On Graphs with Prescribed Center and Periphery
Songlin Tian

Department of Mathematics and Computer Science
Central Missouri State University
Warrensburg, MO
U.S.A. 64093-5045

Abstract. A connected graph G is unicentered if G has exactly one central vertex. It
is proved that for integers r and d with 1 < r < d < 2r, there exists a unicentered
graph G such that rad G = r and diam G = d. Also, it is shown that for any two graphs
F and G with rad F = n > 4 and a positive integer d (4 < d < n), there exists a
connected graph H with diam H = d such that the periphery and the center of H are
isomorphic to F and G respectively.

Let G be a connected graph. The distance d(u,v) between two vertices u and
v of G is the length of a shortest u—v path in G. Backley and Harary [2] have
written a book devoted to the topic of distance in graphs. Terms not defined here
may be found in this book. The eccentricity of a vertex v in G is defired by
e(v) = max{d(v,w) | w € V(GQ)}. The radius rad G of G is the minimum
eccentricity, while the diameter diam G of G is the maximum eccentricity. A
vertex of minimum eccentricity is called a central vertex. The center C(G) of G
is the subgraph induced by the central vertices. It is well known that the radius
and the diameter of a connected graph G are related by the inequalities rad G <
diam G < 2rad G. Ostrand [5] proved the sharpness of these inequalities that is,
for integers r and d with 1 < r < d < 2, there exists a connected graph G such
that rad G = r and diam G = d. In order to strengthen Ostrand’s result, we first
introduce an additional term.

A connected graph G is unicentered if G has exactly one central vertex.’

Theorem 1. If r and d are integers with 1 < r < d < 2, then there exists a
unicentered graph G such that rad G = r and diam G = d.

Proof: We consider two cases.

Case 1. Assume that d = 2. .

Let G = Pypi1:vg,v1,...,v2,. Then e(v;) = max{s,2r — 1}. Therefore
rad G = e(v,) = r,diam G = e(vp) = e(v2,) = d, and C(G) = {v,}.

Case 2. Assume that d < 2.

Letn=2d—2r+ 2. Sinced > r, it follows lhatn > 4. LetHbea
graph consisting of n copies of P,. Denote H by @, U Q2 U :-- U Qy, where
Qitvt,vi2,...,v (1 < 1 < n) is a path of order ». We construct the graph
G by adding a new vertex v to A and the edges vi,vis1,, 1 < 1 < n—1,
together with the edges joining v with all vertices v;;, 1 < i < n (see Fig-
ure 1). Then e(v) = r. Consider two vertices vij and v,,. Without loss of
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generality, we assume that i < k. Then the vertices v;; and v, lie on the cycle

C: VU1, 000y Viry Vit lyy oo oy Viry Vir—1,.++, Yk1, V. Therefore,
v(C 2r+ k—1
d(uij:vkm) < I-I (2 )|J = l 2 J

< l2r+2-r;—lJ - |-2r+ 2d—22r+2 —lJ - d

On the other hand, since d(v;j, vr—j+1) = 7+ 1 wheret = 1+ 2 (mod n) it
follows thatr + 1 < e(v;;) < dforalll < i < nand1 < j < r. Finally,
since d(v1¢,Vns) = d, wheret = [£] and s = [2] it follows that rad G = r,

diam G = dand C(G) = {v}. |
Vi1 vVi2 Vil Vir
Va1 V22 V2r-1
) V~ oo 0 v2r
Va1 Vn2 Vnr-1 Vpr
Figure 1

Ostrand [S] also proved that if r and d are integers with2 < r<d < 2r -1,
then the minimum order of-a connected graph of radius r and diameter d is r + d.
It is interesting to know the minimum order of unicentered graphs of radius  and
diameter d." If d = 27, then since a path of length d is a unicentered graph of
radius r and diameter d, the minimum order in this special case is d+ 1. However,
a general answer to this problem is unknown.

We are now prepared to present a result concerning the embedding problem.
Kopylov and Timofeev mentioned in [6] and Hedetniemi (see [3]) proved that for
every graph G, there exists a connected graph GG such that C( H) = G. The graph
H so constructed by Hedetniemi has radius 2 and diameter 4. Consequently, in his
construction, the subgraph of H induced by those vertices with eccentricity 2 is
isomorphic to G. An extension of Hedetniemi's result follows immediately from
Theorem 1.

Corollary 2. Forevery graph G and forintegersr and d with2 < r <d <2,
there exists a connected graph H with rad H = r,diam H = d and C(H) % G
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Proof: By Theorem 1, there exists a unicentered graph Hy such thatrad Hp = r
and diam Hy = d. We construct the graph H by replacing the central vertex v
of Hy by G and joining each vertex of G with all vertices adjacent to v in Hp.
Clearly,,rad H = r,diam H = dand C(H) ¥ G. [ |

The center is an interpretation of the “middle” of a connected graph. A common
definition of the “exterior” of a connected graph G is the periphery of G. Formally,
the periphery P(G) of a connected graph G is the subgraph of G induced by
those vertices with maximum eccentricity. Bielak and Syslo [1] proved that a
graph G is isomorphic to the periphery of some connected graph if and only if
either G is a complete graph of A(G) < p(G) — 2, where A(G) represents
the maximum degree of the vertices of G. Chartrand, Johns and Oellermann [4]
extended this characterization of the periphery of a graph. They showed that a
graph G is isomorphic to the periphery of a graph having diameter = if and only
if rad G > n. Our next result extends Bielak and Syslo’s result even further.

Theorem 3. Let F' be a connected graph with rad F = n > 4. Then there exists
a unicentered graph G with diam G = d suchthat P(G) & F forall4 <d < =

Proof: Let k = [£]. We first construct a preliminary graph Gy by attaching each
vertex of F' with a copy of P (see Figure 2(a)). For v € V(F), we denote such
an attaching path in G, by P,: v,..., w,. Let G, be the graph obtained from G,
by joining all the vertices w,, v € V(F), to a new vertex w (see Figure 2(b)). If
nis even, then we let G = G,. It is straightforward to show that dg(u,v) < d
for all u,v € V(F). Foru € V(F), let v be an eccentric vertex of u in F.
Then, dp(u,v) = e(u) > d. Observe that if a shortest u—v path P in G contains
the vertex w, then the length of P is 2k = d. Therefore, dg(u,v) = d so that
eg(u) > dforall u € V(F). Clearly, the distance between a vertex of F' and
a vertex not in F is less than d. Therefore, eg(u) = d forall u € V(F). For
u,v € V(G) — V(F), it follows that .

d(u,v) < d(u,w) + d(w,v) <2(k—-1)=d-2 <d.

Therefore, diam G = d and P(G) & F. Clearly, e(w) = k = |£]. Forz €
V(P,) — {u}, where u € V(F), let v be an eccentric vertex of u in F'. Then

de(z,v) = min{dg(z, ) + de(u,v),de(z,w) + de(w, v) }
> min{e(u) + 1,k+ 1}
d
=k+1>k= 5
s0 z is not a central vertex of G. Therefore, C(G) = {w}.
Now suppose that d is odd. We construct the connected graph G from G, by

adding the edges w,w, for all u,v € V(F) with dg(u,v) > d — 1 (see Fig-
ure 2(c)). Clearly, e(w) = k < d. Letu,v € V(F). If dp(u,v) > d-1,
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then
de(u,v) < d&(u,wu) +do(wy, wy) + de(wy,v) = (k=1 +1+(k-1) =d.

Ifdp(u,v) <d-—1,thendg(u,v) < dr(u,v) <d—1< d. Thusdg(u,v) < d
forall u,v € V(F). Letu € V(F) and let v be an eccentric vertex of u in
F. Then dp(u,v) = e(u) > d. If a shortest u—v path P contains a vertex
not in F, then the length of P is at least 2k — 1 = d. Therefore, dg(u,v) =
d. Consider vertices z € V(F) andy € V(G) — V(F) — {w}. Suppose,
without loss of generality, thaty € V(P,) — {v}. If dp(z,v) < d — 1, then
de(z,y) < d(z,w;) + d(wz, wy) + d(wy,y) < k—1+1+k-2=2k-2<
d. Ifdp(z,v) > d— 1, then dg(z,y) < min{d(z,v) + d(v,y),d(z,w;) +
d(wy, wy) + d(w,,y)} < min{d—2+d(v,y),k+ 1+ d(w,,y)} = min{d—2+
d(v,y) k+1+(k—1—d(v,y))} = min{d—2+d(v,y) ,d+1—-d(v,y)} < d—1.
Therefore

d(z,y) <d-1 forzeV(F)andy € V(G) — V(F) — {w}.

Combining the above, we see thate(v) = dforallv € V(F). Letz,y € V(G) —
V{F). It follows that

d(z,y) < d(z,w) +d(w,y) <k—1+k—1<2k—-2=d~—1,

Therefore, diam G = d and P(G) & F.
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To prove that C(G) = {w}, it suffices to show that e(z) > e(w) for all
z € V(G) — V(F) — {w}. Suppose that z € V(P,) — {w,} for some u €
V(F). If x # w,, then we consider an eccentric vertex, say v, of u in F. So,
dr(u,v) = e(u) > d. Therefore,

e(z) > do(z,y)
= min{dg(z, u) + dp(u,v),de(z, wy) + dg(W,, w,) + dg(wy, v)}
>min{l +e(u),1+1+k—-1}
=k+1>k=e(w).

If z = wy, then let v be a vertex such thatdp(u, v) = d—2. Then w,w, ¢ E(G).
Therefore,

e(z) = e(wy) > d(wy,v)
= min{d(wy, u) + dr(u,v),d(wy, w) + d(w,v)}
>min{k—1+d-2,1+k}.
Since d > 4, it follows that e(z) > k + 1 > e(w). This completes the proof. §
The following interesting result is an immediate corollary of Theorem 3.

Corollary 4. Let F be a connected graph with rad F = n > 4, For every
graph G and integer d (4 < d < n), there exists a connected graph H with
diamH =d, P(H) ¥ Fand C(H) ¥ G.

Proof: By Theorem 3, there exists a unicentered graph Hy such thatdiam Hy = d
and P(Ho) & F. Let H be the graph obtained by replacing the central vertex
v of Ho by G and joining each vertex of & with all vertices adjacent to v in Hp.
Then, diam H =d, P(H) € Fand C(H) = G. 1
It appears difficult to determine whether a given connected graph of radius at
least 3 is isomorphic to the periphery of some unicentered graph of diameter 3.
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