A Linear Algorithm for Universal Minimal
Dominating Functions in Trees

E.J. Cockayne, University of Victoria, B.C., Canada
G. MacGillivray, University of Regina, Sask., Canada
C.M. Mynhardt, University of South Africa, Pretoria, South Africa

Abstract. A dominating function is a feasible solution to the LP relaxation of the
minimum dominating set 0-1 integer program. A minimal dominating function (MDF)
g is called universal if every convex combination of g and any other MDF is also a
MDEF. The problem of finding a universal MDF in a tree T can also be described by a
linear program. This paper describes a linear time algorithm that finds a universal MDF
in T, if one exists.

1. Introduction.

Let G = (V, E) be a graph. The problem of finding a minimum dominating set
in G can be described by the following 0-1 integer program P.
P: min EVEV fo
subject to
(A+ Df >1
fo€{0,1} forallveV,
where A is the adjacency matrix of G, f is indexed by the
elements of V, and 1 is the all-ones vector.

The question of when an optimal solution to the linear programming (LP) re-
laxation of P yields an optimal solution to P was first studied by Farber [7].

We define a dominating function of a graph G (o be a feasible solution f to the
LP relaxation of P, where f, > 0 for all v € V. This generalises the notion of
a dominating set in a graph. (If f, € {0,1} forallv € V,then {v: f, = 1}isa
dominating set of G.) Equivalently, a dominating function of G can be defined to
be a function

iV —=1[0,1]
such that
Y ueniy f(u) > 1, forallveV,
where N[v] is the closed neighbourhood of the vertex v.

Let f and g be dominating functions of a graph G. We write f < g if f, < g,
forallv € V. Iff < g and there is some v € V for which f, < g, we write
f < g. A minimal dominating function (MDF) is a dominating function f such
that there is no dominating function g withg < f.

Although any convex combination of dominating functions is also a dominating
function, it is not true that every convex combination of MDFs is again an MDF,
It was proved in [4] that either every convex combination of two MDFs f and g
is an MDF, or no convex combination of f and g is an MDF, We are thus led to

JCMCC 10 (1991), pp. 23-31

study the binary relation R on the set of MDFs of a graph G, defined by f R g just
if every convex combination of f and g is an MDF of G. We say that an MDF f
is universal if f R g for every MDF g of G.

The study of universal MDFs was initiated in [4], where various conditions
for the existence and non-existence of universal MDFs of graphs were presented.
Universal MDFs of trees were investigated in [5].

In this paper we describe a linear time algorithm that finds, for a given tree T, a
universal MDF all of whose values are zero or one (a 0-1 universal MDF), if one
exists. It is proved in [6] that a tree has a universal MDF if and only if it has a 0-1
universal MDF,

Linear algorithms for related domination problems on trees are presented in
[1-3,7,8].

2. The Algorithm.
Let T be a tree. We use L to denote the set of leaves of T, that is

L={veV:d(v) =1}

A vertex is called remote if it is adjacent to one or more leaves. We use R to
denote the set of remote vertices of T',

R={veV:N(v)nL # 6},

(where N(v) is the open neighbourhood of v). Unless T = K2, LN R= 0.
Let G be a graph, and let f be a dominating function of G. The boundary of f

is defined to be the set
By = {v: E f.=1}.
uEN[v])

We now define a special type of vertex which plays a central role in the existence
of universal MDFs of trees. Let f be aMDF of atree T'. A vertex v is called f-cool
if Br N N[v] is contained R. We say that v is cool if v is f -cool for some MDF
f of T, and use C to denote the set of cool vertices of T'. Since, by minimality,
each leaf belongs to the boundary of every MDF, RN C = {§. The location and
arrangement of cool vertices to a large extent determines whether a tree has a
universal MDF (this is explained in [5], also sece Theorem 2.2 below).

2.1. Lemma. [5]. The vertex v is a cool vertex of a tree T if and only if
(i) d(u) >3 foreach u € N(v) — R and
(ii) N(v) contains at least two vertices, each of which is adjacent to at least two
verticesof V — R.
2.2, Theorem. [S]. The MDF g of a tree T is a universal MDF if and only if

(i) g, =0 forall cool vertices v and
(i) BgDV-~R.

24

It follows from the definition of a convex set that the set of universal MDFs of
a graph is convex (see [7]). For trees it follows from the above results that the
existence of a universal MDF is equivalent to the existence of a feasible solution
to the following linear program Q.

Q: min }° .y T,

subject to
Y ue(N[u}-0) Tu = 1 foralvg R
z, 20 forallv € V.

(The choice of the objective function is not important.)
We now describe a linear time algorithm for the 0-1 integer program corre-
sponding to Q (i.e., z, € {0,1},forallv € V).
Let T be atree rooted at r and 3 € V(T'). We denote by T, the subtree of T,
rooted at s, induced by s and all descendants of s.
The existence of a 0-1 universal MDF of a tree T is clearly equivalent to the
existence of a subset S of V for which
@ SNnC=0,and
(ii) }SN N[v]| > 1 for each vertex v, with equality if v ¢ R.
We call such a set S a universal minimal dominating set (universal MDS). (We
note that condition (ii) assures that S is a minimal dominating set because every
vertex contains in its closed neighbourhood at least one non-remote vertex.) Let
v € V(T). A subset S, of V(T,) which has properties (i) and (ii) above, where
C and R are taken with respect to T, is called a u-set for T,.
The algorithm is based on the following observation.

23. Lemma. Let T be a tree rooted at r. Then T admits a universal MDS (i.e.,
T has a 0-1 universal MDF) if and only if for each vertex v # r at least one of
the following three conditions holds, and (i) or (ii) holds for v = r:

(i) T, hasa u-set S, withv € S,,
(ii) T, hasa u-set S, withv ¢ S,, or
(iii) there is a subset X of V(Ty) such that
@veX,and
(b) forevery u € Nr,(u),S, = XNV(T,) isau-setforT, withu ¢ S,,.

Proof: The proof is easy, and is omitted. |

We first give an overview of the algorithm. Suppose T is rooted at ». We work
inwards towards r from the leaves of T'. A vertex v is processed after all vertices
u € N7,(v) have been processed (thus r will be the last vertex to be considered).
Each vertex can be assigned the labels I, N, F, according to which of conditions
(i), (ii), (iii) of Lemma 2.3 holds, respectively (also seec Table 2.1). It is possible for
a vertex to recieve more than one of these labels, or none of them. The procedure
for labelling a vertex is outlined in Lemmas 2.4, 2.5 and 2.6. If some vertex v can

25

not be assigned at least one of the labels I, N, F, then by Lemma 2.3 the tree T
has no universal MDS. If every vertex can be labelled, Lemma 2.3 states that T
admits a universal MDS if and only if its root r recieves at least one of the labels
I or N (if the only label assigned to r is F, then the corresponding set dominates
no vertex in N[7]).

A careful choice of the root can simplify the labelling rules (cf. the proof of
Lemma2.4). Suppose T isrootedatr ¢ L. Letv bearemote vertex adjacent to the
leaf l. The unique (r, I) -path in T" contains v. Therefore, forany w € V(T) —{l},
whenever v is in V(T,), it is adjacent to a member of L (namely !). This choice
of r reduces the number of cases which must be considered because it makes it
impossible for a remote vertex to be labelled F.

We want to produce the universal MDS when it exists. This requires some minor
additions to the procedure described above. With each vertex v we associate three
sets: I,, N, and F,. If v is labelled I, N, F, then I,, N,, F, are, respectively,
au-set S, with v € S, a u-set S, with v ¢ S, and a subset X of V(T,) such
thatv ¢ X and for every u € N1,(v), Sy = F, N V(T,) is a u-set for T, with
u ¢ S,. Each of these sets can be constructed from the collection {1, N, Fy,: u €
Nr,(v)} according to rules easily derived from the labelling procedure (eg. see
the proof of Lemma 2.4 below).

Label of vertex v Meaning

I T, has au-set S, withvIn S,
N T, has a u-set S, with v Notin S,
F There is a subset X of V(T}) such that v Not in X, and

for every u In N7, (v), v Notin X, v Not in X, u-set for
T, with u Notin S,,. If such a set X is the intersection of a
universal MDS S and V(T,), then v is Forced to be in S.

Table 2.1 The vertex labels and their meanings
The correctness of the algorithm follows from Lemma 2.3 and following Lem-
mas, from which the labelling rules are derived.

24. Lemma. Let T beatreerootedat r ¢ L,and v € V. Then T, has a
u-set S, with v € S, (i.e., v can be labelled 1) if and only if v ¢ C, every
u € Nr,(v) — R is labelled F and,

@) ifv¢ R, every w € Nr,(v) N R is labelled N, or
(ii) ifve R, every w € Nr,(v) NRislabelled I or N.

Proof: (=) Suppose T, has a u-set S, with v € S,. Since a u-set for T, contains
no cool vertices, v ¢ C. Consider u € Nr,(v) — R. Since |S, N N[u]]| = 1,
the vertex u is not dominated by any vertex of S, except v. Thus the subset S =
S, NV(T,) of V(T,) has properties (a) and (b) of Lemma 2.3 (iii). That is, u is
labelled F.

26

Suppose v ¢ R. Consider w € Nr,(v) N R. An argument similar to the above
shows w ¢ S, By the choice of r, the vertex w is adjacent in T, to a member
of L. Therefore each leaf of T, adjacent to w is in S, (otherwise it would be
undominated by S,). Hence the set S = S,NV(T,) is au-set for T, withw ¢ S.
That is, w is labelled N.

Finally, suppose v € R. Consider w € Nr,(v) N R. Since a u-set S, for T,
can dominate w (and v) any positive number of times, w may or may not belong
to S,. If w ¢ S, then, as above, w is labelled N (recall that w cannot be labelled
F). Suppose w € S,. Then S = S, NV (T,,) is a u-set for T,, with w € S. That
is, w is labelled I.

(<) Suppose v ¢ C, and every u € N7,(v) — Ris labelled F. Then for
every u € Nr,(v) — R there is a subset X, of V(T,) such that S; = X,NV(T:),
where z € N(u), is a u-set for T}, with z ¢ S.. Suppose condition (i) holds, that
is,v ¢ Randevery w € Nz,(v) N R is labelled N. Then each tree T,, has a u-set
Sy with w ¢ S,,. Therefore

(U X.,)u(U s,,)u{u}
u€ENT, (V) —r weNT, (V)NR

is a u-set for T}, withv € S,.

Now suppose condition (ii) holds, that is, v € R and every w € Nr,(v) N R
has a u-set S,,. Depending on the labels assigned to w, the set S,, may or may
not contain w. In either case the set S, constructed as above is a u-set for T, with
v € Sy. []

A similar argument can be used to establish the following two Lemmas.

2.5. Lemma. Let T beatreerootedat r ¢ L,and v € V. Then T, has a u-set
S, with v ¢ S, (i.e., v can be labelled N) if and only if v ¢ L and cither
(i) ve Randevery u € Nt,(v) islabelled I or N, or
(ii) v ¢ R, some u € Nr,(v) is labelled I and all vertices w € N1,(v) — u
are labelled N .

Sy

Proof: The proof is similar to the proof of Lemma 2.4 and is omitted. 1
2.6. Lemma. Let T beatreerootedat r ¢ L,and v € V. Then V(T,) has a
subset X such that

@ v¢X,and

(b) forevery u € Nr,(v), S, = SNV(T,) isa u-setfor T, with u ¢ S, (i.e.,
v can be labelled F) ifand only if v ¢ R andevery u € Nr,(v) is labelled
N.

Proof: The proof is similar to the proof of Lemma 2.4 and is omitted. 1

27

A pseudo-code description of the algorithm is shown in Algorithm 2.1.

Algorithm 2.1. Pseudo-code implementation of the algorithm.

var
T: tree;
I, N, F: array of boolean;
C, L, R: set of vertex;
parent: array of vertex;

procedure I_label (v: vertex);
begin
I{v] := not (v in C)

If I[v) then begin
I, = (v};
for all u adjacent to v, except parent[v]
if not (v in R) then begin
I[v] := I[v) and F{u]:
I, := I, UF,
end else begin
I{v) := I(v] and (F(u) or N[u]}):
if N(u] then
I(v] := I[v] VN,
else
I(v] :=Ilv] U I,
end
end
end;

procedure F_label (v: vertex):
begin
F[v] := not (v in R);
if F(v} then
for all u adjacent to v, except parent{v]
F{v] := F(v] and N(u};
Fy 1= F, U Ny;
end
end;

procedure N_label (v: vertex);

var
I_count: integer;
I_not_N: integer;
begin
N[v] := not (v in L):

if N[v] then
if v in R then

When v is remote, condition (i) is used.

{adjacency list of T}
{labels}
{cools,

leaves, remotes})

{try to label v with I}
{using Lemma 2.4}
{v not cool is needed}

do

{condition (i)}

{condition (ii)}

{try to label v with F}
{using Lemma 2.6}

do begin

{try to label v with N}

{using Lemma 2.5}

{# of child'n lablled I}
{# labelled I and not N}

{v not a leaf is needed)

for all u adjacent to v, except parent(v] do begin

N[v] := N(v] and (I[u]} or N[u));
if N[(v]) then
if N[u] then
N, := N, Vv N,
else
N, = N, U I,;
end

28

else begin

when v is not remote, condition (ii) is used. First check that
the label N can be given. This requires at least one child
labelled I, and there can be at most one child labelled I and
not labelled N (this is forced tc be the I used).

I_not_N := 0;
I_count := 0;
for all u adjacent to v, except parent(v]) do
if I[u) then begin
I_count := I _count + 1;
if not N[u] then
I_not N := I not N + 1
end;
N[v) := N{v] and (I_count > 0) and (I_not N £ 1);
if N[v] then begin

If v can be labelled N, build the set N,

}
for all u adjacent to v, except parent{v] do
if I{u) then
if (not N(u]) or (I_count > 0) then begin
N, := N, U 1;;
I_count := 0
end
end else
N, := N, U N,
end
end
end;
procedure label (v: vertex); {label v with I, N, F}
var {if possible]
labelled: boolean;
begin
labelled := TRUE;
for all u adjacent to v, except parent{v] do
if labelled then begin {if possible)
parent{u] := v;
label (u);
labelled := labelled and (I[u) or N(u] or F{u])
end;
if labelled then begin {if all children}
I_label(v); (were labelled, then}
F_label (v); {try to label v)
N_label (v)
end else begin
I(v] := FALSE;
F(v] := FALSE;
N(v] := FALSE
end
end;

29

{MAIN PROGRAM))
begin
compute L, R, C;
choose r not in L;
label (r):
if I{r] or N[(r] then
actions if T has a universal MDF
else
actions if T has no universal MDF
end.

Before we can justify our claim of linear time, we must discuss the implemen-
tation of the sets I,,, N, and F, (v € V). The only operation to be performed
is the union of two of these sets. Further, once the parent of vertex v has been
processed, the sets corresponding to v are never used again. Furthermore, if u and
w are siblings, X, NY, = @, where X,Y € {F, I, N}. It therefore makes sense
to implement each set as a linked list with a pointer to the first and last element.
The assignment A := AU B can then be carried out in constant time by

.o

B.las(.next A first;
Afirst := B.first;

that is, by transferring the contents of the linked list B into the linked list A.

We now show that the algorithm is linear. Procedure label is called once for
each vertex v and it, in turn, calls each of procedures I_label, F_label, and N_label
once. Each neighbour of v is examined once in procedure I_label, and once in
procedure F_label. Procedure N_label examines a vertex once or twice depending
on whether v is or is not remote. Each edge incident with v is examined at most
four times, thus each edge of T is examined at most eight times. If T" is stored as
an adjacency list, the neighbours of v can be examined in time O(d(v)), so the
total amount of time required by procedure label is

O(8 - |E)) = O(|V]).

The sets L, R, and C are also required. The leaves of T can be found by ex-
amining the neighbourhood of each vertex, and the degree sequence of T can be
computed at the same time. This causes each edge to be examined twice. Once L
is known, R can easily be computed in O(|V|) steps. When both the degree se-
quence of T and the set R are known, the set C can be computed via Lemma 2.1.
(One way to do this is as follows: first count the number of non-remote neigh-
bours of each vertex (in conjunction with the degree sequence of T', this makes
conditions (i) and (ii) of Lemma 2.1 easy to check). Then, scan the vertices of T
again, adding to C any vertex for which both conditions of Lemma 2.1 hold.) At
worst, each edge must be examined four times. Hence the sets L, R, and C can
be computed in time

0(6 - |E]) = O(|V]).

30

The above argument shows that a universal MDS of T can be computed in lincar
tirne, if it exists.

We note that the pseudo-code in Algorithm 2.1 does not describe the most ef-
ficient implementation of the algorithm. One improvement that could be made is
to terminate the “for” loops in procedures I label, F_label, and N_label once it is
clear that the label cannot be assigned to the vertex in question. This does not
effect the worst case time complexity of the algorithm.

3. Acknowledgements.

The first author is grateful for the support of the Natural Sciences and Endneering

Research Council of Canada, under grant A7544. The third author acknowledges
the support of the South African Federation for Research Development. The sec-
ond author thanks Denis Hanson for his help and encouragement.

References

1. Bange, D.W., A E. Barkauskas, and P.J. Slater, Efficient dominating sets in
graphs, in “Applications of Discrete Mathematics”, R.D. Ringeisen and F.S.
Roberts (eds.), SIAM, Philadelphia, 1988.

2. Beyer, T., A. Proskorowski, S.T. Hedetniemi, and S. Mitchell, Independent
domination in trees, Proc. 8th Southeast Conference on Combinatorics, Graph
Theory and Computing, Utilitas Mathematica (1977), 321-328.

3. Cockayne, EJ., S. Goodman, and S.T. Hedetniemi, A linear algorithm for
the domination number of a tree, Inf. Proc. Lett. 4 (1975), 4144,

4. Cockayne, E.J, G. Fricke, S.T. Hedetniemi and C.M. Mynhardt, Properties
of minimal dominating functions of graphs. (submitted).

5. Cockayne, EJ., G. MacGillivray and C.M. Mynhardt, Convexity of minimal
dominating functions of trees. (submitted).

6. Cockayne, E.J., G. MacGillivray and C.M. Mynhardt, Convexity of minimal
dominating functions of trees II. (submitted).

7. Farber, M., Domination, independent domination and duality in strongly chord-
al graphs, Discrete Applied Math. 7 (1984), 115-130.

8. Yen, C.C,, and R.C.T. Lee, The weighted perfect domination problem, Inf.
Proc. Lett. 35 (1990), 295-299.

31

