.

Forj € {1,...,k} and 2 € {1,2,3}, identify u;z and vj.

Forj € {1,...,k}, delete vj; vj2.

Forj € {1,...,k} and £ € {1,2,3}, identify vz and wj,.

Delete the edges w;, wj3 and wj wj3,j € {1,...,k}.

Identify u;4 and w;s forj € {1,...,k}.

CORNrnbh WD

[y

The graph obtained from G2 by the above sequence of operations is illustrated
in Figure 3. We continue as follows.

w23

w11
Y21

Y12

Figure 3. The graph obtained from G, by operations 1-10.

11. Identify T2 andw(,-+1)|,j € {1,...,IC - l}.
12. Identify w;s and wjey1, 7 €{1,...,k—1}.
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13.
14.
15.
16.
17.
18.

Delete wy; wis and wjiw(jaiy, j € {1,...,k—1}

Identify w;j; and wj2,j € {,...,k}.

Delete wjz wejsny2, 7 € {1,...,k— 1}.

Identify zx; and wgs, and z1; and wy .

Delete woz w3 (which is the same as 11 Tx1).

Finally, identify in sequence y12 and y21; y21 and y22; ... . ; y(k—1)1 and yk—1)2.

The resulting graph is the wheel Wa;. 1
We summarise the preceding results as follows:

Theorem 4. Forevery positive integer k, the graph G, constructed above is a
3 -connected cubic graph with 4(Gzy) = 10k —1 and i(Gay) = 11k — 1, hence

i(G2x) —1(G2i) = k.
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