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Abstract. Let g be aprime power, F; the finite field with 2 elements, Un(F 2) finite

unitary group of degrec nover F 2, and U Vis(F,2) the n-dimensional unitary geometry
over F 2. It is proven that the subgroup consisting of the elements of Uy (F 2 ) which
fix a given (m, s)-type subspace of UV,(F 2), zcts transitively on some subsets of
subspaces of UVa(F2). This observation gives rise to a number of PBIBD's.

1. Introduction

Let g be a prime power, and Fq be the finite field with ¢ elements. F,2, the finite

field with ¢> elements, has a copy of Fq as one of its subfields. It is well known
that F;z has an automorphism of order 2, namely ¢ — @ = a9, which fixes this
copy of Fy. The set of nx nmatrices H = (h;;) over F,z whichsatisfy HAT = I
forms a group, called the unitary group of degree n (dcfined by the identity matrix
I) over F,2, and denoted by U, (F,2).

Let V,(F,2) be an n-dimensional vector space over F 2. Then U,(F,2) can be
viewed as one of its transformation groups. V,(F.) with U,(F) as its trans-
formation group is called the n-dimensional unitary space or the n-dimensional
unitary geometry over Fz, and denoted by UV, (F,2).

Two vectors A and B of UV, (F,2) are said to be orthogonal , written A 1 B,
iff ABT = 0. Let P* := {V|U L V forall U € P} be called the conjugation of
P,
Let P be a m-dimensional subspace of UV,(F2). A subspace P is said to be
of type (m, s) iff the rank of the matrix PPT is s. Clearly the type of a subspace
is independent of the choice of the matrix whose rows span the subspace. Let
t := m—s > 0 and ¢ := n+ s — 2m. We have proven in [6] that the conjugation
of a subspace of type (m, s) is a subspace of type (¢ + ¢,¢),s0¢ > 0.

Shen [1] constructed a number of PBIBD’s from UV, F . by taking as vertices
the subspaces of type (m+ 1,2) which contain a fixed subspace S of type (m, 0).
Yang and Wei [7] constructed a number of BIBD’s and PBIBD’s from V;,(Fq q) by
taking as vertices the 1-dimensional subspaces which are not contained in a fixed
m-dimensional subspace Q). Wei and Yang [4] constructed a number of PBIBD’s
from the 2 v-dimensional symplectic geometry SV, (Fq q) by taking as vertices
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the 1-dimensional subspaces which are orthogonal to a fixed subspace R of type
(m, s), but not contained in R. In the present paper we show that it is possible to
constructa number of PBIBD’s from UV, (F,2) by taking as vertices the subspaces
of type (1,0) which are orthogonal to a fixed subspace P of type (m, s), but not
contained in P. The discussion in the orthogonal geometries appears in some other
papers.

The concepts and notation used but not defined in this paper are adopted from
[3] and {6].

Properties of UV, (F,2) and U,(Fp)
Throughout this paper, P is a fixed subspace of type (m, s), and W is the set
of subspaces of type (1,0) which are orthogonal to P but not contained in P. Let
Vi, V2 € W. Ifdim{V;, V3)NP = 1, then V; and V; are said to be first associates.
In this case, write (Vi,V2)N P = (V). Then (V;, V) = (V1,V)and V; L V,and
so (Vi, V2) is a subspace of type (2,0). If (V1,V2) NP = {0} and V1 L V; (ie,,
(Vh, V2) is again a subspace of type (2,0).), then V; and V, are said to be second
associates. If (Vi, V2)NP = {0} and V, is not orthogonal to V; (i.e.,(V1,V2) isa
subspace of type (2,2)), then V; and V; are said to be third associates. The symbol
(Wi, V2) € R; will denote the fact that V; and V3 are ith associates, i = 1,2,3.
In order to construct an association scheme, we need the following properties
of the unitary geometry UV;,(F,2) and the unitary group U,(F).
Theorem 1. Let G be the subgroup consisting of the elements of U,(F ;) which
fix P. Then G acts transitively on W, and G acts transitively on each of the sets
Si={n,)IN,, eW,(W1,V2) eR;},i=1,2,3.
The proof of this theorem is similar to that of Theorem 1 in [4], and is therefore
omitted.

Theorem 2. InUV,(F ), asubspace P of type (m, s) intersects its orthogonal
complement in a subspace of type (t,0).

The proof of this theorem is similar to that of Theorem 3 in [5], and is therefore
omitted.

Let f(z) = ¢** — 1, F(2) = [[&, (i), h(z) = ¢ — (~1)* and H(z) =
H:;, h(i). Wan (see [2] or [3]) proved that the number of subspaces of type
(A+ B, A) inasubspace of type (C+ D, C), denotedby N(A+ B, A; C+D,C),
is given by:

N(A+B,A;C+ D,C)
kemen(0,[ A28-C21]) F(D-k)F(B—k)F(KYH(C—A—-2B+2k)H(A)
qNC-A-2B+20)+2 A+ B-k)(D-k)

We are now in a position to prove:
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Theorem 3. With the definition of vertices andith associates above, we obtain a
3-class association scheme with parameters:

v=N(1,0;c+t,6) — N(1,0;2,0) = -’%q".
m = N(1,0;t+1,0) — N(1,0;¢,0) — 1 = ¢** — 1,
he=2h(c=3) aen

m =N(1,0;c+t—1,c—2) = N(1,0;t+1,0) = Py ,

ph=¢"-2, pl,=0, ph=m,
P = N(1,0;c+t—2,c—4) —2N(1,0;¢ +1,0) + N(1,0;¢,0)

= PP — 1) + h(C—q‘z’f)h(lc— 5) XD,

(Note that ¢ > 1, otherwise there are no vertices. 3 = v—m —m = 1+
q*°*2t=3 5 0 always, but my = 0 iff c=2 or 3,and ) = 0 iff m = s. So this
3-class scheme may degenerate to a 2-class or 1-class scheme in some cases.)

Proof: By the transitivity in Theorem 1, we certainly obtain a 3 ¢-class association
scheme. We now evaluate its parameters.

The parameter v is the number of subspaces of type (1,0) which are contained
in P* but not contained in P. Since P* is a subspace of type (c+ t,c) and PN P*
is a subspace of type (t,0), it follows thatv = N(1,0;c+ t,¢) — N(1,0;1,0).

Let V; be a given subspace of type (1,0) which is orthogonal to P but not con-
tained in P. Let V2 # V) be a subspace of type (1,0).

W, Va) € Ry iff Va3 C ({P,V1)N < (P,V1)*\P. Since Vi C P*, we have
Vi* D P. Thus (P, V) N(P,V1)*NP = (P, VI)*'NP=P*NV'NP=P'NP.
Noting that {P, V) is a subspace of type (m + 1,s) and (P,V}) N (P, V)" isa
subspace of type (¢ + 1,0), we have

greD-1 g2ty

— N " - 2t
m = N(1,0:4+1,0 = N(1,0:8,0) = 1= S5 = 57 = _1.

1=g¢

(Vi,V2) € R, iff Vo C (P, Vi)*\(P, Vi). Since (P, Vi)* isa(c+t—1,c—2)-
type subspace and {P, V1)* N (P, V1) is a subspace of type (¢t + 1,0), we have
m=N(1,0;c+t—-1,c—-2) - N(1,0;t+ 1,0).

Let (Vi,V2) € R;. Then V; is a subspace of the subspace (P, V}) of type
(m+1,s). Let (V,V})) € Ry,i=1,2. ThenV C (P,V;) n{P,V1)*\P. So
pl; = ¢®* — 2. Since p}, = m — 1, this forces p}, = pl; = 0. Let (V, V) € R,.
Then V C (P, V1)*\(P,Vi). Hence P}, = m,.

Now let (Vi, V) € Ry,50¢ > 3. Let(V,V;) € R;,i =1,2. ThenV C
(PV1,Va)*, V & (P, Vi),i = 1,2, Since (P,V},V2) C (Vi}*n{Va)*, P*N
(P, Vi) = (P, Vi) n(P,V;), i = 1,2, it follows that (P, Vi, V2)* N (P, V;) =
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P nvrnVyn{P,V;) = P*n(P,Vi) = (P,V)*n(P,V;),i = 1,2. And
since (P, V1) N{P,V3) = P, wehave [{P,V1,V2)* N{P,VIIN[{P,V1,2)* N
(P, V2)]1 = [P*N{P,V1)IN[P*N(P,V1)] = P*NP. Since P*N P is a subspace
of type (¢,0), both {P, V;)* N (P, V;), i = 1,2, are subspaces of type (¢ + 1,0),
and the conjugation of the subspace (P, Vi, V2) of type (m + 2, s) is a subspace
of type (c+t—2,c—4), we have

pa = N(1,0;¢c+t—2,c—4) —2N(1,0;t+ 1,0) + N(1,0;¢,0)
by the inclusion-exclusion principle. 1

3. PBIBD’s

In this section we will use the association schemes obtained in section 2 to con-
struct a number of PBIBD’s.

Theorem 4. Consider the association scheme of Theorem 3. Let ¢ < c. Take
as blocks the subspaces of type (c,c) which are orthogonal to P, and define a
vertex to be incident with a block if it is a subspace of that block. This gives a
PBIBD with 3 classes and design paramefers:

= ' - H(c) _d(c=d+28)
b—N(c,c,c+t,c)—H(d)H(c_d)., ,
] h(d)h(c — 1)
k=N(1,0;c,c) = —Z-1
r= bk - H(c—-2) d(c—d+2t) -2t
v H(d-2)H(c-¢) '
A =0,
My = b-N(2,0;c,c)g%*(g* + 1) _ H(c—4) Cleacs20)—at
vom H(¢ —2)H(c-0o) ] ’
N = b-N(2,2,d,¢) _ H(c-2) (d=2)(c—ds2t)

T N(2,2;c+t,c) H(c—2)H(c-¢)

Proof: Let Q be a subspace of type (¢/,c’) orthogonal to P. By theorem 2,
Q*NQ = {0}. Since P L Q (thatis, P C Q*), it follows that PN Q = {0},
and (§) is an (m + ) x nmatrix with rank m + ¢’. Without loss of generality,
we may assume that

pT _ Io 0 AT _
PP - (0 0) ] QQ = lgt.
Noting that P 1 Q, we have
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Similarly for Q. Therefore there exists T" € Un(F,2) such that (5)T = (g) , (see
Theorem 4 in Chapter 3 of [2]), which implies that PT = P (so T € G) and
QT = Q. This implies that G is transitive on the blocks of this design. From this
transitivity and the transitivity from Theorem 1, we certainly obtain a PBIBD.

The parameter b is the number of subspaces of type (¢, ¢’) which are contained
in P*,s0b= N(d,d;c+1t,0)-k=N(1,0;c,c), trivially. r = &.), = 0.

To get A2, count triples (Q, V1, V2) with Q ablock, Vi, Vo e W, 1,12 C Q,
(V1,V2) € R, in two ways, we have b- N(2,0;c,c)- (g% + 1)g? = v-my- )2,
since the number of ordered pairs of subspaces of type (1,0) which are contained
in a given subspace of type (2,0) is (¢> + 1) ¢2.

The parameter )3 is the number of blocks that contain a given subspace of type
(2,2) which is orthogonal to P. Similarly count pairs (Q, V) with Q ablock,V a
subspace of type (2,2) orthogonal to P,and V C Q,toget A\3- N(2,2;¢c+1t,c) =
b-N(2,2;¢,¢). |

(Note that there are special cases of this when the scheme is degenerate.)

Theorem 5. Again consider the association scheme of Theorem 3. Let W be the
set of blocks and let a vertex be incident with a block iff they are orthogonal as
subspaces. Then this produces a PBIBD with parameters:

h(c)h(c—1)
b=y= qz—_lqzt,
2t o h(c—2)h(c—3) q2(¢+|)

g* -1
X2 =N(1,0;c+t—2,c—4) = (¢ + 1)g* + h(c—q:)h(lc— 2
h(c—2)h(c—3) ,,

¢ -1 -
Proof: By the transitivity of G in Theorem 1, we certainly obtain a PBIBD.
Clearly b = v (and hence » = k). Let V; be a vertex and V' a block. Then V; is
incident with V iff V C (P, Vi)*\P. Noting that (P, V1)*N P = P*N P, we have
r=N(1,0;c+t—-1,c—-2) — N(1,0:t,0).

Let V, and V5 be vertices with (V}, V3) € R; and V;, V; incident with a block
V. ThenV C (P, V1, V2)*\P. Since (P, V1, V2) is a subspace of type (m+2, s),
that (P, V1, V2)* is a subspace of type (c+t—2,c—4) ,and that (P, V, V2)*NP =
P*NP,wehave )y = N(1,0;¢c+t—2,c—4) — N(1,0;¢,0).

Let V; and V5 be vertices with (V1,V2) € Ri. Then A3 is the number of
subspaces of type (1,0) which are contained in {P, V}, V2 )*\ P. Since (P, ,V;)
is a subspace of type (m + 2,3 + 2), (P, Vi, V2)* is a subspace of type (c+ ¢t —
2,c-2),and (P, V},Va)*NP=P*'NP,wehave \3 = N(1,0;c+t—2,c—
2) — N(1,0;t,0). 1

(Again we have the special cases when the scheme is degenerate.)

r=k=X=N(1,00c+t—1,c—2)=¢

M =N(1,0,c+t—-2,c—-2) =
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Theorem 6. Consider the degenerate 2-class association scheme with t = 0,
c>3.Letd :=n+s —2m' >0 and s' > m. Take as blocks the subspaces
of type (m', 8') that contain P, and define a vertex to be incident with a block iff
the vertex is a subspace of the block. This gives a PBIBD with parameters:

b= NT(m,m;m', s,
r=NT(m+1,m;m', ),

M =NT(m+2,mm,s),

M =NT(m+2,m+2;m,s).

Where NT( A, B; C, D; n) is the number of subspaces of type (C, D) in UVo(F;2)
that contain a given subspace of type (A, B) (see [6]).

Proof: LetQ beablock. Then Q is a subspace of type (m/', s') and can be written
asQ = (f,’) for some (m' — m) x nmatrix Y. Without loss of generality we may

assume that I
- T - m *
o= (" 7).
By suitably choosing Y we may further suppose that
= I 0
T _ m J
QQ = ( 0 YYT ) .
Since Q is a subspace of type (m’, s'), the rank of Y¥'T is s’ — m. Therefore we

may further assume that
= I 0
T _ 8
@™ (§ o).

From this it can be seen that G acts transitively on the set blocks. And by the
transitivity of G from Theorem 1, this certainly gives a PBIBD. The parameters
are easy to compute. 1

Theorem 7. Again consider the degenerate 2-class scheme fort = 0,¢ > 3.
Letd :=n+ 3 —2m' > 0 and m' < c+ t. Take as blocks the subspaces of
type (m',8') which are orthogonal to P and define a vertex to be incident with a
block iff it is a subspace of the block. This gives a PBIBD with paramelers:

b= N(m',s";c+t,c+1t),
k=N(1,0;m's)),

Ay = b-N(2,0;m’,s")
' N(@2,0ic+t,c+t)’

b-N(2,2;m',s")
Ay =

T N(2,2%c+t,c+t)
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Proof: As above G is transitive on the set of blocks, and Theorem 1 assures that
this is a PBIBD.

The parameter b is the number of subspaces of type (m/', s') which are contained
in P*. Since P* is a subspace of type (¢ + t,c+ t), we have b = N(m/,s';c+
t,c+t).

Since the subspaces of type (1,0) which are in a block Q are orthogonal to P
but not contained in P, we have k = N(1,0;m',s').

Let V; and V3 be two vertices with (Vi,V2) € R;. Then (V1,V2) is a sub-
space of type (2,0) contained in P*. The parameter X, is the number of blocks
which include such a subspace of type (2,0). Counting pairs (Q, V) of blocks and
subspaces of type (2,0) with V C P*and V C Q, we have b- N(2,0; m',s') =
N(2,0;c+t,c+t) ). Similarly for X,. [}

Theorem 8. Let n=2v+ 6,6 = 0 or 1. Consider the degenerate 2-class scheme
withm =0 (soc=2 or3,t > 0)and s = 0. Take as blocks the subspaces of
type (m,0) which are orthogonal to P but not contained in P, and define a vertex
to be incident with a block iff it is a subspace of the block. This gives a PBIBD
with parameters:

b=N(m,0;v+1+82+6) —N(m,0;v—-1,0)

m=1 / y—m+i)—1
1+26 2(v—m) q
=(g* 7+ g ||<———2._l )

i=1

k= N(l,O,m,O) —N(I,O,m_ 1,0) = q2(m-1),
(g"%+1) 7 (qz(u-mi)—n)

(g+1) L1\ ¢ -1
1425 m=2 ; 2v—m+i)—1
W Chiak 2} (q_z___) ,
(¢g+1) 1\ ¢*—1
A =0.

Proof: Sincen—2m =2 or3,wehavem =v— 1. LetQ beablock,s0Qisa
subspace of type (m, 0). Since there are no subspaces of type (u, 0) in UV,(Fp )
when u > v in this degenerate case, it follows that (P, Q) is a subspace of type
(v,0) and PNQ is a subspace of type (m — 1,0). Thus G is transitive on blocks,
so we obtain a PBIBD as before.

The parameter 5 is the number of subspaces of type (m, 0) which are contained
in P* but not in P. Since P* is a subspace of type (v+ 1+ 6,2+ 8),and P C P*,
wehaveb= N(m,0;v+ 1+ 8,2+ 8 — N(m,0;v - 1,0).

Obviously k = N(1,0;m,0)—N(1,0;m—1,0) and A2 = 0. Butthenr =

bk
v
and )\, =L(k;n)l_—lm.. 1
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