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Abstract

In 1988 Sarvate and Seberry introduced a new method of construction
for the family of weighing matrices W ( nz(n - 1), nz), where nis a
prime power. We generalize this result, replacing the condition on n with the
weaker assumption that a generalized Hadamard matrix G H(m; G) exists
with |G| = m, and give conditions under which an analogous construction
works for |G| < n. We generalize a related construction for a W (13, 9),
also given by Sarvate and Seberry, producing a whole new class. We build
further on these ideas to construct several other classes of weighing matrices.

1 Introduction and preliminaries

Recall that the 2-adjugate, D2( M), of an n x nmatrix M with entries in

a commutative ring R (thatis, M € M,(R))is defined to be the ﬁ—”{—ll X
ﬁ%’—ll matrix whose rows and columns are indexed by unordered pairs
from the list 1,...,n (with some fixed ordering among these pairs) and
whose (1,1'), ( 7, ]' ) entry isthe 2 x 2 minor corresponding to rows 3 and
i’ and columns j and ;.

The Cauchy-Binet theorem [4, p. 25] applies to the analogous k-adjugate

Dy and states that for 1 < k < n, Dy is multiplicative—that is, for any
M, M'eMn(R), Di(M)Di(M') = Di( M M'). We shall only need the
casek=2.
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Henceforth, let G be a fixed abelian group with |G| = g and let us
take R to be the group ring Z[G]. We define amap x : R — R by
linearly extending the inverse map * : £ — z* := 2!, zeG. Then * is
an involution on the ring R, and since G is abelian, * must therefore be an
automorphism of the ring. We can also “extend” x to an involution on the
matrix ring M,(G) by (m;)* := (m;*). Since  is an automorphism of

R, we have

* *

a* ¢
b

*

a b
c d

Combining this with the Cauchy-Binet theorem, we arrive at the following
lemma.

Lemma 1l Forall MeMn(R), D2(M)D2(M)* = D2(MMY).

More generally, * “commutes” with determinants of any degree, and
so the k-degree analogue of this lemma holds.

NowG = {z1,...,z,} hasaregular representation,w : G — My(Z),
which is given by

_J0 if:z,':cj"] # T
ﬂ(mk)v = { 1 ifxi.’l:j—l = 34 .

Thus 7 is a group homomorphism which maps elements of G to permuta-
tion matrices which are pairwise disjoint—that is, their entry-wise product
equals 0. There is a unique homomorphism, which we also denote by T,
extending « linearly to the group ring R. This satisfies w(z*) = n(z)!,
since this holds on the basis of group elements. Moreover, if we write
G for the element of the ring obtained by summing the elements of the
group G in R, then we have 7(G) = Jg, the g x g matrix with all entries
equal to 1. As well, w induces a ring homomorphism M,(R) — My,(2)
also denoted 7, by operating on matrices entry-wise. This also satisfies
n(M*) = n( M)*.
A generalized Hadamard matrix M = GH(n, G) isamatrixin M,(R),

all of whose entries are clements of G, satisfying the condition

MM*=nI+§G(J—I). (1)

We shall have some uscs for the following well-known result.
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Lemma 2 (Drake, [2]) For any prime p and integers 0 < s < t, there
exists a GH(p*, EA(p%)).

Here EA(p") denotes the elementary abelian group of order p”, Z,, x
- -+ X Zyp, which is defined for all primes p.
A weighing matrix W = W(n,w) of weight wisannx n(0,+1)-
matrix satisfying
WWw' = wl. 2

Sarvate and Seberry [5] demonstrated that there is a W(g%(g— 1), g%)
for prime powers g by a construction utilizing the 2-adjugate of the gen-
eralized Hadamard matrix GH (g, EA(g)) given by lemma 2. They ac-
cidentally gave a proof which was valid only for prime g, but in fact they
had indeed verified the more general result, and this was merely an over-
sight. We repeat their construction, giving a shorter proof which avoids
such problems, not relying at all on the structure of Galois fields—and is
in fact more general, provided that one can produce a GH(g,G), with g
not a prime power. Whether or not this is possible is presently unresolved.

2 Construction of the special matrix D

Let M = GH(n G). We calculate that

D3(M)D2(M)* = Da(MM*) = (2 - ’—S—G)I«_»,-_IL, (3)

n -_—
since the principal minor of M M* have the form ‘ sg ' I and each
9
LYo T Yo R B
non-principal minors has one of the forms | § G H Gl g i~ |or
9" 9 L

some permutation of the latter. Now G? = ¥, o Y vec TY = gG, so all the
non-principal minors are 0.

Moreover, since each entry, u, of Do (M) isa2 x 2 minor, it is of the
form z —y, z, yeG. Thus uG = 0, and it follows that D, (M)(GN)*=0
for any matrix NeMg_»i_nL( R). We write D := w(D2(M)). Sarvate and
Seberry constructed this D in the case G = EA(n), where n = g isaprime
power. Then they constructed the companion matrix E := w(G1I. ,%ﬂ) =
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I®J, and pointed out that matrix

E D
(D E) 4

isaW(g%(g—1),g%). For, by the foregoing observations, ED' = DE' =
0, and using (3), we see that DD! + EE! = Togn R g*I, — gJg) +

I L(ﬁ-ﬂ@QJg = ¢2] 2oy Moreover, this holds whenever a GH(g,G)
€XIsts.

Theorem 3 Givena GH(g,Q), there is a W(g*(g — 1),g%).

Notice that, while the statement of this result is apparently more general
than that of Sarvate and Seberry, it remains to be determined whether or not
this is indeed a strict generalization. They also noted another use for the
matrix D in the case n= g = 3, as follows. The matrix

/000 0|1 1 1 1 1 1 1 1 1\
011 1[000 — - - 111
011 1|1 11000 — — —
011 1|—-—-—-111000
1 0 1 —

101 —

10 1 -

1 — 0 1

1 — 0 1 D

1 - 0 1

11 -0

11 -0

\1 1 — 0 /

isa W(13,9). Here we produce a simple generalization of this construc-
tion. -

Theorem 4 Givena GH(g,G) and aweighing matrix W = W ( =1 4
1,9), there is a W(£L=0 4 1,%).

Proof: Let W; represent the ith row vector of W, indexing from 0 to
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9192‘—11, and let e represent the 1 x g vector(1,...,1). Then

Wo'Wo I Wite --- W,gﬁ-_n)_‘e
W (5)
: D
W
is the required matrix. a

Example 1 By lemma 2 thereisa GH(3, Z3). Using this and the weigh-
ing matrix
1 1 1
01 -
-0 1]
1 1 -0
we obtain the example given by Sarvate and Seberry.

Example 2 By lemma 2, there isa GH(4,Z> x Z3). The circulant with
first row (—110100) is a W(7,4). Thus we obtain a W (31, 16).

—_— O

3 The next step: g # n

We see that { D, E}, as given in the last section, is an example of an or-
thogonal set (see [1] for a complete introduction to orthogonal sets, their
construction and application). Now let us drop the assumption that g = n,
and postulate the existence of a weighing matrix W = W( ﬁﬂ'—l)-, ( ") ).
If we write E := 7(GW), and D = w(D2(M)) as before, we have an-
other orthogonal set, and (4) is a W(gn(n— 1),n?).

Theorem S Given a GH(n,G) and a W(ﬁT)- (2 ) ), there is a
W(gn(n—1),n?).

Example 3 With Z3 =< ~: 4> = 1 >, we construct the circulant matrix
A with first row (1942424). Then
11 -1
1
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isaGH(6,23). Wetake n = 6 and g = 3. It is well-known [3]
that a W (15, 4) exists. Therefore we obtain a W (90, 36).

Example 4 As before, we have a GH(9, Z3). Since W(36,9) is known
[3], we obtain a W (216, 81).

Here is a variation on theorem 4 which works in this more general set-
ting.

Theorem 6 Given a GH(n,G) and a W(ﬂ—"{—l)-,"%), there is a
W(ﬂt‘%ﬁﬂﬁl’,ﬁ)_

Proof: As in theorem 4, except that we take Wp = (0,...,0). (]

Example 5 We maytake n= 8, g = 4. Since a W(28, 16) is known [3],
we obtain a W (140, 64).

4 Further use of orthogonal sets

The construction of D and E as described in section 3 produces orthogonal
sets with coweights (see [1]) equal to 1. We consider here how to obtain
other coweights.

Let W = W(m,w) and V = W(2x2=10 +/). Thenlet D := W
Rn(D2(M)) and E := VQJ,y. Now D and E are (0, 1) -matrices sat-
isfying DEt = ED! = 0 and w'g? DD+ wn? EE* = ww'(ng)? I mmts-n) .
Using the theory of orthogonal sets, we have the following theorem.

Theorem 7 GivenaGH(n,G), weighing matrices W (m,w), W (2xXe=12
w') and disjoint weighing matrices W(k,twn?), W(k,tw'g?), thereis a

(Rl i (ng)?).

Here m, k, w,w' arc any suitable positive integers and ¢ may be any
suitable rational number (here “suitable” only means that the postulated
weighing matrices exist). Theorem S is the special case of this result cor-
respondingtok=2, m=w=1,w'= (3)2 and t = n~2.

Now suppose there is an SBIBD(g,r,)). Then the (+£1) incidence
matrix, H, of this design satisfies

HHt=gIg+(4(X—T)+g)(Jg""Ig)s (6)
Hi=Q2r—-g)J. @)
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Then F = $ D(IQH) is a (0, +1)-matrix satisfying

wn?(r —\)
FF' = wn?(r — X) Immgtnot) — —Q—IW_Q ®J,.  (8)

Moreover, F(N®J,) = 0 for any matrix N of order 2%2=1).. Therefore
we have the following result.

Theorem 8 Givena GH(n,G),an SBIBD(g,r,)),aW(m,w) anda
(Rl w(2)2(r — X)), there is a W(mng(n— 1), wn®(r = ))).

Proof: Let V' be the second weighing matrix and set E = V@J,. Then

E F
F FE
is the desired weighing matrix. (]

This result may be generalized further by the use of orthogonal sets as
in theorem 7. We may also apply the other method to the matrix F' and
obtain the following.

Theorem 9 Givena GH(n,G),aW(m,w),an SBIBD(g,r,)) anda
w(me=l) wh(r=))) there is q W(BEE=D@D 4y (1 — 3)).

Proof: Analogous to theorem 6. O
Again, another result analogous to theorem 4 may be obtained using F'

instead of D, but it requires a couple of additional preconditions, and so
we refrain from stating it here.
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