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Abstract. Let H be a digraph whose vertices are called colours. Informally, an H-
colouring of a digraph G is an assignment of these colours to the vertices of G so that
adjacent vertices receive adjacent colours. In this paper we continue the study of the
H colouring problem, that is, the decision problem “Does there exist an H-colouring
of a given digraph G?”. In particular, we prove that the H -colouring problem is N P-
complete if the digraph H consists of a directed cycle with two chords, or two directed
cycles joined by an oriented path, or is obtained from a directed cycle by replacing
some arcs by directed two-cycles, so long as H does not retract 1o a directed cycle.
We also describe a new reduction which yields infinitely many new infinite families of
N P-complete H -colouring problems

1. Introduction

Let G and H be (directed) graphs. A homomorphism of G to H is a function
f: V(@) — V(H) suchthat f(z) f(y) € E(H) whenever zy € E(G). Since
a k-colouring of a graph G is a homomorphism of G to K, the term H -colouring
of G has been employed to describe a homomorphism G — H.

We study the H-colouring problem, which is described as follows.

H - COL (H - colouring)
INSTANCE: A directed graph G.
QUESTION: Does ther exist an H-colouring of G?

Each H -colouring problem clearly belongs to N P.

The complexity of the H-colouring problem for undirected graphs was com-
pletely determined by Hell & Ne3etfil [Hell & NeSetfil, 1990], who proved that
the problem is N P-complete whenever H contains an odd cycle, and is polyno-
mial otherwise.

Attention has subsequently shifted to attempting to classify directed graphs ac-
cording to the complexity of the H-colouring problem (for a survey see [Bang-
Jensen, 1989; MacGillivray, 1989]). In view of the fact that there are trees T for
which T — COL is N P-complete [Gutjahr et al., 1988], it seems that a complete
classification may be difficult to accomplish. An important development is the fol-
lowing conjecture, due to Bang-Jensen and Hell, which proposes a classification
for a large family of digraphs (the terminology is reviewed in the next section).
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1.1. Conjecture [Bang-Jensen & Hell, 1988]. Let H be a connected digraph in
which each vertex has in-degree at least one and out-degree at least one. If H
does not admit a retraction to a directed cycle, then the H -colouring problem is
N P-complete. Otherwise the H -colouring problem is polynomial,

(The last statement is easy to see, cf. the comment following the definition of
retraction.) The conjecture is known to be true for several large classes of digraphs
(cf. above).

In this paper we generalise a result of Maurer, Sudborough and Welzl [Maurer
et al, 1981] (cf. Theorem 3.1), and also a result of Bang-Jensen and Hell [Bang-
Jensen & Hell, 1988; Gutjahr et al., 1989], (cf. Theorems 3.3 and 3.8). Our
results add to the list of sparse digraphs H with two directed cycles for which the
H -colouring problem is NP-complete. In addition, we describe a new reduction
(cf. Theorem 4.5) which provides infinitely many new infinite families of N P-
complete H-colouring problems.

2. Preliminaries

The purpose of this section is to state our definitions and describe the reductions
we use. The terminology is fairly standard. For terms not defined here the reader
should consult [Bondy & Murty, 1976] or [Garey & Johnson, 1979].

Let D be a digraph and let W be a closed walk in D. The net-length of W,
nl(W), is the number of "forwards" arcs of W minus the number of "backwards”
arcs of W. (An arc uv of W is forwards if u preceeds v on W, otherwise it is
backwards).

A digraph D is connected if any two vertices are joined by an oriented path.
If any two vertices of D are joined by a directed path, we say that D is strongly
connected or strong.

Let u and v be vertices of a digraph D. If the arcs uv and vu are both present,
we say that u and v are joined by a double arc or an undirected edge. We denote
this situation by [u, v].

A source of a digraph D is a vertex of in-degree zero. A sink of D is a vertex
of out-degree zero. We call a digraph D smooth if it has no sources and no sinks.

We use N*4(z) (resp. N=%(z)) to denote the set of all vertices u for which
there is a directed ( z, u) -path (resp. (u, z)-path) of length d. Thus N*!(z) is the
out-neighbourhood of z, etc.

We use C, to denote the directed cycle of length n. We assume V(C,) =
{0,1,...,n—1},and E(C;) = {i(i+ 1) : i = 0,1,...,n, where addition
is modulo n}. Similarly, we use P, to denote the directed path of length n. We
assume V(P,) = {0,1,...,n},and BE(P,) = {i(s+ 1) : i=0,1,...,n—1}.

The directed girth (resp. directed odd girth) of a digraph D is the length of
its shortest directed cycle (resp. directed odd cycle). If D has no directed cycle
(resp. directed odd cycle), we define the directed girth (resp. directed odd girth)
to be infinite.
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A semi-complete digraph is a directed graph such that, for all pairs of vertices
u, v, at least one of the arcs uv or vu exists. That is, a semicomplete digraph is a
digraph with a spanning tournament. The following theorem regarding the com-
plexity of H-colouring by semi-complete digraphs was proved in [Bang-Jensen et
al., 1988].

Theorem 2.1. Let H be a semi-complete digraph. If H has two or more directed
cycles, then the H -colouring problem is N P-complete. Otherwise (H is acyclic
or unicyclic), the H -colouring problem is polynomial.

Let H' be a directed graph and let H be a subdigraph of H'. A retraction of H'
to H is a homomorphism r of H' to H such thatr(h) = h for all vertices h of H.
If H' admits aretraction to H , we say that H is aretract of H'. A directed graphis
retract-free (or a core [Hell & NeSetfil, 19901, or a minimal graph [Welzl, 1982])
if it does not admit a retraction to a proper subdigraph. Every directed graph H
contains a unique (up to isomorphism) subdigraph C which is retract-free, and for
which there is a retraction of H to C [Welzl, 1982]. Following [Hell & Ne3etfil,
1990] we call C the core of H. If H is aretract of H', there are homomorphisms
i: H — H' (the inclusion) and r: H' — H (a retraction); thus a given digraph is
H'-colourable if and only if it is H-colourable. This allows us, when we choose,
to restrict our attention to retract-free digraphs. In particular, as the Cy,-colouring
problem is polynomial for any positive integer n [Maurer et al. 1981], this proves
the last statement in Conjecture 1.1.

Let I be a fixed digraph, and let v and v be distinct vertices of I. The indicator
construction with respect to (I, u,v) transforms a given digraph H into the di-
graph H*, defined to have the same vertex set as H, and to have as the arc set all
pairs hh' for which there is a homomorphism of I to H taking u to h and v to h'.
The triple (I, u,v) is called an indicator, and if the digraph H* is loopless (i.e.,
if no homomorphism of I to H can map u and v to the same vertex), it is called a
good indicator. 1f some automorphism of ] maps u to v and v o u, we say that
the indicator (I, u, v) is symmetric. (The result of the indicator construction with
respect to a symmetric indicator is the equivalent digraph of an undirected graph,
and can be defined to be an undirected graph [Hell & Nesetfil, 1990].)

2.2. Lemma [Hell & Ne3etfil, 1990). H* — COL polynomially transforms to
H - COL.

In applying Lemma 2.2 care must be taken to assure that H* has no loops, i.e.,
that (I, u, v) is a good indicator. If H* has a loop, then there is a polynomial time
algorithm for H*-colouring; map all vertices of G to a vertex with a loop.

Let J be a fixed digraph with specified vertices z and j1,j2,...,/:. The sub-
indicator constructionwithrespectto (J, z, j1,j2,...,Jt),andhy, ha,..., hy trans-
forms a given retract-free digraph H with specified vertices hy, ha, ..., ke, 0 its
subdigraph H~ induced by the vertex set V™~ defined as follows. Let W be the
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digraph obtained from the disjoint union of J and H by identifying j; and h;,
i=1,2,...,t. Avertex v of H belongs to V- just if there is a retraction of W to
H which maps z to v. The structure (J, z, j1,72, ..., Jt) is called a sub-indicator .
The digraph J is not required to be connected. If the vertices 71, jz2,..., j;. are all
isolated, the outcome of the sub-indicator construction is independent of the choice
of hy,ha,...,he. In this case we call (J,z,j1,/2,...,/t) afree sub-indicator
and, in order to reflect the independence of the specified vertices, refer to it as the
sub-indicator construction with respect to (J, z, free).

2.3. Lemma [Hell & Ne3etfil, 1990). H~ — COL polynomially transforms to
H - COL.

Similarly, let J be a fixed digraph with a specified arc zy and specified vertices
J1.J2,-. ., Jt. The edge sub-indicator construction with respect to (J, zy, j1, j2,
.-«,Jt),and hy, hy, ..., h, transforms a given retract-free digraph H with speci-
fied vertices hy, ha, ..., hy into its subdigraph H" induced by the arcs of H which
are images of the arc zy under retractions of W (as defined above) to H. The
structure (J, zy, j1, j2,...,/t) is called an edge sub-indicator. A free edge sub-
indicator is defined and denoted similarly to the above.

2.4. Lemma [Hell & NeSettil, 1990). H* — COL polynomially transforms to
H-COL.

We conclude this section by mentioning an N P-complete problem that will be
used in our transformations.
NOT-ALL-EQUAL k-SAT (k > 3 fixed) [Schaefer, 1978]
INSTANCE: A set U of variables, and a collection C of clauses over U such that
each clause ¢ € C involves k variables.
QUESTION: Is there a satisfying truth assignment for C in which each clause
contains at least one true literal and at least one false literal?
Comment: The problem remains N P-complete evenif no clause contains a negated
literal [Lovész, 1973]. In this case it is the problem of two-colouring a k-regular
hypergraph.

3. Results

We begin by extending some work of Maurer, Sudborough and Welzl. Let Cy
be a digraph obtained from a directed n-cycle by replacing k arcs with double
arcs. It has been proved [Maurer et al, 1981] that if n is odd, then C,,y — COL is
N P-complete. When nis evenand k > 1, the core of C,, is a directed two-cycle
(a double arc). Thus C,x — COL is polynomial. A complete classification of the
complexity of Cpx — COL is given below.

3.1. Theorem. If nisevenork = 0, then C,; —COL is polynomial. Otherwise
(nisoddand k > 0)Cy — COL is N P-complete.

36



Proof: It remains to prove thatif nisodd and 2 < k& < =n, then G — COL

is N P-complete. Let C* be the digraph that results from applying the indicator
construction with respectto ( P, ,0,n—2) to C, . Since the directed odd girth
of C,,x is m, the digraph C* is loopless. Furthermore, each double arc of C, . is
also a double arc of C*.

We claim that the vertices incident with double arcs induce a semi-complete
digraph. Suppose [u,v] and [z,y] are distinct double arcs. The arcs of Cp
belonging to the directed n-cycle give rise to a directed (u, z) -path and a directed
(z,u)-path. Moreover, exactly one of these paths has odd length. Since both
u and z are incident with double arcs, this implies that there is either a directed
(u, z)-walk of length n— 2 ora directed ( z, u) -walk of length n— 2. Hence one
of uz and zu is an arc of C*. This proves the claim.

Let C** be the digraph which results from applying the sub-indicator construc-
tion with respect to (Cz,0,free) to C*. Then C*" is a semi-complete digraph
with at least two directed cycles, and therefore, by Theorem 2.1, C*~ — COL
is N P-complete. Thus C,; — COL is also N P-complete. This completes the
proof. 1

We now generalise the following result in two ways (cf. Theorems 3.3 and 3.8)

3.2. Theorem [Bang-Jensen & Hell, 1988; Gutjahr et al., 1989). Let H be a
digraph of the form Dy or D, (see figure 3.1). If H does not admit a retraction
to a directed cycle, then H — COL is N P-complete. Otherwise, H — COL is
polynomial. |

Theorem 3.2 states, as a special case, that if D is a digraph constructed from
a directed cycle by adding a chord, then D — COL is N P-complete unless D
admits a retraction to a directed cycle. That is, Conjecture 1.1 is true for directed
cycles with one chord.

Let H be a directed graph constructed from a directed n-cycle by adding two
chords. Then, depending on the relative orientation of the chords, H is of one of
four types; an example of each type is shown in figure 3.2. We now prove that the
H-colouring problem is N P-complete unless H retracts to a directed cycle. That
is, Conjecture 1.1 is also true for directed cycles with two chords.

3.3. Theorem. Let H be a directed graph that is constructed from a directed
cycle by adding two chords. If H does not admit a retraction to a directed cycle,
then H — COL is N P-complete. Otherwise, H — COL is polynomial.

We have previously noted the second statement (cf. the paragraph following
Theorem 2.1). The proof of the first statement is divided into four lemmas, de-
pending on the type of H.

Note that, if H does not admit a retraction to a directed cycle then any retract of
H is of the form D; or D,. In view of Theorem 3.2, it may therefore be assumed

37



D, D,

Figure 3.1. Digraphs with two directed cycles.

without loss that if H admits no retraction to a directed cycle, then H is retract-
free.

3.4. Lemma. If H is of type I and does not admit a retraction to a directed cycle,
then H — COL is N P-complete.

Proof: Let H be of type I. Then H has exactly three directed cycles, say of lengths
n, a, and b, respectively. Without loss of generality assume n > a > b. Suppose
that H does not admit a retraction to a directed cycle. Then b does not divide both
e and n. There are two cases to consider.

Case 1: b does not divide a.

Let H~ be the result of applying the sub-indicator construction with respect to
(Ca,0,free) to H. Then H~ is the subdigraph of H induced by the vertex set of
the directed a-cycle. Since b does not divide a, the digraph H~ does not admit a
retraction to a directed cycle. Hence H~ — COL is N P-complete by Theorem
3.2, and therefore H — COL is also N P-complete.

Case 2: b divides a.

Since the directed b-cycle is not aretract of H , b does not divide n. Let H"be the
result of applying the edge sub-indicator construction with respect to (Cp5, 01, free)
to H. It is clear that every arc, except the chord e that forms the directed a-cycle,
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Type II
Type III Type IV

Figure 3.2. The four possible orientations of the chords.

belongs to a closed directed walk of length n+ b. If e also belongs to such a closed
walk, then there are integers a and b such that n+ b = aa + 8b = 4b (since b di-
vides a). Therefore b divides n, which is a contradiction. Hence H" = H — e,
and so H"— COL is N P-complete by Theorem 3.2. Therefore H — COL is also
N P-complete.

All cases have been considered. |

3.5. Lemma. If H is of type II and does not admit a retraction fo a directed
cycle, then H — COL is N P-complete.

Proof: Let H be of type II. The digraph H can have three or four directed cycles.
When H has four directed cycles, the chords have both endpoints in common.
In this case, H is also of type IV. We defer consideration of this case to Lemma
3.7. Hence assume H has exactly three directed cycles, say of length n, a, and b.
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Without loss of generality n > a > b . Suppose that H does not admit a retraction
to a directed cycle. Then b does not divide both a and n. Let the directed n-cycle
be0,1,...,n—1,0. There are four cases to consider.

Case 1: b does not divide a.

Let uv (resp. zy) be the chord that belongs to the directed a-cycle (resp. di-
rected b-cycle). Without loss of generality assume u # y; otherwise consider the
converse of H. Suppose first that the path from u to y on C, has at least two
edges. Let J be the directed graph constructed by identifying the terminal vertex
of a directed path of length n— a — 1with a vertex on a directed a-cycle. Let 0 be
the label of the initial vertex of the directed path. Let H™ be the result of applying
the sub-indicator construction with respect to (J,0,free) to H. It is not hard to
see that the core of H~ is of the form D, . Since b does notdividea, H~ — COL is
N P-complete by Theorem 3.2. Hence H — COL is also N P-complete. Suppose
now that H contains the edge uy. If z # v, then by an argument similar to the one
above we may assume that H also contains the edge zv. Now n = a + b, s0 a does
not divide n+ b, since a > b. Let J be the directed graph consisting of a directed
cycle C.+s and let e be a fixed edge of J. Let H" be the result of applying the edge-
sub-indicator construction with respect (J, e, free) to H. Then H" = H —uv, since
a does not divide n+ b. Also, b does not divide n, since n = a + b and b does
not divide a. Now it follows from Theorem 3.2 that H"-colouring, and hence also
H-colouring, is N P-complete. If z = v thenn=a + b— 1. Let H’ be the result
of applying the edge-sub-indicator construction with respect to (Ca+s, €, free) to
H, where e is a fixed edge of the cycle. Then H' = H — uy, and H'-colouring is
N P-complete by Theorem 3.2. Hence H-colouring is N P-complete.

Case 2: bdividesa,and b < a.

Since the directed b-cycle is not a retract, b does not divide n. Let e be the
chord that belongs to the directed a-cycle. Every arc except e belongs to a closed
directed walk of length n + b. If the arc e also belongs to such a closed directed
walk, then either n+ a < n+ b, or a divides n+ b. The former case is impossible
since a > b, and the latter case is also impossible since, if b divides a, then b
divides n. Let H" be the result of applying the edge sub-indicator construction
with respect to (Crs,0, free) to H. Then H" = H — e, where e is the chord
of the n-cycle that forms the a-cycle. Since H" is of the form Dy, and does not
admit a retraction to a directed cycle, H~— COL is N P-complete by Theorem
3.2. Therefore H — COL is also N P-complete.

Case 3: a = b, and there exists a vertex z on an a-cycle such that the vertex z + a
is also on an a-cycle.

Since C, is not a retract, the digraph H is retract-free. Relabel the vertices so
that z is labelled 0, z + 1 is labelled 1, and so on. (That is, subtract = from the
label of each vertex, where computations are modulon). Letk > 0. If uisa
vertex on a directed a-cycle then the set of vertices reachable from u by a directed
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walk of length ka is {u + 0,u + ¢,u + 2a,...,u + ka}, where computations
are modulo n. Let m be the order of the element a in Z,. Note that m > 2
(if m = 2 then 2a = =, whence C, is a retract). We show that NOT-ALL-
EQUAL m-SAT without negated variables polynomially transforms to H —COL.
Suppose an instance of NOT-ALL-EQUAL m-SAT without negated variables is
given, with variables z1,7,...,Z,, and clauses XK', K2,..., K. Construct a
digraph G from H, {z),%3,...,%,}, and g copies of C,, say C',C?,...,C",
by adding directed paths as follows. Vertex 0 in H is joined to each vertex z;
(j = 1,2,...,p) by adirected path of length a, starting at vertex 0. Vertex 0 in
H is also joined to vertex 0 on each C* (I = 1,2,...,q) by a directed path of
length ma, starting at vertex O of H. If the 7™ variable in clause K° is z;, then
join z; to vertex ra of C* by a directed path of length (m — 2)a, starting at ;.
Clearly the digraph G is constructible in polynomial time.

Claim, The digraph G is H-colourable if and only if there is a satisfying truth
assignment in which each clause contains at least one true variable and at least
one false variable.

Proof: (=) Consider a homomorphism of G to H. Since H is retract-free, the
copy of H in G must map onto H. We may therefore assume that every vertex of
H maps to itself. Thuseach vertex z; (i = 1,2,...,7n) maps to 0 or a. Moreover,
each C/ maps onto the directed n-cycle in H (because a does not divide n), and
vertices 0,a,2a,...,(m — 1)a of C* map, in cyclic order, to the corresponding
set of vertices of H. Define a truth assignment be setting z; = T just if z; maps to
0. Consider an arbitrary clause C°. Recall that there is no directed (0, —a)-walk
of length (m — 2) e in H. Let v be the vertex of C* that maps to —a, and let z, be
the vertex joined to v by a copy of P(m — 2)a. Then z, must map to a. Hence
K*® contains a false variable. Similarly K, contains a true variable (there is no
directed walk of length (m — 2) a from vertex a to vertex 0 in H).

(<) Suppose such a truth assignment exists. Define an H-colouring of G
as follows. Every vertex of the copy of H is coloured by itself. Fori = 1,2,...,1,
if z; = T, then colour z; by 0, otherwise colour z; by a. This partial colouring
extends to all of the directed paths joining the z;’s to the copy of H. Consider
K°. There exists ¢ such that the ' variable ; in K° is true, and the (¢ + 1)*
variable I, is false. Colour vertex la of C° by (—2a) and vertex (I + 1)a of
C® by (—a). This completely determines the colouring of C* (each n-cycle of G
must map onto the n-cycle of H, since the a-cycle is not a retract). Furthermore,
this partial colouring can be extended to all of the directed ( m — 2) a-paths joining
C® to z; (z; € K*), and to the directed m-paths joining H to C°. Therefore G is
H -colourable.

This completes the proof of case 3.

Case 4: a = b and for every vertex z on a directed a-cycle the vertex z + a is not
on a directed a-cycle.
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Without loss of generality, the vertex 0 is on a directed a-cycle. Since C, is not
aretract, the digraph H is retract-free. Let m be the order of the element a in Z,,.
Note that m > 2 (if m = 2 then 2a = n, whence C, is aretract).

Claim. Each directed a-cycle contains at least two elements of {a).

Proof: Each directed a-cycle contains the same number of elements of {a). If this
number is one, then a divides nand G, is a retract, which is a contradiction.

Let I be the directed graph constructed from a directed path of length (m —1)a
as follows. Identify vertex O (on the path) with a vertex on a directed a-cycle, and
identify (m — 1)a with a vertex on a second directed a<cycle. Fori=1,2,...,a,
add a directed path of length n— 1 from i toi— 1. Let H* be the result of applying
the indicator construction with respect to (I,0,(m — 1)a) to H. There is no H-
colouring of I such that the vertex a is coloured by a vertex on a directed a-cycle
(otherwise colour (0) and colour (0)+a = colour (a) are vertices of H that are both
on a directed a-cycle, which is a contradiction). Let A be the set of vertices of H
which are on directed a-cycles. Let z € A and consider an H-colouring of I such
that colour(O)=z. Since vertex a of I does not map to a vertex on a directed a-
cycle, the possible images of vertex (m— 1) a of I are those vertices which also lie
on a directed a-cycle, and are reachable from vertex z + o of H by a directed walk
of length (m—2)a. (Note that the first a vertices of ] mustmaptoz+1,...,z+a
in H, because a does not divide n). Thus

colour((m — 1)a) € {x+ 20,z + 3q,...,z2+ (m—1)a}NA=Y.

so colour ((m — 1)a) # colour(0). Hence H* is loopless. Moreover the vertex
(m — 1)a can be coloured by any vertex in the set Y. The claim now implies that
H* contains the equivalent digraph of K4. The result H** of applying the sub-
indicator construction with respect to (Cz, 0, free) to H* is a loopless undirected
graph that has an odd cycle. Thus H**—COL is N P-complete, and so H*—COL
and H — COL are also N P-complete.

All cases have been considered. |

3.6. Lemma. If H is of type III and does not admit a retraction to a directed
cycle, then H — COL is N P-compiete.

Proof: Let H be of type III. Then H has three directed cycles, say of lengths n, a,
and b. Without loss of generality assume n > @ > b. Suppose that the core of H
is not a directed cycle. We may further assume that the chords have no commom
vertex, since this occurrance is covered under Lemmas 3.4 and 3.7. There are
three cases to consider.

Case 1. b does not divide a.

The argument is similar to case 1 of Lemma 3.5, and uses similar sub-indicators.

Case 2. b dividesa,and b < a.
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Since the directed bcycle is not a retract, b does not divide n. The remaining
details are identical to those of case 2 of Lemma 3.5.

Case3.a=b.

Then there is a vertex x on a directed a-cycle such that z+ a is also on a directed
a-cycle. The remaining details are identical to those of case 3 of Lemma 3.5.

This completes the proof. 1

3.7. Lemma. If H is of type IV and does not admit a retraction to a directed
cycle, then H — COL is N P-complete.

Proof: The digraph H has four directed cycles, say of lengths n, a, b, and c. With-
out loss of generality assume n > a > b > c. Note that n = a + b — c. Suppose
that the core of H is not a directed cycle. There are four cases to consider.

Case 1. cdivides b.

Then the subdigraph of H induced by the vertex set of the directed a-cycle is a
retract. Since C is not a retract of H, c does not divide a. Consequently the core
of H is of the form Dy, and H — COL is N P-complete by Theorem 3.2,

Case 2. ¢ does not divide b, and b < a.

Let H~ be the result of applying the sub-indicator construction with respect
to (Cs,0,free) to H. Then H~ consists of a directed b-cycle plus a chord that
belongs to the directed c-cycle. That is, H~ is of the form D;. Since c does not
divide b, H~ — COL is N P-complete by Theorem 3.2, and therefore H — COL
is also N P-complete.

Case 3. a = b, c does not divide b, and ¢ does not divide n.

Note ¢ does not divide a. Let m be the order of the elementa in Z,. f m = 2,
then 2a = m, and hence ¢ = 0, which is a contradiction. Therefore m > 2. Let
Q. (r > a — 1) denote the (r + 1)-vertex digraph constructed from P, by adding
the arcs {i(i —a+ 1) : i =a—1,a,...,7}. Since any a — 1 consecutive arcs
along the directed r-path must belong to an image of a directed a-cycle and ¢ does
not divide a, no image of Q, in H contains a directed ccycle. This effectively
eliminates the use of the directed c-cycle. The transformation is from NOT-ALL-
EQUAL m-SAT without negated variables, and is identical to case 3 of Lemma
3.5, except that wherever P, appears in the construction, Q, should be used.

Case 4. a = b, and c divides n.

Since C. is not a retract, ¢ does not divide a. Let J be the directed graph con-
structed by identifying the initial vertex of a directed path of length ¢ — 2 with
a vertex on a directed a-cycle. Let z be the terminal vertex of the directed path.
Let the vertices of H be numbered cyclically such that vertex 0 is the terminal
vertex of one of the chords. Let H~ be the result of applying the sub-indicator
construction with respect to (J,z,free) to H. It may be directly verified that
H = H — {2a — 1}. Consequently the core of H is of the form D, and, since
¢ does not divide a, H~ — COL is N P-complete. Therefore H — COL is also
N P-complete.
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All cases have been considered. |

Theorem 3.3 generalises Theorem 3.2 for digraphs of the form D, (cf. fig-
ure 3.1). Our next result generalises the same theorem for digraphs of the form
D,. LetQ = go,q1,...,9, be an oriented path, and let r and s be integers.
Let H be the digraph constructed from C, U G, U Q as follows. Let V(C,) =
{To,‘rl,...,ry_1}, and E(C,) = {r.-r,-+1 :i=20,1,...,r— 1}. Similarly, let
V(Cs) = {30,31,...,8,-1} and E(C,) = {si8is1 :i=0,1,...,5 — 1}. Iden-
tify the vertices go and g, with ro and sg, respectively. That is, H is of the form
D, except that the directed path has been replaced by an oriented path.

3.8. Theorem. If r divides s or s divides r, then H — COL is polynomial,
Otherwise (r does not divide s and s does not divide r) H — COL is NP-
complete.

Proof: If r divides s, then the directed r-cycle is a retract, and if s divides r,
then the directed s-cycle is a retract. In either case, the H-colouring problem is
polynomial.

Suppose r does not divide s and s does not divide r. (Note that this implies that
H is retract-free.) By Theorem 3.2 we may assume that Q is not a directed path.
Letk = nl(Q), and let a and b be any integers such thata, b > [V(Q)|,a = 1—&
(mod rs),and b = 0 (mod r3). Let I be the digraph constructed from P, U P,UQ
and two rs-cycles with special vertices z and y respectively, by identifying the
terminal vertex of P, with go and z and the initial vertex of Py with g, and y.
Let u be the initial vertex of P, and let v be the terminal vertex of P;. Then the
net-length of the (u,v)-path P in I is congruent to 1 modulo rs. Let H* be the
result of applying the indicator construction with respect to (I,u,v) to H. We
make the following assertions about the digraph H*.

"(1)" Every internal vertex of Q is either isolated, a source of H*, or a sink
of H*.

Let g; be an internal vertex of Q. If there is no directed path between g; and
either go or g, then the vertex g; is isolated in H*, since there is no homomorphism
of P, to Q that maps u to g;. Suppose there is a directed path from g; to g,. Since Q
is not a directed path, there is no directed walk of length b that ends at g;. Similarly,
if there is a directed path from g; to go, there is no directed walk of length b that
ends at g;. Hence g; is a source of H*. The existence of a directed path from g
or g, to g; similarly impies that g; is a sink of H*.

(2) H* is loopless.

By (1) no intemnal vertex of Q is incident with a loop. Suppose r; is
incident with a loop. Then there is a homomorphism of I to H which takes
both u and v to r;. Let W be the walk in H determined by the image of
1. Since I and Q have the same number of sources (and sinks), no vertex
of W is on the directed s-cycle. That is, W is contained in the subdigraph
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(CrUQ) — g,. Since the net length of each (go, go) -section of W is zero,
it follows that nl(W) = 0 (mod 7), which is a contradiction (recall that
nl(P) = 1 (mod rs)). Similarly, no vertex of C, is incident with a loop.
H* contains both C, and C,.

This is clear since nl( P) = 1 (mod rs).

Neither C, nor C, has a chord.

Consider a homomorphism of I into H that takes u to r; and v to ;. By
(2),1 # j. Arguing as in (2), the image of I is contained in the subdigraph
(C,UQ) — g,. Since the net length of each (go, go ) -section of the image of
I is zero, the net-length of the walk defined by the image of I is congruent
to (7 — 1) modulo . Therefore j = ¢+ 1 (mod r), and C, has no chord.
Similarly C, has no chord.

The arc 4.1 30 exists.

We describe the necessary homomorphism of I to H. Map ¢ t0 r44—1.
Since a = 1 — k (mod rs) the first vertex in the copy of Q in I maps to
70 = go. Now map each vertex of the copy of Q in I to the corresponding
vertex of Q, and map the copy of P, in I to C,. Since b = 0 (mod rs), the
vertex v maps to sg. Clearly the rs-cycles at = and y can be mapped to C,
( respectively GC,).

The arc s,+,—1 70 exists if and only if Q is self-converse.

(=) If the arc exists, then the copy of Q in I must map onto the copy
of Q~! in H.

(<=) The argument is similar to (5).

If Q is self-converse, then nl(Q) = 0. Hence the arcs from (5) and (6)
are 8,179 and r,_; so, respectively.

There are no other arcs between C, and C,.

Consider a homomorphism of I to H in which u maps to a vertex on one
of the directed cycles and v maps to a vertex on the other directed cycle. It
is not hard to see that the copy of Q in I must map onto Q. Since homo-
morphisms to directed cycles are completely determined by the image of a
single vertex, this forces u to map t0 8,441 and v to map to rg, Or u to map
t0 7+ -1 and v to map to so, (depending on the orientation of the supposed
arc).

Thus the structure of H* is completely determined. Let G be the core of H*®,
and let G~ be the result of applying the sub-indicator construction with respect
to (P»,1,free) to G. Then G~ is the subdigraph of H* induced by V(H*) —
{m1,92,...,94-1}. If Q is not self-converse, G~ consists of a directed r-cycle and
adirected s-cycle joined by an arc. Since » does not divide s and s does not divide
r, G — COL is- N P-complete by Theorem 3.2. On the other hand, if Q is self
converse, G~ consists of a directed cycle with two chords and is of type II. The
lengths of the cycles are r + s, r, and s. Since r does not divide s and s does not
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divide r, G~ — COL is N P-complete by Theorem 3.3. Therefore H — COL is
also N P-complete. This completes the proof. 1

4, A new reduction

In this section we describe a new tool for proving N P-completeness (resp. N P-
hardness) results in directed H-colouring (cf. Theorem 4.5). In particular, we
show that it is often sufficient for N P-hardness of H — COL that H have a
strong component C for which C — COL is NP-hard. In a sense, this result
is related to the concept of "hereditarily hard" H -colouring problems introduced
in [Bang-Jensen et al. 1989] (we say H — COL is hereditarily hard if G — COL
is N P-hard whenever H is a subdigraph of G). On combining this theorem with
other results which have appeared in the literature, we obtain infinitely many new
infinite families of N P-complete (resp. N P-hard) H -colouring problems.

We begin by specializing the following lemma to strong digraphs (cf. Corollary
4.3).

4.1. Lemma [Higgkvist et al, 1987]. There is a homomorphism of a directed
graph H to C; if and only if the net-length of every (oriented) cycle is divisible
by d. ]

Therefore a given directed graph does not admit a homomorphism to C,, just if
it has a cycle of net-length not divisible by n, and does not admit a homomorphism
to any directed cycle of length greater than one if and only if it has a collection
C',C?,...,C* of cycles such that ged{nl(C*) : i=1,2,...,k} = 1.

4.2. Lemma. Let H be strong. There is no homomorphism of H to Cy if
and only if there exists an integer k such that d does not divide k, and there is a
homomorphism of Ci to H.

Proof:

(=) Suppose H does not admit a homomorphism to C4. Let W be a closed
walk in H with net length not divisible by d (the walk W exists by Lemma 4.1),
and with the minimum number of backwards arcs among all such closed walks.
If W has no backwards arcs there is nothing to prove, so we may assume that
W has at least one backwards arc, Ty say. Since H is strong, there is a directed
(y, x)-path P. By our assumption on W, the length of the directed closed walk
P + zy is a multiple of d, say ¢gd. Let W' = W — zy (i.e., the (z, y)-section of
W). Then W'P is a closed walk with one fewer backwards edge than W, and
nl(W'P) = nl(W) + 1 + (gd — 1) which is not divisible by d. This contradicts
the choice of W, and completes the proof of the implication.

(<) The image of C; in H is a union of directed cycles. Since d does not divide
k, the digraph H has a cycle of length not divisible by d. Consequently there is
no homomorphism of H into Cy. [ ]
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4.3. Corollary. Let H be strong. There is a homomorphism of H into Cy if
and only if the Iength of every directed cycle is divisible by d. [ |

Therefore a given strong digraph does not admit a homomorphism to C,, just
if it has a directed cycle of net length not divisible by », and does not admit a
homomorphism to any directed cycle of length greater than one if and only if it
has a collection C!, G2, ..., C* of directed cycles such that gcd{nl(C*) : i =
1,2,..,k}=1.

Let H be a strong digraph. Then H has a directed cycle. Let g be the directed
girth of H. Since no directed cycle admits a homomorphism to a larger directed
cycle, H is not C,-colourable for any n greater than g. This, together with the
observation that any directed graph is C) -colourable, allows us to talk about the
largest d for which there is a homomorphism of H to C;.

4.4, Lemma, Let H be strong, and let d be the largest integer such that there is a
homomorphism f of H to Cy. Forany vertex v of H there is an integer l, (resp.
b,) such that, for every vertex z in f~}( f(v)), there is a directed (v, ) -walk of
length 1, (resp. directed (z,v)-walk of length b, ).

Proof: We prove only the existence of l,; the existence of b, may be established
similarly. First we find an integer ! such that there is a directed (v, y)-walk of
length ! for every vertex y in {v} U N*4(v) . We then use [ to define [,

By Corollary 4.3 the digraph H has a collection C!,C?,...,C" of directed
cycles such that gcd{|V(C¥)| : i = 1,2,...,n} = d. Since H is strong, the
vertex v lies on a directed cycle K of length kd, for some k. Let {d) denote
the subgroup of Zi4 generated by d. Then {d) = ({|V(C")|(mod kd) : i =
1,2,...,n}), so there exist directed cycles D', D?,..., D* € {C',C?,...,C"}
(not necessarily all distinct) such that

[V(DY)|+ [V(D*)|+ -+ |V(D‘)| = d (mod kd).

Forj=1,2,...,t,letv; be avertex on D/, let W/ be a (v, v;)-path, and let X/
be a (v;, v)-path. Define

L=|V(DY)| + [V(D?)| + -+ V(DY
+ V(W [+ V(W) + - -+ [V(WH]
+ V(XD + V(XD + -+ [V(XH).

It is not hard to see that § = W!D'X'W?2D?X? ... W!D!X! is a directed
(v,v)-walk of length I. Let u € N*¢(v). There is a directed (v, u)-walk of
length [, namely T = W' X'W2 X2 ...W!X*P, where P is the (v, u)-walk of
length |[V(D!)| + |[V(D?)| + - - + |V(D")| formed by traversing K repeatedly,
and then using the last d arcs of P to traverse a (v, u) -path of length d.
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Next we define
l=1-ky,, k,=max{k:3ue€ f"(f(u)) such that d(v, u) = k}.

Let z bein £~'(f(v)). Then d(v, z) is divisible by d. There is clearly a directed
(v, z)-walk of length I, formed by traversing S k, — d(v, =) /d times, traversing
T — P d(v, z) /d times, traversing K repeatedly, and then using the last d(v, z)
arcs to traverse a directed (v, z) -path of length d(v, ). The result follows. §

4.5, Theorem. Let H be a strong component of a retract-free digraph D. Then
H—COL polynomially Turing reduces to D—COL. Furthermore, if H does not
admit a homomorphism to a directed cycle of length greater than one, H — COL
polynomially transforms D — COL.

Proof: Let d be the largest integer such that there is a homomorphism of H to Cy,
and fix a homomorphism f: H — Cj. Let G be a given digraph. We define a
collection of digraphs, Gy,Gz,. .., G4, such that there is a homomorphism of G
to H if and only if there is a homomorphism of some G; to D.

There exists in H a directed path vy, v2, ..., vq and f assigns a different colour
to each of these vertices. Fori = 1,2,...,d let [;, and b; be the lengths from
Lemma 4.3 corresponding to v;. If G admits a homomorphism to H, then there is a
homomorphism of G to C;. Since the C4-colouring problem is polynomial, it may
be assumed that a C4-colouring m of G is known. The digraph G; is constructed
from the disjoint union of G and D by adding directed paths as follows: Let g be
a vertex of G, and suppose that m(g) = z. Let k = i + z (mod d). Add a directed
(g, vi)-path of length by, and a directed (v, g) -path of length ;. The digraph G;
results from applying this construction to every vertex of G.

Claim: There is a homomorphism of G to H if and only if there is a homomor-
phism of some G; to D.

Proof.

(=) Let h be an H-colouring of G. Then ¢ = f o h is a Cy-colouring of G.
Let g be a vertex of G and, without loss of generality, suppose m(g) = 0. Let
j = c(g). We claim that there is a homomorphism of G to D. Namely, map the
copy of D in G identically onto itself. Map each vertex of G 10 its image in the
H -colouring of G. By Lemma 4.4, this partial colouring can be extended to all of
the paths. Hence G; — D.

(<=) Without loss of generality assume that G| admits a homomorphism to
D. Since D is retract-free, we know that G; maps onto D. As H UG is contained
in a strong component of G, it is mapped to a strong component of D. Since D is
retract-free, this component is isomorphic to H. Hence there is a homomorphism
of Go H.

Since the collection Gy, G2, .. ., G4 can be constructed in polynomial time, the
result follows. Furthermore, if H does not admit a homomorphism to a directed
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cycle of length greater than one, then d = 1 and the construction described above
is a polynomial transformation. 1
Hence whenever we prove that H — COL is N P-hard for some strong di-
graph H, we obtain, via Theorem 4.5, an infinite family of N P-hard H -colouring
problems. In particular, this implies that H — COL is N P-hard whenever the
retract-free digraph H has a strong component which belongs to any one of the
following classes of digraphs.
e strong semi-complete digraphs with two or more directed cycles.
o strong bipartite tournaments that do not retract to a a directed cycle.
o vertex-transitive digraphs that do not retract to a directed cycle.
o partitionable digraphs (see [Bang-Jensen et al. 1989]) that contain an oriented
odd cycle.
o digraphs of the form D, or D, (cf. figure 3.1) that do not retract to a directed
cycle (i.e., the length of the shorter directed cycle does not divide the length of the
longer directed cycle).
o directed cycles with two chords that do not retract to a directed cycle (i.e., the
length of the shortest directed cycle does not divide the length of all other directed
cycles).
o digraphs of the form C,x, where nisodd and k > 0.
It should be noted, however, that there are N P-complete H -colouring problems
such that C — COL is polynomial for every strong component C of H (e.g. see
Theorem 3.8).
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