On the \(\ell\)-Connectivity Function of Caterpillars and Complete Multipartite Graphs

D.P. Day Natal Technikon

Ortrud R. Oellermann and Henda C. Swart University of Natal

Abstract. For an integer $\ell \geq 2$ the ℓ -connectivity (ℓ -edge-connectivity) of a graph G of order p is the minimum number of vertices (edges) that need to be deleted from G to produce a disconnected graph with at least ℓ components or a graph with at most $\ell-1$ vertices. Let G be a graph of order p and ℓ -connectivity κ_{ℓ} . For each $k \in \{0, 1, \ldots, \kappa_{\ell}\}$ let s_k be the minimum ℓ -edge-connectivity among all graphs obtained from G by deleting k vertices from G. Then $f_{\ell} = \{(0, s_0), \ldots, (\kappa_{\ell}, s_{\kappa_{\ell}})\}$ is the ℓ -connectivity function of G. The ℓ -connectivity functions of complete multipartite graphs and caterpillars are determined.

1. Introduction

We follow the graph theory terminology of [3]. It is well-known that the connectivity $\kappa(G)$ (edge-connectivity $\lambda(G)$) of a graph G is the minimum number of vertices (edges) whose deletion produces a graph with at least two components or the trivial graph. These two parameters are frequently used to measure the reliability of networks which one can model naturally with a graph. While these parameters have the advantage that they can be computed efficiently, there are instances where they provide insufficient information about the reliability of a network. For example, the star $K_{1,m}$ and the path P_{m+1} ($m \ge 3$) are both graphs of order m+1 and size m that have connectivity 1, but the deletion of a cut-vertex from $K_{1,m}$ produces m components whereas the deletion of a cut-vertex from P_{m+1} always produces exactly two components. So in some sense $K_{1,m}$ is less reliable than P_{m+1} for $m \ge 3$.

A measure of reliability was introduced in [2] that differentiates between the reliability of these graphs. In particular, for $\ell \geq 2$, the ℓ -connectivity $\kappa_{\ell}(G)$ (ℓ -edge-connectivity) $\lambda_{\ell}(G)$ of a graph G of order $p \geq \ell-1$ is defined as the minimum number of vertices (edges) that are required to be deleted from G to produce a graph with at least ℓ components or with fewer than ℓ vertices. So $\kappa_2(G) = \kappa(G)$ and $\lambda_2(G) = \lambda(G)$. Since the problem of determining whether the independence number $\beta(G)$ of a graph G, of order $p \geq \ell$, is at least ℓ is NP-complete and since $\beta(G) \geq \ell$ if and only if $\kappa_{\ell}(G) \neq p - \ell + 1$, it follows that the problem of determining whether $\kappa_{\ell}(G) \neq p - \ell + 1$ is NP-complete. A graph is (n, ℓ) -connected if $\kappa_{\ell}(G) \geq n$. So n-connected graphs are the (n, 2)-connected graphs. For a graph G of order p, the sequence of numbers $\kappa_2(G), \kappa_3(G), \ldots, \kappa_p(G)$ is called the sequence of connectivity numbers of G. Sequences of non-negative integers that

are sequences of connectivity numbers of graphs are characterized in [2]. Unfortunately there are no known efficient algorithms for computing $\kappa_{\ell}(G)$ or $\lambda_{\ell}(G)$ for a graph G. In [2] and [6] sharp bounds for $\kappa_{\ell}(G)$ are established.

It is well-known that with the aid of Menger's Theorem, Whitney [8] showed that a graph G is n-connected if and only if for every pair u, v of distinct vertices of G, there exist at least n internally disjoint u-v paths in G. It was pointed out in [5] and [6] that no analogous characterization of (n,ℓ) -connected graphs exists. It is well-known that if G is a graph of order p, and n is an integer such that $1 \le n \le p-1$, then if $\delta(G) \ge (p+n-1)/2$, the graph G is n-connected. So for such graphs G, Whitney's theorem implies that for every pair u, v of vertices of G there exist at least n internally disjoint u-v paths. Hedman [4] actually showed that for such graphs G and every pair u, v of distinct vertices of G there exist at least n internally disjoint u-v paths each of length at most G. An analogue of this result is established in [6]. For a set G of at least two vertices of a graph G an G-path is a path between a pair of vertices of G whose internal vertices do not belong to G. Two G-paths are internally disjoint if they have no internal vertices in common.

In [6] it is shown that for a graph G of order $p \ge 2$, and integers $\ell \ge 3$ and $n(1 \le n \le p - \ell + 1)$, if

$$\delta(G) \geq \frac{p + (n-2)(\ell-1)}{\ell}$$

then for each set S of ℓ vertices of G there exist at least n internally disjoint S-paths each of length at most 2.

The problem of disconnecting a graph into at least two components by the deletion of both vertices and edges was first considered by Beineke and Harary [1]. These concepts were extended in [7]. Let G be a graph with ℓ -connectivity $\kappa_{\ell} = \kappa_{\ell}(G)$. If $k \in \{0, 1, \ldots, \kappa_{\ell}(G)\}$, then let s_k be the minimum ℓ -edge-connectivity among all subgraphs obtained by removing k vertices from G. The ℓ -connectivity function of G is defined by $f_{\ell}(k) = s_k$ for $0 \le k \le \kappa_{\ell}(G)$. So for $\ell = 2$, the ℓ -connectivity function of a graph is its connectivity function, which has been characterized by Beineke and Harary [1]. For $\ell \ge 3$ no characterizations of the ℓ -connectivity function of a graph are known and it appears to be a difficult problem to characterize such functions. In [7] several necessary conditions for a function to be an ℓ -connectivity function of a graph are established and the ℓ -connectivity function of the complete graph is derived. We study here the ℓ -connectivity function of certain types of trees and the complete n-partite graphs.

2. The ℓ -connectivity function of certain classes of graphs

In [7] the following formula for the ℓ -connectivity function of a complete graph is established.

Theorem A. Let $p, \ell \geq 2$ be integers with $p \geq \ell$ and suppose that $G \cong K_p$. Then the ℓ -connectivity function of G is given by

$$f_{\ell}(k) = \begin{cases} 0 & \text{if } k = \kappa_{\ell}(G) \\ (\ell - 1)(p - \ell - k + 1) + \binom{\ell - 1}{2} & \text{for } 0 \le k < \kappa_{\ell}(G) \end{cases}$$

We now extend this result to complete n-partite graphs.

Theorem 1. Suppose $G \cong K_{m_1,m_2,...,m_n}$ where $m_1 \leq m_2 \leq \cdots \leq m_n$ and $n \geq 2$. Let $P = \sum_{i=1}^n m_i$ and let k be an integer with $0 \leq k \leq \kappa_{\ell}(G)$. If $s = \min\{m_{n-1}, \sum_{i=1}^{n-1} m_i - k\}$, then the ℓ -connectivity function of G is given by

$$f_{\ell}(k) = \begin{cases} 0 & \text{if } k = \kappa_{\ell}(G) \\ (\ell-1)(p-m_n-k) & \text{if } k \neq \kappa_{\ell}(G) \text{ and } \ell \leq m_n-s+2 \\ (\ell-1)(p-m_n-k) - \binom{\ell-m_n+s-1}{2} & \text{if } k \neq \kappa_{\ell}(G) \text{ and } \ell > m_n-s+2. \end{cases}$$

To prove this result we begin by establishing a series of lemmas.

Lemma 1. Let $G = K_{r_1, r_2, \dots, r_t}$ be a complete t-partite graph $(t \ge 2)$ of order p and let ℓ be an integer, $2 \le \ell \le p$. There exists a set of $\lambda_{\ell}(G)$ edges of G, say E_{ℓ} , such that $G - E_{\ell}$ has ℓ components, at most one of which is non-trivial.

Proof: Let V_1, V_2, \ldots, V_ℓ be the partite sets of G with $|V_i| = r_i$ for $i = 1, 2, \ldots, t$. There exists a set F_ℓ of $\lambda_\ell(G)$ edges of G such that $G - F_\ell$ has ℓ components. Of all such sets F_ℓ let E_ℓ be one such that $G - E_\ell$ has as few non-trivial components as possible. We shall show that $G - E_\ell$ has at most one non-trivial component.

Assume, to the contrary, that $G-E_{\ell}$ has at least two non-trivial components, G_1 and G_2 , with $V(G_1)=A$ and $V(G_2)=B$. For $i=1,2,\ldots,t$, let $A\cap V_i=A_i$, $B\cap V_i=B_i$, $|A_i|=a_i$ and $|B_i|=b_i$. Then there exist $i_1,i_2,j_1,j_2\in\{1,2,\ldots,t\}$ such that $i_1\neq i_2,j_1\neq j_2$ and $a_{i_1},a_{i_2},b_{j_1},b_{j_2}\geq 1$. Letting $H=\langle A\cup B\rangle_G$, we note that for $v\in A_i\cup B_i$ ($i\in\{1,2,\ldots,t\}$)

$$\deg_H v = a + b - a_i - b_i. \tag{1}$$

Furthermore, the set [A, B] of all edges in H with one end vertex in A, the other in B, has cardinality

$$|[A,B]| = \sum_{i=1}^{t} a_i(b-b_i) = \sum_{i=1}^{t} b_i(a-a_i).$$
 (2)

It follows from our choice of E_{ℓ} that isolating a single vertex of H requires the removal of more edges than separating the components G_1 and G_2 in H; i.e., for $v \in V(H)$, $\deg_H v > |[A, B]|$. Hence, for every $i \in \{1, 2, ..., t\}$ such that $a_i + b_i \ge 1$,

$$2\sum_{\substack{j=1\\j\neq i}}^{t}(a_{j}+b_{j})=2(a+b-a_{i}-b_{i})$$

$$>\sum_{j=1}^{t}a_{j}(b-b_{j})+\sum_{j=1}^{t}b_{j}(a-a_{j}).$$
(3)

Assuming (without loss of generality) that $a_t + b_t \ge 1$, we obtain from (3) with i = t

$$\sum_{i=1}^{t-1} a_j(b-b_j-2) + \sum_{i=1}^{t-1} b_j(a-a_j-2) + a_t(b-b_t) + b_t(a-a_t) < 0.$$
 (4)

Since $a-a_j, b-b_j \geq 1$ for all $j \in \{1,2,\ldots,t\}$, it follows from (4) that there exists $j \in \{1,2,\ldots,t-1\}$ such that $a_j \geq 1$ and $b-b_j-2 < 0$ or $b_j \geq 1$ and $a-a_j-2 < 0$; say $b_1 \geq 1$ and $a-a_1 < 2$. Then $a-a_1 = 1$ and there exists $m \in \{2,3,\ldots,t\}$ such that $a_m = 1$ and $a_j = 0$ for all $j \in \{2,3,\ldots,t\}-\{m\}$. We note that $a_1 \geq 1$.

Since $|[A, B]| < \deg_H v$ for $v \in A$, it follows from (1) and (2) that

$$a_1(b-b_1) + a_m(b-b_m) < a-a_1+b-b_1 = 1+b-b_1;$$

hence

$$(a_1-1)(b-b_1)+b-b_m<0$$

which, with $a_1-1\geq 0$, $b-b_1\geq 1$, $b-b_m\geq 1$, yields a contradiction, thus establishing the validity of the lemma.

For a vertex v in a graph G, let the set of edges of G incident with v be denoted by $E_G(v)$.

Lemma 2. Let $G = K_{r_1, r_2, \dots, r_t}$ with $r_1 \le r_2 \le \dots \le r_t, t \ge 2, p = p(G) = \sum_{i=1}^t r_i$ and $\ell \in \{2, 3, \dots, p\}$. Let V_1, V_2, \dots, V_t be the partite sets of G with $|V_i| = r_i$. The following algorithm yields a set E_{ℓ} of edges of G such that $|E_{\ell}| = \lambda_{\ell}(G)$ and $G - E_{\ell}$ has ℓ components, at least $\ell - 1$ of which are trivial:

- 1. Let $H_1 = G$ and let v_1 be a vertex of minimum degree in H_1 . (i.e., $v_1 \in V_t$). Let $E_2 = E_{H_1}(v_1)$ and $H_2 = H_1 v_1$.
- 2. For $i \in \{2, ..., \ell 1\}$, let v_i be a vertex of minimum degree in H_i and let $E_{i+1} = E_{H_i}(v_i) \cup E_i$, $H_{i+1} = H_i v_i$.

Proof: The validity of the lemma for $\ell=2$ is an immediate consequence of Lemma 1. Further, the lemma follows if $\ell=p$, in which case $|E_{\ell}|=q(G)=\lambda_p(G)$. Suppose that the lemma does not hold and let m be the smallest value of ℓ for which the algorithm yields a set E_{ℓ} that does not satisfy the requirements of the lemma; so 2 < m < p. Since $G - E_m$ certainly contains m components, m-1 of which are trivial, it follows that $|E_m|>\lambda_m(G)$. Let F_m be a set of edges of G such that $|F_m|=\lambda_m(G)$, $G-F_m$ contains m components of which m-1 are trivial.

Let $W=\{w_1,w_2,\ldots,w_{m-1}\}$ denote the set of m-1 isolated vertices in $G-F_m$ and, for $w_k\in W$ let $G_k=G-(W-\{w_k\})$. Let $i=i(F_m)$ be such that $v_1,\ldots,v_{i-1}\in W$ and $v_i\not\in W$. Choose F_m such that $i(F_m)$ is as large as possible. Suppose $v_s=w_s$ for $1\leq s\leq i-1$. Let $W'=W-\{v_1,\ldots,v_{i-1}\}$ and let $v_i\in V_j$; then $V_j\cap W'=\emptyset$, since otherwise, if $w_k\in V_j\cap W'$, the set of edges of F_m incident with w_k in G_k , namely $E_{G_k}(w_k)$, may be replaced by $E_{G_n}(v_i)$ to yield a set F'_m of edges of G with $|F'_m|=\lambda_m(G)$ such that $G-F'_m$ has m components, m-1 of which are trivial and $i(F'_m)>i(F_m)$, contrary to our choice of F_m . Hence the only vertices which are adjacent to v_i in H_i and not to v_i in G_{m-1} are those in $W'-\{w_{m-1}\}$. Consequently $\deg_{G_{m-1}}v_i=\deg_{H_i}v_i-(m-2-i+1)$. Furthermore, $\deg_{G_{m-1}}w_{m-1}\geq \deg_{H_i}w_{m-1}-(m-2-i+1)$; so, since $\deg_{H_i}w_{m-1}\geq \deg_{H_i}v_i$, it follows that $\deg_{G_{m-1}}w_{m-1}\geq \deg_{G_{m-1}}v_i$. Hence, replacing the subset $E_{G_{m-1}}(w_{m-1})$ of F_m by $E_{G_{m-1}}(v_i)$, we obtain a set F''_m of edges of G with $|F''_m|\leq |F_m|=\lambda_m(G)$ such that $G-F''_m$ has m components, m-1 of which are trivial, and $i(F''_m)>i(F_m)$.

Thus the validity of the lemma is established.

Let $G = K_{m_1,m_2,\dots,m_n}$ with $m_1 \le m_2 \le \dots \le m_n (n \ge 2)$ and partite sets V_1,\dots,V_n where $|V_i|=m_i$ for $i=1,2,\dots,n;$ $p=\sum_{i=1}^n m_i$. Let S be a proper subset of V(G) such that $|S|=k\in\{0,1,\dots,\kappa_{\ell}(G)\}$ and $k< p-m_n$, where we note that

1

$$\kappa_{\ell}(G) = \begin{cases} p - m_n = \sum_{i=1}^{n-1} m_i & \text{if } \ell \leq \beta(G) = m_n, \\ p - \ell + 1 & \text{if } \ell > m_n, \end{cases}$$

then G-S is a complete multipartite graph, say K_{r_1,\dots,r_ℓ} . It is an immediate consequence of Lemma 2 that S may be chosen to yield G-S of minimum ℓ -edge connectivity, namely $\lambda_\ell(G-S)=f_\ell(k)$, by letting S consist of k vertices of maximum degree in G, i.e., for some $j\in\{1,2,\dots,m-1\}$, $S=\bigcup_{i=1}^j V_i'$, where $V_i'=V_i$ if i< j and $V_j'\subseteq V_j$. Then $E_\ell\subseteq E(G-S)$ may be obtained as prescribed by Lemma 2 to produce $G-S-E_\ell$ containing ℓ components, $\ell-1$ of which are trivial.

If $\ell > m_n$ or $k = p - m_n$, then $f_{\ell}(k) = 0$, obviously. Hence we have the following lemma

Lemma 3. If $G = K_{m_1,\dots,m_n}$ with $m_1 \le m_2 \le \dots \le m_n (n \ge 2)$, and partite sets V_1,\dots,V_n such that $|V_i| = m_i$ for $i = 1,\dots,n$, then, for $1 \le n \le n$

 $0 \le k \le \kappa_{\ell}$, there exist $S \subseteq V(G)$ and $E_{\ell} \subseteq E(G-S)$ such that |S| = k, $|E_{\ell}| = f_{\ell}(k)$, and such that $G - S - E_{\ell}$ contains at least ℓ components, at least $\ell - 1$ of which are trivial and, for some $j \in \{1, \ldots, n\}$, $S = \bigcup_{i=1}^{j} V_{i}'$, where $V_{i}' = V_{i}$ for $i \le j$ and $V_{j}' \subseteq V_{j}$.

Proof of Theorem 1: Clearly if $k = \kappa_{\ell}(G)$, then $f_{\ell}(k) = 0$. If $\ell \le m_n - s + 2$ then, since the degrees of vertices in V_{n-1} exceed those of vertices in V_n by $m_n - s$ in G - S, the $\ell - 1$ vertices isolated in $G - S - E_{\ell}$ occur in V_n . (We note that, for $i \in \{1, \ldots, \ell - 2\}$, if $w \in V_{n-1} - S$ and $z \in V_n$, then in $G - S - \{v_1, \ldots, v_i\}$, deg $w \ge \deg z$.) In this case it is obvious that $|E_{\ell}| = (\ell - 1)(p - m_n - k)$.

If $\ell \geq m_n - s + 2$ then, applying the algorithm in Lemma 2 to G - S, we note that v_1, \ldots, v_{m_n-s+1} may be chosen from V_n and that their isolation requires the removal of $(p-m_n-k)(m_n-s+1)$ edges. The isolation of $v_{m_n-s+2}, \ldots, v_{\ell-1}$ requires the removal, successively, of $p-m_n-k-1, p-m_n-k-2, \ldots, [(p-m_n-k)-(\ell-m_n+s-2)]$ edges. Hence, in this case,

$$|E_{\ell}| = (p - m_n - k)(m_n - s + 1) + \sum_{i=1}^{\ell - m_n + s - 2} (p - m_n - k - i)$$

$$= (\ell - 1)(p - m_n - k) - \binom{\ell - m_n + s - 1}{2} \quad \text{if } k \neq \kappa_{\ell}(G).$$

It is not difficult to see that Theorem A follows as a corollary to Theorem 1.

We next turn our attention to the ℓ -connectivity function of caterpillars. Recall that a caterpillar is a tree that is either isomorphic to K_1 or K_2 or has the property that if its end-vertices are deleted then a path is produced. For a graph G of order p and an integer k, $0 \le k < p$, let $c_{\kappa}(G)$ be the maximum number of components that are produced when k vertices are deleted from G. Note that if $\ell \ge 2$ is an integer and T is a tree with independence number $\beta(T) \ge \ell$, then $f_{\ell}(k) = (\ell-1) - c_k(T)$ for $0 \le k < \kappa_{\ell}(T)$. Let $\delta_{\beta}(T) = \min\{k \mid c_{\kappa}(T) = \beta(T)\}$. The following algorithm finds for a given caterpillar T and every k, $0 \le k \le \delta_{\beta}(T)$, a set V_k of k vertices such that $k(T - V_k) = c_k$.

Algorithm 1. Let $T \ncong K_1, K_2$ be a caterpillar.

- 1. (a) $F_0 \leftarrow T$.
 - (b) $V_0 \leftarrow \emptyset$.
 - (c) $S_0 \leftarrow \{v \in V(F_0) \mid \deg_{F_0} v = \Delta(F_0)\}.$
 - (d) $H_0 \leftarrow \langle S_0 \rangle_{F_0}$.
 - (e) $n \leftarrow 0$.
 - (f) Let $P: u_1, \ldots, u_r$ be the path produced by deleting the end-vertices of T.
- 2. Let T_1, T_2, \ldots, T_s be the components of H_n and $a_i = \lceil \frac{p(T_i)}{2} \rceil$. Let $U_n = \{w_1^n, w_2^n, \ldots, w_{\beta_n}^n\}$ be a maximum independent set of vertices of H_n

(with $\beta_n = \beta(H_n)$) chosen as follows: The vertices $w_1^n, w_2^n, \ldots, w_{a_1}^n$ belong to T_1 . If s > 1, then for $i = 2, \ldots, s$, the vertices $w_{a_1 + \cdots + a_{i-1} + 1}^n, \ldots, w_{a_1 + \cdots + a_{i-1} + a_i}^n$ belong to T_i and if $w_m^n = u_{i_1}$ and $w_r^n = u_{i_2}$ belong to some T_i and m < r, then $i_1 < i_2$. Further, $w_{a_1 + \cdots + a_{i-1} + 1}^n$ is an end-vertex of T_i for $1 \le i \le s$ and $1 \le s$ and

- 3. (a) $F_{n+1} \leftarrow F_n U_n$
 - (b) $n \leftarrow n+1$
 - (c) $S_n \leftarrow \{v \in V(F_n) \mid \deg_{F_n} v = \Delta(F_n)\}$
 - (d) $H_n \leftarrow \langle S_n \rangle_{F_n}$
 - (e) If $\Delta(F_n) > 1$, return to Step 2; otherwise let $\delta_{\beta} \leftarrow \sum_{i=1}^{n-1} |U_i|$ and continue.
- 4. For $k = 1, 2, ..., \delta_{\beta}$ let $v_1, v_2, ..., v_k$ denote, in order, the first k vertices in the sequence $w_1^1, w_2^1, ..., w_{a_1}^1, w_1^2, ..., w_{a_2}^2, ...,$ and define $V_k = \{v_1, v_2, ..., v_k\}$.

Theorem 2. Suppose Algorithm 1 is applied to a caterpillar $T \not\cong K_1$ or K_2 . Then

$$k(T-V_k)=c_k(T)$$
 for $0 \le k \le \delta_{\beta}$.

Proof: Suppose the theorem does not hold. Let k be the smallest integer such that $k(T-V_k) < c_k$. Let $Z = \{z_1, z_2, \ldots, z_k\} \subseteq V(T)$ be such that $k(T-Z) = c_k$. If $v_1 \in Z$, let j be the smallest integer such that $v_{j+1} \notin Z$ otherwise let j=0. Among all sets $Z \subseteq V(T)$ satisfying $k(T-Z) = c_k$, choose Z such that j is as large as possible. For $i=1,2,\ldots,k$, let $Z_i = Z - \{z_i\}$ and suppose the vertices of Z have been labelled in such a way that if $j \geq 1$, then $z_s = v_s$ for $1 \leq s \leq j$. By our choice of Z, it follows that for $i=j+1,j+2,\ldots,k$ the vertex z_i cannot be replaced by v_{j+1} in Z to form $Z_i' = Z_i \cup \{v_{j+1}\}$ with $k(T-Z_i') = c_k$. Hence

$$\deg_{T-Z_i}v_{j+1}<\deg_{T-Z_i'}z_i.$$

However,

$$\deg_{T-\{v_1,v_2,\dots,v_j\}}v_{j+1}\geq \deg_{T-\{v_1,v_2,\dots,v_j\}}z_i.$$

Therefore v_{j+1} has a neighbour in $\{z_{j+1}, \ldots, z_k\} - \{z_i\}$, say z_m is such a neighbour. Similarly, v_{j+1} has a neighbour in $\{z_{j+1}, \ldots, z_k\} - \{z_m\}$; say z_m .

Note that every vertex of $Z \cup V_k$ lies on the path P described in Step 1 (f). Let a and b be neighbours different from v_{j+1} of z_m and z_n , respectively. We show next that $a, b \notin Z$. Suppose $v_{j+1} \in U_t$. Then $\deg_{F_t} v_{j+1} \ge \deg_{F_t} z_m$. Suppose $a \in Z$. Then a lies on P. Therefore

$$k\left(T-\left(Z_m\cup\left\{v_{j+1}\right\}\right)\right)\geq k(T-Z)=c_k,$$

which contradicts our choice of Z. So $a \notin Z$, and similarly $b \notin Z$. Suppose $\deg_{F_i} z_m < \deg_{F_i} v_{i+1} = \Delta(F_i)$. Then once again it follows that

$$k\left(T-\left(Z_{m}\cup\left\{v_{j+1}\right\}\right)\right)\geq k(T-Z),$$

which contradicts our choice of Z. Hence $\deg_{F_t} z_m = \Delta(F_t)$. Similarly $\deg_{F_t} z_n = \Delta(F_t)$. If $\deg_{F_t} a$ and $\deg_{F_t} b$ are less than $\Delta(F_t)$, then z_m and z_n are end vertices of a component of H_t , which contradicts our choice of V_k . Hence $\deg_{F_t} a = \Delta(F_t)$. If $\deg_{F_t} b < \Delta(F_t)$, then by the choice of V_k it follows since z_n is an end vertex of a component of H_t , not in V_k , a must be v_j . This is impossible since $a \notin Z$. Otherwise, if $\deg_{F_t} b = \Delta(F_t)$, then a or b is v_j which once again produces a contradiction. This completes the proof of the validity of Algorithm 1.

With the aid of Algorithm 1 and Theorem 2 we are now able, in the next two theorems, to characterize the ℓ -connectivity functions of caterpillars.

Theorem 3. For an integer $\ell \geq 2$, a function f_{ℓ} : $\{0,\ldots,\kappa_{\ell}\} \to N \cup \{0\}$ is the ℓ -connectivity function of a caterpillar with independence number at least ℓ if and only if

- (i) fe is decreasing,
- (ii) $f_{\ell}(0) = \ell 1$ and $f_{\ell}(\kappa_{\ell}) = 0$, and
- (iii) if $\kappa_{\ell} \ge 2$, then $f_{\ell}(k) f_{\ell}(k+1) \ge f_{\ell}(k+1) f_{\ell}(k+2)$ for $0 \le k \le \kappa_{\ell} 2$.

Proof: Suppose first that f_{ℓ} is the ℓ -connectivity function of a caterpillar T. Then $f_{\ell}(k) = \ell - c_k(T)$ for $0 \le k < \kappa_{\ell}(G) = \kappa_{\ell}$. Since $c_k(T) < c_{k+1}(T)$ for $0 < k < \kappa_{\ell}$, it follows that f_{ℓ} is decreasing.

Since every edge of a tree is a bridge, $\ell-1$ edges must be deleted from a tree to produce ℓ components. Hence $f_{\ell}(0) = \ell-1$. Since $\ell \leq \beta(T)$, it follows that there exists a set of $\kappa_{\ell}(T)$ vertices whose deletion produces a graph with at least ℓ components. Hence $f_{\ell}(\kappa_{\ell}) = 0$. Hence (ii) holds.

Observe that if $\kappa_{\ell} \geq 2$, then $f_{\ell}(k) - f_{\ell}(k+1) = c_{k+1}(T) - c_k(T)$ and $f_{\ell}(k+1) - f_{\ell}(k+2) = c_{k+2}(T) - c_{k+1}(T)$. Let v_1, v_2, \ldots be as in Step 4 of Algorithm 1. Suppose $v_{k+1} \in U_r$ and $v_{k+2} \in U_s$. Then $r \leq s \leq r+1$ and $\deg_{F_r}v_{k+1} \geq \deg_{F_s}v_{k+2}$. Since $c_{k+1}(T) - c_k(T) = \deg_{F_r}v_{k+1} - 1$ and $c_{k+2}(T) - c_{k+1}(T) = \deg_{F_s}v_{k+2} - 1$, condition (iii) follows.

For the converse suppose that f_{ℓ} : $\{0, \ldots, \kappa_{\ell}\} \to \mathbb{N} \cup \{0\}$ is a function that satisfies conditions (i), (ii) and (iii) of Theorem 2. Construct a caterpillar T as follows. Begin with a path $v_1, u_1, v_2, u_2, \ldots, u_{\kappa_{\ell}-1}, v_{\kappa_{\ell}}$. Next join $f_{\ell}(0) - f_{\ell}(1)$ new vertices to v_1 and for $2 \le i \le v_{\kappa_{\ell}-1}$ join $f_{\ell}(i-1) - f_{\ell}(i) - 1$ new vertices to v_i . Finally join $f_{\ell}(\kappa_{\ell}-1) - f_{\ell}(\kappa_{\ell})$ new vertices to $v_{\kappa_{\ell}}$. Let T be the resulting caterpillar. Then it can be shown that T has independence number at least ℓ and its ℓ -connectivity function is f_{ℓ} .

The next result characterizes ℓ -connectivity functions of caterpillars whose independence numbers are less than ℓ .

Theorem 4. For an integer $\ell \geq 2$ a function f_{ℓ} : $\{0,1,\ldots,\kappa_{\ell}\} \to \mathbb{N} \cup \{0\}$ is the ℓ -connectivity function of a caterpillar T of order $p \geq \ell$, independence number $\beta = \beta(T) < \ell$ and $m = \delta_{\beta}(T)$ if and only if

(i)
$$f_{\ell}(0) = \ell - 1, f_{\ell}(\kappa_{\ell}) = 0$$
,

- (ii) $f_{\ell}(k+1) < f_{\ell}(k)$ for $0 \le k \le m-1$ and $f_{\ell}(m) = f_{\ell}(m+1) = \cdots = f_{\ell}(\kappa_{\ell}-1) = \ell-\beta$.
- (iii) $f_{\ell}(k) f_{\ell}(k+1) \ge f_{\ell}(k+1) f_{\ell}(k+2)$ for $0 \le k < \kappa_{\ell} 2$,
- (iv) (a) if $f_{\ell}(m-1) f_{\ell}(m) > 1$, then $m < \kappa_{\ell} \le 2m f_{\ell}(m) + 2$, otherwise (b) let s be the largest positive integer such that $f_{\ell}(t) f_{\ell}(t+1) = 1$ for m-s < t < m-1, then $m < \kappa_{\ell} \le 2m f_{\ell}(m) s + 2$.

Proof: Suppose f_{ℓ} is the ℓ -connectivity function of a caterpillar with independence number $\beta = \beta(T)$ and $m = \delta_{\beta}(T)$. Then condition (i) clearly holds. As in Theorem 3 $f_{\ell}(k) = \ell - c_k(T)$ for $0 \le k < \kappa_{\ell}$. Since $c_k(T) < c_{k+1}(T)$ for $0 \le k < \delta_{\beta}(T) = m$ it follows that $f_{\ell}(k+1) < f_{\ell}(k)$ for $0 \le k \le m-1$. Since $c_k(T) = \beta$ for $m = \delta_{\beta}(T) \le k \le \kappa_{\ell} - 1$, $f_{\ell}(m) = f_{\ell}(m+1) = \cdots = f_{\ell}(\kappa_{\ell} - 1) = \ell - \beta$. Hence condition (ii) holds.

Since $f_{\ell}(k+1) - f_{\ell}(k+2) = 0$ and $f_{\ell}(k) - f_{\ell}(k+1) \ge 0$ for $m-1 \le k < \kappa_{\ell} - 2$, condition (iii) holds for $m-1 \le k < \kappa_{\ell} - 2$. Suppose now that $0 \le k \le m-2$. Then, as in the proof of Theorem 3, $f_{\ell}(k) - f_{\ell}(k+1) \ge f_{\ell}(k+1) - f_{\ell}(k+2)$. Thus condition (iii) holds.

Let m_1 be the smallest integer so that if S consists of the first m_1 vertices selected by Algorithm 1, then the components of T-S are all paths. (Note possibly $m_1 = m$.) For each of the $m - m_1$ vertices $v_i \in \{v_{m_1+1}, \dots, v_m\}$ removed next by the algorithm there exists a vertex w_i isolated by the removal of v_i . Let P be a longest path in T. Let $T_0 = T$ and for $i = 1, 2, ..., m_1 - 1$ let $T_i =$ $T = \{v_1, \dots, v_i\}$. Observe that if vertex v_i is deleted from $T_{i-1} (1 \le j \le m_1)$, the number of components is increased by $f_{\ell}(j-1) - f_{\ell}(j)$. Hence at least $f_{\ell}(j-1) - f_{\ell}(j)$. $1) - f_{\ell}(j) - 1$ vertices not on P are isolated in the process. Let there be k vertices v_j for which $f_\ell(j-1)-f_\ell(j)$ vertices not on P are isolated when v_j is deleted from T_{j-1} . Then v_j is adjacent with a vertex from the set $\{v_1, v_2, \ldots, v_{j-1}\}$. Thus there are exactly $\sum_{j=1}^{m_1} (f_{\ell}(j-1) - f_{\ell}(j) - 1) + k = f_{\ell}(0) - f_{\ell}(m_1) - m_1 + k$ vertices of T not on P. Let S_1 denote the set of these vertices and $S_2 = \{v_1, v_2, \dots, v_{m_1}\}$. Further, let $S_3 = \{v_{m_1+1}, v_{m_1+2}, \dots, v_m\} \cup \{w_{m_1+1}, w_{m_1+2}, \dots, w_m\}$. Note that each component of $T_m = T - \{v_1, v_2, \dots, v_m\}$ is isomorphic to K_1 or K_2 . Let S_4 be the set of vertices that belong to components isomorphic to K_2 in T_m . Then $|S_4| \leq 2(m_1+1-k)$. To see this note that the deletion of the vertices of S_2 from T produces a tree with at most $m_1 + 1 - k$ nontrivial components. If Algorithm 1 is now applied to $T - S_2$ to delete the next $m - m_1$ vertices and thus to produce T_m , each of the nontrivial components of $T-S_2$ corresponds to at most one K_2 of T_m . Thus

$$p = |S_1| + |S_2| + |S_3| + |S_4|$$

$$\leq f_{\ell}(0) - f_{\ell}(m_1) - m_1 + k + m_1 + 2(m - m_1) + 2(m_1 + 1 - k)$$

$$= 2m - f_{\ell}(m_1) + 2.$$

Since $\kappa_{\ell} = p - \ell + 1 = p - f_{\ell}(0)$, it follows that $\kappa_{\ell} \leq 2m - f_{\ell}(m_1) + 2$.

Clearly $m < \kappa_{\ell}$. Now if $f_{\ell}(m-1) - f_{\ell}(m) > 1$, then $m_1 = m$ so that (iv) (a) follows. Otherwise, $s = m - m_1$ and $f_{\ell}(m_1) = f_{\ell}(m) + s$. Hence, in this case $\kappa_{\ell} \le 2m - f_{\ell}(m) - s + 2$; thus (iv) (b) follows.

For the converse suppose f_{ℓ} : $\{0,1,\ldots,\kappa_{\ell}\} \to \mathbb{N} \cup \{0\}$ is a function that satisfies conditions (i)–(iv). Let $p = \kappa_{\ell} + f_{\ell}(0)$. Let $P: u_1, v_1, u_2, v_2, \ldots, u_m, v_m, u_{m+1}$. Join v_i to $f_{\ell}(i-1) - f_{\ell}(i) - 1$ new vertices for $1 \leq i \leq m$ and let T' be the resulting caterpillar. Observe that the caterpillar constructed thus far has order $f_{\ell}(0) - f_{\ell}(m) + m + 1$. Since $f_{\ell}(m) \geq 1$ it follows by (iv) that $p' = p - (f_{\ell}(0) - f_{\ell}(m) + m + 1) = \kappa_{\ell} - m + f_{\ell}(m) - 1 \geq 0$. If p' = 0, then it can be shown that T = T' has f_{ℓ} as its ℓ -connectivity function and independence number β and $\delta_{\beta}(T) = m$. If p' > 0, then $p' \leq m + 1$ if $f_{\ell}(m-1) - f_{\ell}(m) > 1$ and $p' \leq m - s + 1$ if $f_{\ell}(m-1) - f_{\ell}(m) = 1$. Suppose first that $f_{\ell}(m-1) - f_{\ell}(m) > 1$. In this case, if $p' \leq m$, subdivide the edges $u_i v_i$ exactly once for $1 \leq i \leq p'$ to obtain T; otherwise subdivide the edges $u_i v_i$ for $1 \leq i \leq m$ and the edge $v_m u_{m+1}$ exactly once to obtain T. Suppose now that $f_{\ell}(m-1) - f_{\ell}(m) = 1$. Now subdivide the edges $u_i v_i$ exactly once $(1 \leq i \leq p')$ to obtain T. In both cases it can be seen that the corresponding f_{ℓ} is the ℓ -connectivity function of T.

The complex characterizations of the ℓ -connectivity functions of caterpillars given in Theorems 3 and 4 lead one to believe that the problem of characterizing the ℓ -connectivity functions of trees in general is a difficult task. In closing we remark that it also remains an open problem to characterize the ℓ -connectivity functions of the n-cube.

References

- 1. L.W. Beineke and F. Harary, The connectivity function of a graph, Mathematika 14 (1967), 197-202.
- 2. G. Chartrand, S.F. Kapoor, L. Lesniak and D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984), 1-6.
- 3. G. Chartrand and L. Lesniak, "Graphs and Digraphs", 2nd Edition, Wadsworth & Brooks/Cole, Monterey, CA, 1986.
- 4. B. Hedman, A sufficient condition for n-short-connectedness, Math. Mag. 47 (1974), 156–157.
- 5. W. Mader, Über die Maximahlzahl kreuzungsfreier H-Wege, Arch. Math. 31 (1978/79), 387-402.
- 6. O.R. Oellermann, On the \(\ell\)-connectivity of a graph, Graphs and Combinatorics 3 (1987), 285-291.
- 7. O.R. Oellermann, A note on the *l*-connectivity function of a graph, Congressus Numerantium 66 (1987), 181–188.
- 8. H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150–168.