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Abstract. For an integer £ > 2 the £-connectivity (¢-edge-connectivity) of a graph G
of order p is the minimum number of vertices (edges) that need to be deleted from G to
produce a disconnected graph with at least £ components or a graph with at most £ — 1
vertices. Let G be a graph of order p and £-connectivity x,. Foreachk € {0, 1,...,&¢}
let s, be the minimum £-edge-connectivity among all graphs obtained from G by delet-
ing k vertices from G. Then f; = {(0,30),...,(%¢, 3x,) } is the £-connectivity func-
tion of G. The £-connectivity functions of complete multipartite graphs and caterpillars
are determined. :

1. Introduction

We follow the graph theory terminology of [3]. It is well-known that the connec-
tivity x(G) (edge-connectivity A(G)) of a graph G is the minimum number of
vertices (edges) whose deletion produces a graph with at least two components or
the trivial graph. These two parameters are frequently used to measure the reliabil-
ity of networks which one can model naturally with a graph. While these param-
eters have the advantage that they can be computed efficiently, there are instances
where they provide insufficient information about the reliability of a network. For
example, the star K ,, and the path P, (m > 3) are both graphs of order m+ 1
and size m that have connectivity 1, but the deletion of a cut-vertex from K o,
produces m components whereas the deletion of a cut-vertex from P,,,; always
produces exactly two components. So in some sense K ,, is less reliable than
Py form > 3.

A measure of reliability was introduced in {2] that differentiates between the
reliability of these graphs. In particular, for £ > 2, the £-connectivity s¢(G) (¢-
edge-connectivity) hg( G) of a graph G of order p > £ — 1 is defined as the mini-
mum number of vertices (edges) that are required to be deleted from G to produce a
graph with at least £ components or with fewer than £ vertices. S0 &3 (G) = x(G)
and A2 (@) = A(G). Since the problem of determining whether the independence
number B(G) of a graph G, of order p > £, is at least £ is NP-complete and since
B(G) > Lif and only if xe(G) # p— £+ 1, it follows that the problem of deter-
mining whether x¢(G) # p—£+ 1 isNP-complete. A graph is ( n, £) -connected if
5¢(@) > n. So n-connected graphs are the ( », 2) -connected graphs. For a graph
G of order p, the sequence of numbers x3(G),k3(G),...,sp(G) is called the
sequence of connectivity numbers of G. Sequences of non-negative integers that
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are sequences of connectivity numbers of graphs are characterized in [2]. Unfor-
tunately there are no known efficient algorithms for computing x¢(G) or A(G)
for a graph G. In [2] and [6] sharp bounds for x¢(G) are established.

It is well-known that with the aid of Menger’s Theorem, Whitney [8] showed
that a graph G is n-connected if and only if for every pair u, v of distinct vertices
of G, there exist at least n internally disjoint u—v paths in G. It was pointed out in
[5] and [6] that no analogous characterization of (n, £) -connected graphs exists.
It is well-known that if G is a graph of order p, and = is an integer such that
1< n< p-1,thenif §(G) > (p+ n— 1)/2, the graph G is n-connected. So
for such graphs G, Whitney’s theorem implies that for every pair u, v of vertices of
G there exist at least n internally disjoint u—v paths. Hedman [4] actually showed
that for such graphs G and every pair u, v of distinct vertices of G there exist at
least n internally disjoint u—v paths each of length at most 2. An analogue of this
result is established in [6]. For a set S of at least two vertices of a graph G an
S-path is a path between a pair of vertices of S whose internal vertices do not
belong to S. Two S-paths are internally disjoint if they have no intemal vertices
in common.

In [6] it is shown that for a graph G of order p > 2, and integers £ > 3 and
1l <np—~L+1),if

p+(n—-2)(£-1)

8(G) 2 7

then for each set S of £ vertices of G there exist at least n internally disjoint S-
paths each of length at most 2.

The problem of disconnecting a graph into at least two components by the dele-
tion of both vertices and edges was first considered by Beineke and Harary [1].
These concepts were extended in [7]. Let G be a graph with £-connectivity x, =
k(@). Ifk € {0,1,..., 5 Q) }, thenlet s; be the minimum £-edge-connectivity
among all subgraphs obtained by removing k vertices from G. The £-connectivity
Junction of G is defined by fy(k) = sg for0 < k < Ke(G). Soforé = 2,
the £-connectivity function of a graph is its connectivity function, which has been
characterized by Beineke and Harary [1]. For £ > 3 no characterizations of the £-
connectivity function of a graph are known and it appears to be a difficult problem
to characterize such functions. In [7] several necessary conditions for a function
to be an £-connectivity function of a graph are established and the £-connectivity
function of the complete graph is derived. We study here the £-connectivity func-
tion of certain types of trees and the complete n-partite graphs.
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2. The £-connectivity function of certain classes of graphs
In [7] the following formula for the £-connectivity function of a complete graph
is established.

Theorem A. Let p, £ > 2 be integers with p > £ and suppose that G = K,,.
Then the £-connectivity function of G is given by

0 if k= ky(G)

fe(k) = { (L—D(p—L—k+1)+ (‘;‘) for0 < k< (@)

We now extend this result to complete n-partite graphs.

Theorem 1. Suppose G = Koy m,,..ma Wheremy < my < -+ < my, and
n>2. Let P= Y, m;andlet k be an integer with 0 < k < re(G). If
s = min{mu_1, 3 i m; — k), then the £-connectivity function of G is given
by

0 if k= re(G)
fe(k) = { (£—1)(p—my—k) ifk # ke(G) and £ < mp—s+2
(L=1)(p—ma—k) — (™) ifk # ke(G) and £ > my—35+2.

To prove this result we begin by establishing a series of lemmas.

Lemma 1. Let G = K, ,,,.r, be acomplete t-partite graph (t > 2) of order p
and let £ be an integer,2 < £ < p. There exists a set of \(G) edges of G, say
Ey, such that G — Ey has £ components, at most one of which is non-trivial,

Proof: LetVy,Va,...,V; be the partite sets of G with |V;| = r; fori = 1,2,...,¢t.
There exists a set Fy of \,(G) edges of G such that G — F, has £ components. Of
all such sets Fy let E, be one such that G — E; has as few non-trivial components
as possible. We shall show that G — E, has at most one non-trivial component.

Assume, 10 the contrary, that G — Ej has at least two non-trivial components, G
and Gy, withV(G1)=AandV(Gy) =B.Fori=1,2,...,t,let ANV; = A;,
BNV; = B;, |A;| = a; and | B;| = b;. Then thereexist iy,13, 1,72 € {1,2,...,t}
such that 4, # i3, /1 # j2 and a;,,ai,,b;,,b;, > 1. Letting H = (AU B)g, we
note that forv € A; U By(i € {1,2,...,t})

degyv=a+b—a;—b;. )

Furthermore, the set [ A, B] of all edges in H with one end vertex in A, the other
in B, has cardinality

t t
ILA,Bl| = ai(b—b) =) bi(a—a). @
i=1 i=1
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It follows from our choice of E, that isolating a single vertex of H requires the
removal of more edges than separating the components G; and G, in H; i.e., for
v € V(H), deg yv > |[A, Bl]. Hence, for every i € {1,2,...,t} such that
a;i+b>1,

t
2 (aj+ b)) =2a+b—a;i—b)
i ®)

t t
> a;(b—b) + ) bi(a—aj).
jzl j=l
Assuming (without loss of generality) that a; + b, 2. 1, we obtain from (3) with
i=t

t-1 t-1

S 0j(b—bj=2) + Y bj(a—a;—2) +ab—b) + b(a—a) <0. (@

j=1 J=1

Since a — a;,b — b; > 1 forall j € {1,2,...,t}, it follows from (4) that there
exists j € {1,2,...,t — 1} such thate; > 1andb—b; —2 < O ord; > 1 and
a—a;j—2 <0;sayb; >1anda—a; < 2. Thena — a; = 1 and there exists
m € {2,3,...,t} suchthata,, = 1 anda; = 0 forall j € {2,3,...,t} — {m}.
We note thata; > 1.

Since |[ A, B]| < deg yv for v € A, it follows from (I) and (2) that

a1(b=b1) +am(b—by) <ea—a1+b—bi=1+b—b;

hence
(a1 = D)(b—-b1)+b—-bm< 0

which, withay — 1 > 0,b—b; > 1,b— by, > 1, yields a contradiction, thus
establishing the validity of the lemma. |

For a vertex v in a graph G, let the set of edges of G incident with v be denoted
by EG( 'U) .

Lemma2. Let G = Ky ypoom WithT <12 < +-- < 7,8 > 2,p = p(G) =

Siariand £ € {2,3,...,p}. Let Vi, Va,...,V; be the partite scts of G with

|Vi| = 7. The following algorithm yields a set E, of edges of G such that | E¢| =

M(G) and G — Ey has £ components, at least £ — 1 of which are trivial:

1. Let Hy = G and let v, be a vertex of minimum degree in H,. (ie.,v1 € V).
Let E; = Eg,(v1) and Hy = Hy — v1.

2. Fori € {2,...,2£ — 1}, let v; be a vertex of minimum degree in H; and let
Eiv1 = Eg(v) UE;, Hivy = Hi — v;.
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Proof: The validity of the lemma for £ = 2 is an immediate consequence of
Lemma 1. Further, the lemma follows if £ = p, in which case |Ey| = ¢(G) =
Ap(G). Suppose that the lemma does not hold and let m be the smallest value of
£ for which the algorithm yields a set E, that does not satisfy the requirements of
the lemma; s0 2 < m < p. Since G — E,, certainly contains ma components,
m — 1 of which are trivial, it follows that |E,,| > A,(G). Let Fy, be a set of
edges of G such that |F;| = A\,(G), G — F,, contains m components of which
m — 1 are trivial.

Let W = {wi,ws,...,wn_1} denote the set of m — 1 isolated vertices in
G — Fand, forw, € W let Gy = G — (W — {wg}). Leti = i(F,,) be such
that vy,...,v;i1 € W and v; ¢ W. Choose Fy, such that i( Fy,) is as large as
possible. Suppose v, = w, forl1 < s<i— 1. LetW' = W — {v1,...,v1}
and let v; € Vj; then V; N W' = @, since otherwise, if wy € V; N W', the set
of edges of Fy, incident with wy in G, namely Eg, (wg), may be replaced by
Eg,(v;) toyield a set F,, of edges of G with |F.,| = An(G) such that G — F.,
has m components, m — 1 of which are trivial and i( F},) > i(Fy,), contrary to
our choice of F,,,. Hence the only vertices which are adjacent to v; in H; and not
10 v; in G- are those in W’ — {wp,_ }. Consequently deg__, v; = deg y,v; —
(m—2 —i+1). Furthermore, deg ¢,,_, Wm-1 > deg g, wm_1 —(m—2 —i+1); so,
since deg g, wm-1 > deg g,v;, it follows thatdeg g, wm—1 > degg,,_, vi. Hence,
replacing the subset Eg,, , (wm—1) of Fy, by Eg,__, (v;), we obtain a set F",,, of
edges of G with |[F"| < |Frm| = Am(G) such that G — F",, has m components,
m ~ 1 of which are trivial, and i( Fj.) > 1(Fy,).

Thus the validity of the lemma is established. |

Let G = Km,my,..m, Withm; < m2 < --- < ma(n > 2) and partite sets
Wi,..., Vo where [V = m; fori=1,2,...,mp= Y [, m;. Let S be a proper
subset of V(G) such that [S| = k € {0,1,...,x(G)} and k < p — m,,, where

we note that
p—£2+1 if £> m,,

then G — S is a complete multipartite graph, say K,,, ,. It is an immediate
consequence of Lemma 2 that S may be chosen to yield G ~ S of minimum £-
edge connectivity, namely M\¢(G — S) = fe(k), by letting S consist of & vertices
of maximum degree in G, i.e., for some j € {1,2,...,m — 1}, § = U, V/,
where V! = V;ifi < j and V; C V;. Then E, C E(G — S) may be obtained as
prescribed by Lemma 2 to produce G — S — E; containing £ components, £ — 1
of which are trivial.

If¢£ > m, ork = p— m,, then fy(k) = 0, obviously. Hence we have the
following lemma

Lemma3. If G = K, , . m, Withm; < my < ... < mu(n> 2), and partite
sets Vi,...,V, such that |V;| = m; fori = 1,...,n, then, for 2 < ¢ < p and
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0 < k < e, there exist S C V(G) and Ey C E(G — S) such that |S| = k,
|Bel = fe(k), and such that G — S — E, contains at least £ components, at least
£ — 1 of which are trivial and, for some j € {1,...,n}, S = U, V/, where
V/=Vifori<jand V] CV;.

Proof of Theorem 1: Clearly if k£ = x¢(G), then fi(k) = 0. fL < m, — s+ 2
then, since the degrees of vertices in V;,_; exceed those of vertices in V,, by m, —s
inG- 8, the2—1 vertices isolated in G— S— E; occurin V;,. (We note that, fori €
{1,...,£-2},ifw € V-1 —Sand z € V,,,theninG—S—{vy,...,v;}, degw >
deg z.) In this case it is obvious that | Ey| = (£ — 1)(p — mn — k).

If £ > m, — s+ 2 then, applying the algorithm in Lemma 2to G — S, we note
that vy, ..., vy, —s+1 May be chosen from V, and that their isolation requires the
removal of (p — my — k) (m, — s+ 1) edges. The isolation of vy, —s+2,.- ., Vg1
requires the removal, successively, of p —my, —k—1l,p—m, -k -2,...,
[(p— my— k) — (£— m, + s — 2)] edges. Hence, in this case,

L—myat+s-2
|Bel=(p—mn—k)(my—3+ 1)+ E (p—mn—k—1)
i=1

—my+s—1

=(e—1)(p—m,.—k)—<z A )ifk;éng(G).

]
It is not difficult to see that Theorem A follows as a corollary to Theorem 1.

We next turn our attention to the £-connectivity function of caterpillars. Recall
that a caterpillar is a tree that is either isomorphic to K; or K, or has the property
that if its end-vertices are deleted then a path is produced. For a graph G of order
pandanintegerk,0 < k < p, let ¢,(G) be the maximum number of components
that are produced when k vertices are deleted from G. Note that if £ > 2 is
an integer and T is a tree with independence number 8(T) > £, then fy(k) =
(£—1)—ci(T) for0 < k < xg(T). Let85(T) = min{k | c;(T) = B(T)}. The
following algorithm finds for a given caterpillar T and every £,0 < k < 85(T),
a set V; of k vertices such that k(T — Vi) = c;.

Algorithm 1. LetT ¥ K, K3 be a caterpillar.
1. @) Fo «T.
®) Vo — 0.
(¢) So — {v € V(Fo) | deg p,v = A(Fo)}.
(d) Ho «— (So)r,-
€e)n—0.
(O Let P:u,,...,u, be the path produced by deleting the end-vertices of T'.
2. LetTy,T3,...,T, be the components of H, and a; = [B]2].
Let U, = {w},w3,... ,w;',_} be a maximum independent set of vertices of H,
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(with B, = B(H,)) chosen as follows: The vertices w}, w3, ..., w;, belong to
T\.Ifs>1,thenfori=2,...,s,the vertice.s'11:{,‘”"_,,“.._l+l reo s Woisokas o
belong to T; and if w}, = u;, and wy = u;, belong tosome T; and m < r,
then iy < 1. Further, w},, .. .,, ,+ i anend-vertex of T; for2 < i < s and
w} is an end-vertex of T.

3. @) Fpy &~ Fp—U,
B n—n+1
© Su—{vEV(F,) | degrv=A(F,)}
d) H, « (Sn)F.
(e) If A(F,) > 1, return to Step 2;

otherwise let 85 — Y |U;| and continue.
4. Fork=1,2,...,6glet vi,vs,...,v; denote, in order, the first k vertices in the

sequence w},wj,..., w) ,wi,...,wk,,..., and define Vi = {vy,va,..., v}

Theorem 2. Suppose Algorithm 1 is applied to a caterpillar T ¥ K, or K.
Then
KT -Vi) =ca(T) for0 <k< &g

Proof: Suppose the theorem does not hold. Let k£ be the smallest integer such that
KT -Vi) <c.LetZ = {z1,2,...,2zt} C V(T) besuch that k(T — 2) = c;.
If vy € Z, let j be the smallest integer such that v;,; ¢ Z otherwise let j = 0.
Among all sets Z C V(T) satisfying k(T — Z) = ¢, choose Z such that j is as
large as possible. Fori = 1,2,...,k,let Z; = Z — {2} and suppose the vertices
of Z have been labelled in such a way thatif 7 > 1, then 2, = v, for 1 < s < j.
By our choice of Z, it follows thatfori = §+ 1,5+ 2,..., k the vertex z; cannot
be replaced by vj,1 in Z to form Z; = Z; U {v;«1 } with k(T — Z!) = cx. Hence

degr_zvj+1 < degT_z,gz,'.

However,

deg T—{v1,02,...,9;} Vj+1 2 deg T—{v1 v2,..,v;} %"
Therefore v;. has a neighbour in {2;+1,...,2¢} — {2}, say 2y, is such a neigh-
bour. Similarly, vj,1 has a neighbour in {2j41,...,2¢} — {zm}; say z,.

Note that every vertex of Z UV, lies on the path P described in Step 1 (f). Leta
and b be neighbours different from v of 2z, and 2, respectively. We show next
thata,b ¢ Z. Suppose v;+1 € U;. Then deg vjs1 > deg fzm. Suppose a € Z.
Then a lies on P. Therefore

k(T = (ZmU{vn1}) > KT - 2) = ca,

which contradicts our choice of Z. Soa ¢ Z, and similarly b ¢ Z.
Suppose deg 7, z,, < deg gvj+1 = A(F;). Then once again it follows that

k(T = (ZmU{vin})) > KT - 2),

189



which contradicts our choice of Z. Hence deg g, zy, = A(F}). Similarly deg gz, =
A(F;). If deg e and deg g b are less than A (F), then 2, and z, are end ver-
tices of a component of H,, which contradicts our choice of Vi. Hence deg r,a =
A(F). If degpb < A(F}), then by the choice of V; it follows since z, is an
end vertex of a component of Hy, not in Vi, a must be v;. This is impossible since
a € Z. Otherwise, if deg z b = A(F}), thena or b is v; which once again produces
a contradiction. This completes the proof of the validity of Algorithm 1. [ |

With the aid of Algorithm 1 and Theorem 2 we are now able, in the next two
theorems, to characterize the £-connectivity functions of caterpillars.

Theorem 3. Foran integer £ > 2, a function fy: {0,...,s¢} = N U{0} is the
£-connectivity function of a caterpillar with independence number at least £ if and
only if

(i) fe is decreasing,
(i) fe(0) =£—1 and fy(rg) =0, and
(i) if ke>2, then fo(k) —fe(k+1) > fe(k+1) — fo(k+2) for0 < k< Kre—2.

Proof: Suppose first that f; is the £-connectivity function of a caterpillar 7. Then
fe(k) = £—cx(T) for 0 < k < ke(G) = Ky Since cx(T) < k1 (T) for
0 < k < Ky, it follows that f, is decreasing.

Since every edge of a tree is a bridge, £ — 1 edges must be deleted from a tree
to produce £ components. Hence fi(0) = £ — 1. Since £ < B(T), it follows that
there exists a set of xg(T") vertices whose deletion produces a graph with at least
£ components. Hence fy(x¢) = 0. Hence (ii) holds.

Observe that if kg > 2, then fg(k) — fe(k + 1) = cp1(T) — c(T) and
fe(k+ 1) — fg(k +2) = ck+2(T) — Ck+1(T). Let vy,v2,... beas in Step 4
of Algorithm 1. Suppose vgs1 € Uy and vgs2 € U,. Thenr < s < 7+ 1
and deg g, vk+1 > deg g vks2. Since 1 (T) — ck(T) = degpuvesr — 1 and
ck+2(T) — cps1 (T) = deg p,vg+2 — 1, condition (iii) follows.

For the converse suppose that fz: {0,...,x¢} — N U {0} is a function that
satisfies conditions (i), (i) and (iii) of Theorem 2. Construct a caterpillar T" as
follows. Begin with a path vy, u1,v2,u2, ..., g1, Vs,- Nextjoin fo(0) — fo(1)
new vertices to vy and for2 < i < vg,—; join fe(i — 1) — fe(1) — 1 new vertices
to v;. Finally join fg(xg — 1) — fe(xe) new vertices to vx,. Let T be the resulting
caterpillar. Then it can be shown that T' has independence number at least £ and
its £-connectivity function is fe. ]

The next result characterizes £-connectivity functions of caterpillars whose in-
dependence numbers are less than £.

Theorem 4. Foran integer £ > 2 afunction fg: {0,1,...,x¢} — NU{0} isthe
£-connectivity function of a caterpillar T of order p > £, independence number
B = B(T) < £and m = 8g(T) if and only if

() fe(0) =€~ 1, fi(re) =0,
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(i) fo(k+1) < fo(k) for0 <k <m—1and f((m) = ff(m+1) =-.-=
fi(rg—1) =2~p.
(iii) fo(k) — fok+1) > fe(k+ 1) — fe(k+2) forO < k< rg—2,
@iv) @if f(m—1)—fu(m) > 1, then m < xg < 2m— fo(m)+2, otherwise
(b) let s be the largest positive integer such that fy(t) — fe(t+ 1) = 1 for
m-s<t<m—1,thenm < rg<2m— fe(m) —s+2,

Proof: Suppose f; is the £-connectivity function of a caterpillar with indepen-
dence number 8 = B(T) and m = §g(T). Then condition (i) clearly holds. As
in Theorem 3 f(k) = £ — c;(T) for 0 < k < xq. Since cx(T') < cx1(T) for
0 < k < 83(T) = mit follows that fy(k + 1) < fe(k) for0 < k < m — 1.
Since cx(T) = Bform = 8g(T) < k< we— 1, fe(m) = fe(m+ 1) = ... =
fe(re — 1) = £ — B. Hence condition (ii) holds.

Since fo(k+ 1) — fa(k+ 2) = 0 and fe(k) — fe(k+1) >0 form—1<
k < rg — 2, condition (iii) holds for m — 1 < k < xg — 2. Suppose now that
0 < k < m — 2. Then, as in the proof of Theorem 3, fe(k) — fe(k + 1) >
fe(k + 1) — fo(k + 2). Thus condition (iii) holds.

Let m, be the smallest integer so that if S consists of the first m; vertices se-
lected by Algorithm 1, then the components of T — S are all paths. (Note possibly
m; = m.) For each of the m — m, vertices v; € {vm,+1,...,m} removed
next by the algorithm there exists a vertex w; isolated by the removal of v;. Let
Pbealongestpathin T. LetTo = T and fori = 1,2,...,m — 1 letT; =
T — {v1,...,v;}. Observe that if vertex v; is deleted from T;_1(1 < j < m1),
the number of components is increased by fg(j7 —1) — fe(j) . Hence at least fo(j —
1) — fe(j) — 1 verticesnot on P are isolated in the process. Let there be k vertices
v; for which fp(j—1) — fo(j) vertices noton P are isolated when v; is deleted from
Tj—1. Then v; is adjacent with a vertex from the set {v;, v3,...,v;_1 }. Thus there
areexactly 37 (fe(7—1) — fe(7) = 1) + k = fo(0) — Z fu(ma) ~ ma + k vertices
of T noton P. Let S; denote the set of these vertices and S = {v1,v2,...,Vm, }-
Further, let S3 = {Um;+1,Um+2,---,Um} U {Wms1, Wmys2, ..., Wm}- Note that
each component of Ty, = T — {v1,v2,..., Um} is isomorphic to K or K. Let
S4 be the set of vertices that belong to components isomorphic to K, inTy,. Then
IS4| < 2(m1 + 1 — k). To see this note that the deletion of the vertices of S; from
T produces a tree with at most m; + 1 — k nontrivial components. If Algorithm 1
is now applied to T — S5 to delete the next m — m; vertices and thus to produce
T, each of the nontrivial components of T — S, corresponds to at most one K,
of Ty,. Thus

= |81] + |S2| + |S3| + |S4|
< fi(0) = fe(my) —my + k+my +2(m—my) +2(my + 1 — k)
=2m— fo(my) +2.

Since kg = p— £+ 1 = p— fo(0), it follows that kg < 2m — fg(m) + 2.
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Clearly m < x¢. Now if fo(m — 1) — fy(m) > 1, then m; = m so that (iv) (a)
follows. Otherwise, s = m — my and fy(m,) = fs(m) + s. Hence, in this case
ke < 2m — fg(m) — s+ 2; thus (iv) (b) follows.

For the converse suppose fg: {0,1,...,5¢} — N U {0} is a function that sat-
isfies conditions (i}-(iv). Letp = x¢ + f2(0). Let P:uy,v1, u2, v2,...,Um,
Vm, Ums+1. JOIN v; 10 fo(4 — 1) — fz(4) — 1 new vertices for 1 < { < m and
let 7' be the resulting caterpillar. Observe that the caterpillar constructed thus
far has order f,(0) — fi(m) + m + 1. Since fe(m) > 1 it follows by (iv)
thatp' = p— (fe(0) — fe(m) + m+ 1) = kg —m+ fe(m) =1 > 0. If
p’ = 0, then it can be shown that T = T’ has f; as its £-connectivity function
and independence number 8 and 6g(T) = m. If p’ > O, thenp’ < m + 1 if
fe(m—1) — fy(m) > landp < m—s+1if ff(m — 1) ~ fy(m) = 1.
Suppose first that fo(m — 1) — foe(m) > 1. In this case, if p' < m, subdivide the
edges u;v; exactly once for 1 < i < p’ to obtain T'; otherwise subdivide the edges
uy; for 1 < 4 < m and the edge vy unm+1 €xactly once to obtain I'. Suppose
now that fy(m — 1) — fy(m) = 1. Now subdivide the edges u;v; exactly once
(1 <1 < p) oobtain 7. In both cases it can be seen that the corresponding f; is
the £-connectivity function of T'. [

The complex characterizations of the £-connectivity functions of caterpillars
given in Theorems 3 and 4 lead one to believe that the problem of characterizing
the £-connectivity functions of trees in general is a difficult task. In closing we
remark that it also remains an open problem to characterize the Z-connectivity
functions of the n-cube.
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