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Introduction

In this paper, we consider a permutation o in Sy, as acting on an arbitrary tree with
n vertices (labeled 1,2, ...,n). Each edge [a,b] of T corresponds {0 a transpo-
sition in S, and the set of all such transpositions forms a minimal generating set
for S, (and conversely). The permutation o can be written as a product of these
transpositions (a T'-factorization of o), and the minimum length of such a product
is called the T"-rank of o. (For a general discussion see e.g.[1].)

If T is a path (two vertices of degree 1, all others of degree 2) or a star (one vertex
of degree > 2, all others of degree 1), then the T-rank of ¢ is easily computed
(see [21,[3]), and there are algorithms to produce a minimal T'-factorization. In
[2], Edelman derives (for T" a path or a star), exact upper and lower bounds for the
T-rank of a permutation with k disjoint cycles.

For a general tree T, there is no straightforward algorithm for either producing a
minimal T'-factorization, or finding the T"-rank. Indeed, it appears that good upper
and lower bounds for the T"-rank (in terms of reasonably computable quantities)
are not known.

The primary purpose of this paper is to give such upper and lower bounds.
Along the way, we find a special T-factorization of o (the star-factorization) which
is uniquely determined by o and T'. The star-factorization is of minimal length if
T is a path or a star, but it need not be minimal otherwise.

The main results may be summarized as follows. Given the tree T', and a vertex
z of T with o(z) # , there is a unique path P(z, g)in T between z and o(z).
The length of this path, | P( z, 6) |, is the number of edges in it. We define the path-
length of o, denoted PL( ), to be the sum of all the lengths |P(z, )| (PL(0)
is shown to be an even number). In Section 2, we prove that if o has n — r fixed
points, then

PL(0)/2 < PL(o) = [7/2)[(r+ 1)]1/2 < T-rank (o).
In Section 3, we find a (uniquely determined) T-factorization of o (the star-
factorization) which has the form ¢ = B.8,-1...6: fi, where each §; is a cy-

cle, and we show that

T-rank (o) < PL(0) — L.
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Each of these bounds is best possible in the sense that for every (finite) tree T,
there exists a permutation o on T which attains the bound.

In Section 4, we apply our results to some particular cases. If ¢ is a 2-cycle,
then T'-rank(c) = PL( o) — 1, and conversely. If o is a 3-cycle, then T'-rank(c) =
PL(0) —2,and if o is a4-cycle, then T-rank(c) = PL(o) — 3. If o is a product
of two 2-cycles, then T"-rank(o) is either PL( o) — 2 or PL(o0) — 4, and we give
conditions for each.

Finally, we use the properties of the star-factorization of g to show that if o is
a k-cycle, then T-rank(c) < PL(o) — k + 1, and from this, if o is a product of ¢
disjoint cycles, and o has n — r fixed points, then

T-rank (0) < PL(o) —r+1.
In Section 5, we give some open questions, and some examples.

1. Preliminaries.

In this section, we establish some basic notation and elementary results, including
an easy lower bound for the rank of a permutation.

If nis a positive integer, S,, denotes the symmetric groupon the set {1,2,...,n}.
If &, B € S,, then multiplication is composition "on the right”, i.e. (af)(z) =
a(B(x)). We use the letter e to denote the identity. It is well-known that a set of
transpositions of S,, say

T ={(a;,b)i=1,2,...,k}

is aminimal generating set for the group S, if and only if k = n— 1, and the graph
with vertex set {1,2,...,n} and edge set T is a tree.

We assume throughout that T = {(a;, ;)| = 1,2,...,2— 1} is a minimal
generating set of transpositions, for S,,. We usually (abuse of notation) refer to T
as a tree, and to (a,d) € T as anedge of T'.

If o € S,, then the least number m such that o is equal to a product of m
transpositions from T, is called the rank of o with respect to T', or the T-rank of
o, or just the rank of o if T" is understood. If we have

a=1tti_1...02t1, L €T,

we say that the right-hand side is a T'-factorization (or a T-representation) of o,
of length k. If the length of a T-factorization of o is the rank of o, then we will
say that the T'-factorization is minimal .

From now on, we assume that T is a fixed but arbitrary finite tree,

Since T is a tree, given any two vertices z, y of T, there is a unique path in T
between z and y, denoted [ z, y]. If the vertices on this path are, in order from z
toy:z=a),02,...,0; = y, We Write

(z,y] =[a1,02,...,0k].
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The notation [z,y) = [a1,...,a¢-1] and (z,y] = [a2,...,a] is also conve-
nient. The number dr(z, y) of edges in [z, y] is called the T-length of [z, y], or
the T-distance from z to y, or just the length of [ z, y1(d(z, y)) if T is understood.

Ifo € Sy,andifi € {1,...,n}, the o-path of 1 is P(i,0) = [1,0(d)], and
the length of this path is denoted by | P(#, ) |. The sum of all the lengths of these
paths is denoted by PL( o), and called the path-length of o:

n

PL(a) = ) |P(i,0)].

=1

The minimal disjoint connected components of T' generated by the o-paths, are
called the o-components of T, and the subtree of T° spanned by the union of all
these components is called the span of o, denoted T'( o).

Lemma 1.1. Let o € S,.
(i) If [a,b] isanyedge of T, then the number of o -paths containing the edge
[a,b] is even.
(ii) PL(o) iseven.

‘Proof: If the edge [ a, b] is removed from T, the resulting configuration consists of
two disjoint trees X and Y (the components of T determined by the edge [a, b]);
say thata € X,and b € Y. Define the sets A and B by:

A={reX|o(z) €Y}, B={y€eY|o(y) eX}

Then since o is a permutation, these sets must have the same cardinality. Clearly,
the edge [ a, b] is contained in the o-path P(4,0) ifandonlyifi € Aori € B,
so the number Cr(a, b) of o-paths containing [a,b] is |4 U B| = 2|A|, an even
number. This proves (i). Since PL( o) is the total number of edges contained in
the o-paths (an edge is counted once for each path containing it) it is clear that

PL(0)= Y, Cr(a,b)

(ab)eT

and so PL (o) must be an even number also. This proves (ii).

Definition 1.2. The number Cr(a,b) inLemma 1.1, is called the crossover num-
ber of the edge (a, b].

In the next lemma it is shown that if a permutation is multiplied on the right by
a transposition of T", the path-length can change only by 2, 0, or -2. (A similar ar-
gument gives the same result if the multiplication is on the left.) Then any product
of k transpositions of T can have path-length at most 2 k, and this gives a lower
bound for the rank of a permutation, in terms of its path-length.
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Lemma 1.3. Letoc € S,,and t € T. Put v = ot. Then PL(o) — PL(71) is
either 2 or 0 or -2,

Proof: Writet = (a,b). Thenifi # a,b, P(4,0) = P(4, 7). There are only three
other possibilities, and we consider them separately.

Case 1. Both paths contain [a, b); P(ac) = [a,b,...,0(a)] and P(d,0) =
[b,a,...,0(b)]. Then since 7(a) = o(b), and 7(b) = o(a), we have

P(b,7) = [b,...,0(a)] and P(a,7) = [a,...,a(b)],

and then PL(o) — PL(7) = 2.

Case 2. The edge [a,b] is contained in one of the paths, but not in the other;
without loss of generality, suppose that P(a, o) = [a,b,...,0(a)] and P(b,0) =
[b,c,...,a(b)], withc # a. Then

P(a,7) = [a,b,¢,...,0(b)] and P(b,7) = [b,...,0(a)]

and PL(g) — PL(71) = 0.
Case3. P(a,0) = [a,z,...,0(a)]and P(b,0) = [b,y,...,0(b)],and [a, b]
is not contained in either P(a, o) or in P(b, o). Then we have

P(a,7) =la,b,y,...,a(a)] and P(b,7) = [b,a,z,...,0(b)],

and PL(g) — PL(7) = -2.
Corollary 1.4. Ifo € S,,, thenranko > PL(a) /2.

2. A lower bound for rank
Throughout this section, we will assume that ¢ € Sy, that T is fixed, and that

o=1p...0

is a fixed T'-factorization of . We will derive a lower bound for the rank of o.

Definition 2.1. A walk in T is a finite sequence of vertices of T, say W =
{z1,%2,23,...,34}, where foreach i = 1,2,..., k—1, either z; = z;.1, or else
x; and z;41 are adjacent in T. The walk-length of W is the number of indices i
such that [z;,z;+1]) isanedgein T (i.e. such that z; # ;.1).

The following elementary lemma is easily established by induction, and we
omit the proof.
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Lemma 2.2. If W = {z1,%2,%3,...,%4} isawalk in T, and if \ = x, then
the walk-length L of W is even. If a,b € W, then every vertex of the path in T
between a and b is alsoin W .

Definition 2.3. Given a factorization ¢ = tyt,-1...12t1. If  is a vertex of
T, then the trajectory of z determined by this factorization of o is the (ordered)
sequence

R(z,0) = {z=10,71,%2,%3,...,Tm}

wherez; = t;(z;_1) = (titi—y ... tat)(z) fori= 1,2, ..., m. Thenz; and ;1
are either equal or adjacent in T, and R(z,a) is a walk in T ; its walk-length is
called the o-walk-length of z, denoted by W( =z, ).

Remark: It is clear that foreach¢ = 0,1,2,...,m — 1, precisely two of the
trajectories of o have unequal entries in the 4, 1 + 1 positions. Thus we have

Corollary 2.4.
Y W(z,0) =2m.
X€T

Lemma 2.5. Let o € Sy, and suppose that ¢ = t,,...t1 is a T-factorization.
Let ¢ € T, where the o-path P(x,0) = [z = ao,61,...,0¢ = o(z)], and
the trajectory for z, for this factorization, is R(z,0) = {z = Zo,%1,...,Tm =
a(z)}. Then there exists a family of indices {f(j)|j = 0,1,...,k — 1} such
that:

@ Ifi = f(j), them z; = aj, and 7, # a; fori < t < m,
forall j=0,1,...,k—1

® oM< f<fBA<--<flk=1)H<m-1,

) Ifi=f(j),and 0 < j < k, then Ti+1 = aj+1.

Proof: (a) From Lemma 2.2, since R(z,0) is a walk in T and zo = ao, and
Zm = Gm, then P(z, ) must bea subsetof R(z, o). Foreachj=0,1,...,k—1,
let i = f(7) be the largest index such that z; = a;.

(b) For0 < i < m — 1, let Ry(x,0) = [ %, Zie1, ..., Tm] be the trajectory of
the permutation 1; = ot,1; ...t; for z; (i.e. Ri(z,0) = R(z;,%)). Ifi = £(0),
then z; = £ = ag, and so ;(z) = o(z). Then R;(z, o) contains P(z,o), and
in particular, for some j,i < j < m, we must have z; = a;. Thus f(0) < f(1).
Then (b) follows by induction.

©)For0 < j < k-1,leti= f(5). Then a; = z;, and a; is not a member
of Ri+1(z, o), while a4 is a member of R;+1(z, o). The edge [aj,a;41] is the
unique path in T from a; 10 aj+1, and so any walk in T' from a; 0 a;+1 must
include this edge. In particular, R;(z, o) must include this edge. Then we must
have Ti+l = Bje].
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Corollary 2.6. (a) W(z,0) < |P(z,0)|, and W(z,0) — |P(z,0)| is even.
b)) W(z,0) = |P(z,0)| if and only if d(z,x;) < d(z,%4) for all =; €
R(z,0),s=0,1,...,m—1.

Definition 2.7. Using the notation of Lemma 2.5, we say that the indices f(j)
are the path-indices for the trajectory R(z,c). If a fuller notation is needed, we
write f(7) = f(x,7). If i = f(0), then [ z;, i+, ..., Tm] is the final segment
of R(z,o),denoted FS(zx,0).

Definition 2.8. Lef z, y be distinct elements of T, and suppose that R(z,a)
and R(y,a) have two of their path-indices equal, that is, for some j, k we have
i= f(z,)) = f(y, k). Then we say that = and y meet at ;.

Definition 2.9. Let =,y € T, and suppose P(z,0d) N P(y, a) contains an edge
[a,b]Of T. If P(z,0) = [=,...,a,b,...,0(x)] while P(y,0) = [y,...,b,a,...
o(y)], then we say that the paths P(z, o) and P(y,o) are in opposite directions
(on [a, b] ). Otherwise, they are in the same direction (on [a, b)).

Remark. It should be emphasized that when we say that two paths have the
same, or opposite, directions, then this implies that the paths intersect in an interval
containing at least one edge of T".

Lemma 2.10. (a) Let [a,b] be an edge of T, and suppose that the crossover
number Cr(a,b) = 2k. Then the transposition (a,b) must appear at least k
times in every T -factorization of o.

(b) Suppose that P(z,0) C P(y,o0), where x # y. If o(z) = =z, orif
o(z) # z and P(z,0) and P(y,o) are in the same direction then W({z,o) >
|P(z,0)|.

Proof: (a)If [a,d] is in P(y,0), thenin R(y, o) = {yo,..., Ym}, there must be
some path-index 1 such that y; = a, y;+1 = b; thent; = (a,b). If Cr(a,d) = 2k,
then at least 2 k of the trajectories must have consecutive entries a, b (or b, a), and
these must occur for at least k different indices. This proves (a).

To see (b), write R(zx,0) = {z = Z0,21,...,Zm} and R(y,0) = {y =
Yo,¥1,-..,¥m}. If R(z, o) contains a vertex u which is not in P(y, o), then we
are done, so we suppose that z; is a vertex of P(y,0) fori=0,1,...,m. Since
P(z,0) C P(y,0), then d(yo,z0) > d(yo,y0) and d(yo,Zm) < d(yo,Ym)-
Then there is some leastindex 1 such thatd(yo , z;) > d(yo,¥;),and d(yo, Ti+1) <
d(yo, yi+1). Then (since T is a tree, and P(z,0) C P(y,o) are paths in T') it
must be the case that tiy1 = (Zi, Tie1) = (Yi, ¥i+1), a0 2 = Yie1, ¥ = Zier.
'I'hend(yo,:x:,-ﬂ) < d(yo,x,-),andsinceP(z,a) - P(U,U)»me“d(l'o,xiﬂ) <
d(xo, x;). By Corollary 2.6, W(z, o) > |P(z,0)|.

Combining this with Corollaries 2.4 and 2.6 gives

Corollary 2.11. Let o = t,,...t, be a T-factorization. Let K be the set of all
fixed points T of o such that for some y # z, we have = € P(y,0). Let J be
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the set of all x such that o(z) # z, and for some y # z, P(z,0) C P(y,0),
and the two paths are in the same direction. Then

m > |K|+ 7|+ PL(0)/2.

Theorem 2.12. Let z, y be distinct elements of T, and let M(z,y) be the num-
ber of distinct indices { such that x and y meetat t;. Let X = P(z,0) NP(y,0).
@ If|X|<1,then M(z,y) = 0.
() If |X| > 1, and P(z,0) and P(y,o) are in the same direction, then
M(z,y) =0.
(©) If |X| > 1 and P(z,0) and P(y,c) are in opposite directions, then
M(z,y) < 1.

Proof: Suppose that  and y meet at ¢;. Then R(z,0) and R(y,c) have two
of their path-indices equal, that is, for some j, k we have i = f(z,/) = f(y,k).
Since B(z,0) = {T = Z0,...,Zi, Tis1, -+, Zm}, B(Y,0) = {y = vo,..., i, ¥i+1,
ceyUm}s and Zipy = t1(Z3) # Zis Yie1 = i () # v (by Lemma 2.5(c)),
then it must be that ;.1 = (z;, Ti+1) = (Y5, vi+1). Since z; = (%;...61) (=),
vi = (ti...11)(y),and z # y, then z; # y;. Then z; = y;y1, and z4y = ;.

Since i = f(x,7) = f(y, k), then by Lemma 2.5(c), we have
P(IJO) = [I...Z,’,I,‘+1,...O’(Z)] andP(y)G) = [yt"'lyilyt""ll‘"’a(y)]

and so P(z, o) and P(y, o) have the common edge [ =;, z;.1], and are in opposite
directions on this edge. This proves (a) and (b).

To see (¢): Suppose that z and y meet att;. The edge [ z;, z;+1] separates T into
two disjoint components, say A containing z; = y;+1, and B containing z;.1 = y;.
The set Ris1(z,0) = {Zi+1, ..., Tm} Spans a subtree of T" which does not contain
x;, but does contain x,; 50 Ri+1(z, o) is a subset of B. Similarly, R;:1(y, o)
is a subset of A. Thus R;.1(z, o) and R;:1(y, o) are disjoint, and in particular,
z and y cannot meet at ¢ for any k > 4. It follows that any two distinct elements
T, y can meet at most once.

Definition 2.13. Fora T-factorization o = ty, ...t let M(1p ... 1) be the total
number of pairs {z,y} which meet (i.e., = and y have a common path-index).
Then define M{c) by

M(o) = max{M(tp...11)|tm ... t1 = ois a T-factorization}.

Corollary 2.14. If o = t,, ...t is a T-factorization, then

PL(o) —M(tn...t1) < m.
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Proof: For each z, consider the set of indices F' = {f(z, )}, and the trajectory
R(z,0) = {z0 = z,...,Zn}. Suppose P(z,0) = [ap = z,861,...,6;]. For
0 <j< k-—1,lettingi = f(z,j), we have [z;,zi+1] = [aj,a;+1], and so
the length k of P(z, o) is equal to |F|. If we put i = f(0), so that FS(z,0) =
{=:,-..,Tm}, then we must have m — ¢ > |F|, and so m — i > k. By Theorem
2.12, if z and y are distinct, then {f(z, )} N {f(y,/)} contains at most one
element, and so the set

Ind = U{{f(z,/) }|z € T}

has cardinality equal to PL(c) — M (s, ...11). SinceIndisasubsetof {0,1,...,
m — 1}, it follows that

m > PL(0) — M(tm...11),

as required.
Corollary 2.15. If m is the T -rank of o, then m > PL(c) — M(0o).

Theorem 2.16. Let o € S, and suppose that o has precisely n— r fixed points.
Then M (o) < [r/2][(r+ 1) /2] (where [ z] denotes the greatest integer < z).

Proof: It is clear that if, for instance, Pz, o) and P(y, o) are in opposite direc-

tions, and also P( =z, o) and P(z,c) are in opposite directions, then P(y, o) and

P(z,0) cannot be in opposite directions. This is true for any directed paths in T".
Let F be a set of r directed paths in T', all of length > 1;

F={Pl|i=1,2,...,r}.

Let Z be the set of all ordered pairs (P;, P;) such that P;, P; € F and P; and
P; are in opposite directions. We first prove that |Z| < [r/2][(r + 1)/2], by
induction. If |F| = 1,then Z = @, and |Z| < O is true. If |F| = 2, then clearly
|Z| < 1. Suppose the result is true for all families of cardinality less than r, and
suppose that | F| = r. Choose any P; in F', and let A(i) be the setof all P in F
such that P; and P, are in opposite directions. Let B(i) = F' — A(1).

Now suppose P; € A(1). Thenif P and P; are in opposite directions, P must
be a member of B(i), and so if |A(4)] > [r/2], then (for any P; € A(1)) we
have |A(j)| < |B()| < [7/2].

Then without loss of generality, we can assume that |A(i)| < [r/2]. The
set Z contains precisely | A(4) | ordered pairs in which one entry is P;, and all the
remaining ordered pairs have their entries in the set F' — { P;}, of cardinality r — 1.
By the induction assumption,

12| - 1A()] < [(r - 1)/20(r/2],
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and so |Z| < [(r — 1)/2)[r/2] + [r/21 = [v/2][(r + 1) /2], as required.
Now suppose that
F = {P(z,0)|o(z) # =}.

If P(z,0) and P(y, o) meet at ¢;, then P(z,0) and P(y,o) are in opposite
directions, and so the number of pairs of such paths cannot exceed the cardinality
of Z,and then M (o) < [r/2]1[(r + 1)/2].

Corollary 2.17. If o € Sy, and if m is the T-rank of o, and if the number of
fixed points of o is n— 7, then

m > PL(0) — [r/2][(7+ 1)/2]

3. An upper bound for rank

In this section, we establish an upper bound for the rank of ¢. Along the way, we
find an interesting family of invariants associated with o, and a T-factorization of
o which is uniquely determined by o and T'. Throughout this section, = is fixed,
T is fixed, and o € S,.

We first define a function on T, associated with o, which might be called a

“next-point” function: for z in T', f(z) is the first vertex after z, on the o-path of
x, which is NOT fixed by o.

Definition 3.1. Let o € S,. Definea functionf : T — T by: If o(x) = z, then
f(z) = z; if o(x) # z,andif P(z,0) = [z = z0,71,22,...,%k = a(z)],
then f(x) = x; where i is the least positive index such that o( z;) # ;. Acycle
of f is a sequence of distinct iterates of f, which returns to its starting point:

{ao = f(ax),a1 = f(ao),a2 = f(a1),...,0x = f(ak-1)}

(To avoid confusion in this section, a permutation which is a cycle will be called
a permutation-cycle.) If {ao, ... ,ax} is acycle of f, then the permulation-cycle
t = (ag, Gk—1,..+,01,00) IS the associated star of o, or a o-star. (Note that the
o-star is "opposite” to the corresponding cycle of f).

A cycle of f of length 1 corresponds to a fixed point of o; it is called a trivial
cycle of f.
Finally, if [bo, b1, b2, ...,bm] is any path in T, then C(bo, brs) denotes the T-
factorization
(bm, bm—1) (bm-1,bm—2) ... (b2, b1) (b1, bo)

of the permutation-cycle (g, b, bm—1,bm—2,---,b1).

In the following lemma we state some obvious, but important, properties of the
cycles of f,and the associated o-stars. These follow almost immediately from the
definitions, and we omit the proof.
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Lemma3.2. 3)If z € T, then the sequence of iterates {z, f(z), f(f(2)),...}
must eventually repeat, and the periodic part of such a sequence is a cycle of f.
Thus if o is not the identity, the associated f has non-trivial cycles. Then o has
non-trivial o-stars.

(b) If A is a non-trivial cycle of f, let U be the subtree of T spanned by (the
elements of) A. Then the outer vertices of U are precisely the members of A,
and if u is a vertex of U which is not an outer vertex of U, theno(u) = u (i.e.
the interior of U is fixed by o).

(c) Let A and B be two distinct, non-trivial cycles of f. Then A and B are
disjoint, and the corresponding o -stars are disjoint permutation-cycles.

(d) The set of cycles of f is uniquely determined by o.

@) If a = (ak,0k-1,-..,81,060) IS a o-star, then the paths of o and the paths
of y = o are related as follows: If x # o; for any i, then P(z,u) = P(z,0),
and otherwise,

P(ao,p) = P(ax,0) —[ax,60) = [ao,...,0(ar)],
P(a1,p) = P(ap,0) —[a0,61) = [a1,...,0(a0)],

P(ak,p) = P(ak-1,0) — [ag-1,0k) = [ak,...,0(ak-1)].

Remark. Multiplying o (on the right) by one of its o-stars has the effect of
shortening the paths in a uniform way. This is the basic idea behind the star-
factorization, described below. We first prove some elementary properties.

Lemma 3.3. Let o € S, and suppose that oy, 0,...,o are all the distinct
o-stars. Put 0; = oa;,and 7= cayay ... (@) PL{o;) = PL(0c) — PL{«;),
andif j # i, then «; is a o;-star. () PL(1) = PL(0) — PL(a1) — PL(az) —
««.— PL(ay). (c) If B is a (non-trivial) T-star, and for some 1, 8 and «; are not
disjoint, then for every such a;, B and «; have precisely one common element.

Proof: Statements (a) and (b) follow from Lemma 3.2 (c) and (e). For (¢) sup-
pose that 8 and «; = (ay, k-1, ...,01,89) have some common element, say ag.
Consider the tree T'( ;) (spanned by ao, ..., ai). By Lemma 3.2(b), the interior
points of T'( ;) are all fixed by o, and by Lemma 3.2(¢), they are also fixed by
7. Removing the interior of T'( ;) divides T into at least &k + 1 disjoint com-
ponents; let the component containing o; be labeled C( ;). By Lemma 3.2(¢),
P(oy, 7) € C(ag). Since B is a r-star, then ag is an outer vertex of T(8), and
T'(p) is a subtree containing at least one edge of P(a;, 7). Thus T'(8) C C(ao),
and thenif j # 0, a; isnot in T'(8).

Lemma 3.5. Let o € S, and suppose that the associated function f has pre-
cisely one non-trivial cycle, say, B = {b,b2,...,bx}. Let U be the subtree
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spanned by B, and for each i, let a; denote the (unique) vertex of U which is
adjacent to b;. Then o is a permutation-cycle, and

® o0=C(a,b1)C(ak-1,be) C(ag_2,bk1)....C(az2,b3)C(by, b2)

is a T -factorization of o, of length PL(o) — k+ 1, which has k — 1 meelings.
Remark. The T-factorization (*) need not be minimal.

Definition 3.5. Let 0 € S,, o # e, and suppose that « is a o-star. Then a
satisfies the conditions of Lemma 3.4, and the factorization (*) will be denoted by
S(a). Define a sequence of permutations o; and w; as follows: oo = 0, 9 =€
(the identity); supposing that o; and T; have been defined, and if ay,...,ay are
all the distinct stars of a;, then we let

gie1 = 0iS(a1) ...S(aw), and 7 = S(an) ... S(au)

Theorem 3.6. (a) The sequence {co,01,...} described in Definition 3.5 termi-
nates in the identity; say om # e, and om+1 = e.

(b) The factorization o = tytn,_; ...11 isa T-factorization of o which requires
no more than P L( o) — m transpositions.

(c) The factorization = ty,tm-1 ...t is uniquely determined by o, except for
rearrangements of the factors S(a).

Proof: (a) By Corollary 3.3, each o, has path-length strictly less than that of o;_; ;
the path-lengths must decrease to 0, and the identity e is the only permutation with
path-length 0 (and no non-trivial stars).

(b) The factorization o = t,,tm-1 ...t2t1 is a T-factorization by the definition
of S(a). By Corollary 3.3, PL( o) is the sum

PL(c) =) PL(%)
i=1

and the number of transpositions required for 7; is less than PL(7) by Lemma
3.4; the result follows.

(c) This is obvious from the fact that for any permutation, the set of its o-stars
is a uniquely determined set of permutations which act on disjoint subsets of T'
(and hence commute).

Definition 3.7. The factorization o = tmtm—1 - ..t2t) is called the star-faclorization
of a. In view of (*), it is also a T -factorization of ¢. Ifforeachi=1,2,...,m
the number of distinct stars for o; is k;, then the sum
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is called the star-length of o, and we can wrilte

(xx) a=8(BL)S(BL-1)...S(B)S(P1) = tete-1...12t1 (L ET)

Fori=1,2,...,L, let r; denote the number of T -transpositions in the expres-
sion (*) for S(B;), sothat k =y + ---+ r, and letn; = PL(B;) — r;.

Corollary 3.8. Using the notation of Definition 3.7,

L
M. t) =) m
i=1

and

L
ranko < PL(o) — Y % < PL(a) — L.

s=1
4, Applications

In this section, we give some applications of the previous results. We return to
the normal usage of the word "cycle" for a permutation cycle.

Theorem 4.1, (a) Suppose that T is a path (i.e. T has two vertices of degree 1,
and all others of degree 2). If o € S,,, then the star-factorization of o is minimal.

() Let T be a star (i.e. one vertex has degree > 2, and all others have degree
1). If o € Sy, then the star-factorization of o is minimal,

Proof: (a) Label the vertices of T' from left to right, 1,2,...,n. Ao-starais a
transposition (a,a + j)(j > 0) such thata € P(a + j,0),a+ j € P(a,0),and
if0 <1 < j,0(s) = 1. Therepresentation (*) for o uses 2 j — 1 transpositions. It
is trivial to check that o, has precisely 2 j — 1 fewer inversions than o does, and
since the rank of o is the inversion number of o, (a) follows.

(b) If T is a star, the o-stars are precisely the disjoint cycles of o, and the star-
factorization is the same minimal factorization found in [3].

We now return to an arbitrary tree T" with n vertices, and suppose that o € S,,.

Theorem 4.2. The permutation o is a 2-cycle if and only ifrank o is PL(o)—1;
in this case the star-factorization is minimal,

Proof: If o is a 2-cycle, then o has only two paths of length > 1, and so by
Corollary 2.17,rank ¢ > PL(o) — 1. Since ¢ is an odd permutation, and PL( o)
iseven, thenrank o = PL( o) — 1. For the converse, suppose that o moves more
than two points of T'. If o has more than one o-star, or if o has a o-star that moves
more than two points of T', then rank 0 < PL(o) — 1, by Corollary 3.8. Suppose
that o has only one o-star, say «, which moves only two points of T'. Then o«
cannot be the identity, since o moves more than two points, and so o« has a non-
trivial star also. In all cases, the star-length of o is more than one, and the result
follows from Corollary 3.8.
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4.3. If ¢ is a 3-cycle, thenrank o = PL(o) — 2.

Proof: By Corollaries 2.17 and 3.8, PL(0) — 1 > rank o > PL(0) — 2. Since
o is an even permutation (or by Theorem 4.2), rank o = PL(o) — 2.

4.4. If o is a 4-cycle, then rank ¢ = PL(c) — 3.

Proof: By Corollaries 2.17 and 3.8, PL(o) — 1 > ranko > PL(o) — 4. By
Theorem 4.2, rank o < PL(a) — 1, and since ¢ is an odd permutation, we must
have rank o = PL(o) — 3.

Theorem 4.5. Suppose o is a product of two disjoint 2-cycles: o = (a,b)(¢c,d)
with a, b, c, d all distinct.
(i) If P(a) NP(c) does not contain an edge of T, thenrank ¢ = PL(c) —2.
(ii) If P(a) C P(c) (or vice versa), thenrank o = PL(o) — 2.
(iii) Otherwise, rank o = PL(a) — 4.

Proof: Inall cases, by Corollaries 2.17 and 3.8, PL(0)—2 > rank o > PL(o)—
4. The proof of (i) is like Theorem 4.2. (ii) follows from Theorem 4.1 (since in
this case, o is acting on a path); it can also be proved as follows. Suppose that
P(a) C P(c) are in the same direction . It is easy to show that if o(z) = =z,
then W(z,0) < 2 implies that z is an endpoint of some edge [z, y] of T which
is contained in no more than two of the paths of ¢. Thus, if z is a fixed ver-
tex of T between a and b, then we must have W(z,o) > 4. By Lemma 2.10,
W(a,o) > |P(a,0)|+ 2, and similarly for W(b, 0); and if z is a vertex of T
between a and c, or between band d, then W(z, o) > 2. Then applying Corollary
24, we haverank o > PL(c) — 2.

In case (iii), it is always possible to arrange matters so as to have four meetings,
by first judiciously "moving" two of the vertices a,b,c,d onto the common interval.
We do one example to illustrate the method. Suppose that T has just four outer ver-
tices, a,b,c,d; that P(a) and P(c) are in the same direction, and that P(a) N P(c)
=[z,...,w] where z,w # ab,c,d. Let C(z,y) be defined as in Definition 3.1,
and let S(z,y) be the star-factorization of the transposition (z, y) as in Lemma
34. Then o = C(z,a)C(w, d) S(z,w)S(z,c)S(w, b) S(z,w)C(d,w)C(a, z)
is a T-factorization with precisely PL(co) — 4 transpositions. (The C(a,2) on
the right has the effect of “moving” a to the vertex z, and so on.)

In general, as in Case (iii) of Theorem 4.5, the star-factorization of o need not
be minimal. It is primarily useful in finding upper bounds for the rank of a permu-
tation, as Theorem 4.10 (below) illustrates. The idea of the proof is quite simple,
though the notation gets rather involved. Basically, we consider the set of "stars"”
in the star-factorization of o as the vertices of a graph; each "star” has the effect
of shortening some of the paths of o. If one star affects a certain path of o, the
next star in line (reading from right to left of course) that affects the same path,
will be declared adjacent to the first star. If such a graph has two or more disjoint
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connected components, then each component corresponds to a separate set of ver-
tices of T'; the permutation would have to have at least as many disjoint cycles as
this graph has connected components.

In what follows, we assume we have, in the notation of Theorem 3.6,

0=Tm...12N = S(BL)S(Br-1) ...8(f)S(B).

Of course, we can also write o as the product of cycles, o = 8, ...5: 01, if the
T-factorization is not in question.

The first lemma follows immediately from the properties of a star-
factorization.

Lemma 4.6. Let z € T, and let the ordered sequence {z = x9,T1,...,3,} be
defined by z; = i(Ti_1) = BiBi-1 ...PoP1(z), fori=0,1,2,...,L — 1. Then
d(zi,z0) < d(Tis1,T0) foralli = 0,1,...,L — 1, and if k is the least index
such that xx = o(x), then forall i < k,x; # zx, and forall i > k, z; = z; (i.e.
Bi(zi) = =)

Definition 4.7. We define a graph B with vertex set V(B) = {1,2,...,L} and
edge set E(B), where the edges (i, j) in E(B) are determined as follows: Let
1< i< j< L. Then(i,j) € E(B) ifandonly if there exist z,y € T such that

M) Bi(z) #z,Bi(z) # =,
@) BiBir...B28(y) =3 # a(y),
() ifi< k< j,then Bi(z) = z.

Lemma 4.8. If o(z) # z, andif I = {i|f;(z) # z} contains more than one
point, then I is a connected subset of B.

Proof: Suppose that o(y) = z, and that I contains more than one point. For the
sequence {y = yo,y1,...,ys} as defined in Lemma 4.6, let ¢ be the least index
suchthaty; = z = o(y). Thenifk < t,yx # y,andifk > ¢, yx = y: = z and
Bx(x) = z. Thus t is the largest index in I. The members of I can be ordered,
sayas 1) < i3 < 43 --- < 1, = . Suppose that (1,7) = (41,12). The conditions
(1) and (3) are clearly satisfied. If (2) were not satisfied, then we would have (by
Lemma 4.6) B:(z) = x forall k£ > i. But since I has at least two members, then
J > i,and B;(z) # . So (2) must hold, and (1;,4,) is an edge of B. Similarly,
(i2,13),(43,44),...,(4y-1,1,) are all edges of B, and so I is connected.

Corollary 4.9. If B has k disjoint connected components, then o must have at
least k disjoint cycles.

Theorem 4.10. Let o be a cycle of length k. Then

ranko < PL(g) — k+ 1.
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Proof: Write o = (a1, a2,...,as), and as usual,

O=Ty...TN
= 8(BL)S(Br-1) ...S(B2)S(B)
=pLBr-1...51-

Leto; = Bifi-1.../01. Foreachi=1,2,..., L, let K; be the cycle-length of
B:, and let N; be defined by:

N; = {z € T|oi_1(2) = z,B(z) = 0(2),z # 0(2) }|

Thenletr; = K;— Nj, so that r; is the number of edges from S( §;) to some S(5;)
with j > i. Since o is a k-cycle, then B must be connected, and then B has at
least L — 1 edges. By Lemma 4.6, each of the elements ay, a3, .. ., a; appears in
precisely one of the sets N, and so

L L
Y Ni=k,andR=) n>L-1.
i=1

i=1

The length of the T-factorization & = S(81)S(B1-1) ...S(B2)S(B1) is (by
Corollary 3.3)

L L
PL(0) =Y Ki+ L=PL(0) =Y (Ni+ 7)) + L

i=1 i=1

A L
= PL(0) —ZN;+L—E1’,~

i=1 i=1

< PL(ag) —k+ 1.
This completes the proof.
Corollary 4.11. If o has t disjoint cycles, and n— r fixed points, then

T-rank () < PL(0) —r+1.

Proof: Each of the paths of o is a path of one of its disjoint cycles and conversely,
so that PL( o) is the sum of the path-lengths of its disjoint cycles. Then the result
follows from Theorem 4.10, and the fact thatif ¢ = o8, thenrank(o) < rank(a)+
rank(8).
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5. Conjectures, questions, and examples

For any 0 € S + n, and a given tree T, we may identify o with the family of its
paths in T'. It seems obvious that there must be some strong connections between
the algebraic propertics of o, and the geometric behavior of its family of paths
(including its T-rank). As usual with geometrical objects, some things seem clear
to the intuition, and other things begin to seem very likely after much thought. We
list here some open questions, and some examples.

Conjecture 1. If 0 € S,,and T isatree,and T = A U B, where A and B are
disjoint subtrees of T" obtained by removing one edge of T, and if 0(A) = A and
o(B) = B, then

T-rank (o) = A-rank (¢ | A) + B-rank (¢ | B).

Conjecture 2. If o € S,,, and t is a transposition of T, and PL(at) = PL(0) —
2, then T-rank(ot) = T-rank(o) — 1.

Question 1. For a given T" and o, put N(0,T) = PL(c) — T-rank (o). Is
N(a,T) independent of T'?

Question 2. Suppose thata is an outer vertex of T, and that b is the unique vertex
of T adjacent 10 a, and that 0(a) = a. Does there exist a minimal T'-factorization
of o in which the transposition ( a, b) does not appear? Does there exist a minimal
T-factorization of ¢ in which the transposition (a, b) does appear?

Question 3. Suppose thata is an outer vertex of 7', and that b is the unique vertex
of T adjacent to @, and that o(a) # a. Does there exist a minimal T'-factorization
of o in which the transposition (a, b) appears exactly twice?

Question 4. Suppose that [a, b] is an edge of T', and o € Sy, and the crossover
number Cr(a, b) = 2 k. Does there exist a minimal T"-factorization of ¢ in which
the transposition (a, b)) appears exactly k times?

Question 5. Given o and T', let M be the length of the star-factorization of o,
and let m be the T-rank of o. Put K(o,T) = M — m. What docs the value of
K (o, T) have to say about o and T'? In particular, given o € S,, what is the
maximum value of K (o, T)? (It is easy to see the minimum value is 0.)

Question 6. Given o and T, let B be the graph associated with the star-
factorization of o (see Section 4). Under what conditions is B connected? When
is B itself a tree? If B is connected, or is a tree, what about K (a,T)?

Counterexample 1. A permutation o which is a cycle on the outer vertices of a
tree T', and a transposition ¢t = (a, b) where the edge [ e, b] is in the interior of T,
and T'-rank(ot) < T-rank(o).

Let T have 7 vertices, and edges: [ai1,n], [a2,n], [n,z],[z,m].[m,bi],
[m, b ], and let o be the 4-cycle (a1, b1,a2,b02).

a1 b

a by
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Then PL(o) = 16, and by Theorem 4.4, T-rank(c) = 13. We find the T-
factorization

('n,:c)(n, 32)(7") z)(m)bZ)(als")(msx)(m)bl)x
(n,z)(m,z)(m,b2)(n,62)(n,z)(n,a1)

Since o fixes nand z, then (n, 2) o has rank 12,

We have not found any examples of the following: o is a cycle on outer vertices
of T, and T moves only elements fixed by o, and 7 is not a transposition of T, and
rot has smaller rank than o,

Counterexample 2. A permutation o with T-rank(c) > PL(c) — M(0).

In Counterexample 1, the given T-factorization of ¢ has four meetings (at the
transpositions in positions 5,6,7,8, reading from the right). Since o has just four
paths, then no factorization can have more than four meetings, and so M (o) = 4.

We have not found any examples where T-rank(c) — PL(a) + M(a) > 1.

Counterexample 3. A k-cycle ¢ such that T-rank(c) < PL(0) — k+ 1.

Let T be the path {1,2,3,4,5}, and let o be the 5-cycle (1,4,2,5,3). Then
PL(0o) = 12, and T-rank(c) = 6 (the number of inversions),and 6 < 12 —5+1.

We thank Frederick Portier for many helpful discussions.
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