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Abstract. Chetwynd and Hilton made the following edge-colouring conjecture: if a
simple graph G satisfies A (G) > %IV(G)I,then G is Class 2 if and only if it contains
an overfull subgraph H with A (H) = A(G). They also made the following total-
colouring conjecture: if a simple graph G satisfies A (G) > %( |V(G)|+1),thenG is
Type 2 if and only if G contains a non-conformable subgraph H with A (H) = A (G).
Here we show that if the edge-colouring conjecture is true for graphs of even order
satisfying A (G) > }|V(G)|, then the total-colouring conjecture is true for graphs of
odd order satisfying 5(G) > $|V(G)| — } and def (G) > 2A(G) - 6(G) + 1).

Introduction

An edge colouring of a graph G is a map ¢: E(G) — C, where C is a set of
colours, such that no two edges with the same colour are incident with the same
vertex. The chromatic index x'(G) of G is the least value of |C| for which G has
an edge-colouring.

A well-known theorem of Vizing [26] states that, for G a simple graph,

AG) +12X(G) 2A(G),

where A (G) is the maximum degree of G. If x'(G) = A(G) then G is Class 1,
and otherwise G is Class 2. If

IE(G)| > A(G) [%lvw)lj

then G is overfull. Since no colour can occur on more than | ;|V(G)|| edges, it
is clear that if G is overfull, then G is Class 2.

1 Also, Department of Mathematics, West Virginia University, Morgantown, WV 26506, U.S.A.
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Chetwynd and Hilton (8] proposed the following edge colouring conjecture
(now slightly modified).

Conjecture E: Let G be a simple graph with A(G) > }|V(G)|. Then G is Class
2 if and only if G contains an overfull subgraph H withA(H) = A(G).

The graph obtained from the Petersen graph by deleting one vertex shows that
the figure £ in Conjecture E cannot be reduced. Conjecture E has been proved in
papers by Plantholt [23,24], Chetwynd and Hilton [6,7,8,9,10], and Zhang Jiangxan,
Zhang Zhongfu and Wang Jiangfong [27] for the case when A(G) > |[V(G)|-3.
Ithas also been proved by Hilton [19] in the case when | E(G) | = A(G) [-;—IV(G) 1)
and A(G) > H(V21 - 1) (JV(G)| + 1) + 1 (note that (/21 — 1) =~-896).
Further evidence for Conjecture E is that it implies (see [17]) the following further
conjecture.

Conjecture R: Let G be a regular simple graph of degree d(G) and of even order
with d(G) > £|V(G)|. Then G is 1-factorizable (i.e. G is Class 1).

Conjecture R itself has been proved by Chetwynd and Hilton [3] in the case when
dG) > VT - 1)|V(G)] (note that $(v/7 — 1) ~-823. Allinall, it seems
to be fair to say that Conjecture E is a very believable and intuitive conjecture.
Various consequences of Conjecture E are given in [14,20,21,22].

A total colouring of a graph G is a map ¥: B(G) U V(G) — C, such that
no two incident elements of E(G) U V(G) receive the same colour. The total
chromatic number xr(G) of G is the least value of |C| for which G has a total
colouring.

In 1965 Behzad [1] conjectured that for a simple graph G,

A(G) +1 < x7(G) LA(G) +2.

The lower bound is trivial, but the upper bound has so far been intractable. If
xr(G) = A(G) + 1, then G is Type 1, and if x7(G) = A(G) + 2,then G is
Type 2. So far no simple graphs have been found which are not Type 1 or Type 2.

Let

def(G) = ) (A(G) —da(v)).
veV(a)

A vertex-colouring of a graph G is amap ¢: V(G) — C such that no two adjacent
vertices receive the same colour. If G has a vertex colouring with A (G) + 1 colours
such that the number of vertex colour classes of parity different from |V (G)| is at
most def (G), then G is conformable. In a total-colouring of G with A(G) + 1
colours, for any colour which occurs on a set of vertices of parity different from
[V(G)|, there is a vertex at which that colour does not occur (neither on the ver-
tex itself, nor on an edge incident with the vertex). It follows that if G is non-
conformable, then GG isn’t Type 1.

Chetwynd and Hilton [5) more recently proposed the following total colouring
conjecture.
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Conjecture T: Let G be a simple graph with A(G) > $(|V(G)| + 1). Then G
is Type 2 if and only if G contains a non-conformable subgraph H with A (H) =
A(G).

The complete bipartite graph K., with n even is conformable but is Type 2,
and so this shows that the lower bound in Conjecture T cannot be lowered any
further (although the idea of Conjecture T can be extended to bipartite graphs—
see [5,18]). Conjecture T has been proved in the case when A (G) = |[V(G)| — 1
(15]. It has also been proved [12] in the case when G is regular, of odd order,
with d(G) > ﬁ|V(G)| These are the only non-trival cases where it has been
proved, and so the fact shown in this paper that in certain cases Conjecture E (for
which there is much more substantial evidence) implies Conjecture T lends a good
deal more credibility to Conjecture T itself. We should note, however, that one
counterexample to Conjecture T has been found very recently by Bor Liang Chen
and Hung-Lin Fu. This is when A(G) = |[V(G)| — 2, |V(G)| even. Possibly it
is just an isolated case.

In this paper we prove the following theorem.,

Theorem 1. If Conjecture E is true for simple graphs G of even order satisfying
AG) > i—lV( G)l then Conjecture T is true for simple graphs G of odd order
satistying §(G) > 2|V(G)| — A(G) and def (G) > 2(A(G) — 6(G) + 1).

We believe that the restriction def (G) > 2(A(G) — §(G) + 1) reflects no
more than the inadequacy of our argument. In fact we shall prove the following
slight generalization of Theorem 1.

Theorem 2. Let A bea constant < A < 1. If Conjecture E is true for simple
graphs G of even order satisfying A (G) > A|V(G)| then Conjecture T is true
for simple graphs G of order satisfying

A(G) > %(H VAN, &G > %IV(G’)I —-A(G) - -;—

and def(G) 2> 2(A(G) - 6(G) + 1).

Theorem 1 follows from Theorem 2 since if A = — then the condition A >
-(l + A)IV(G)I becomes A > & |V(G)| and this i 1s implied by the condition
§G) > 3|V(G)| - A(G),since A(G) > 8(G).

Since the necessity in each of the two conjectures is easy, in fact we only need
to prove the following lemma.

Lemma 1. Let A be constant, L 5 < A < 1. Suppose that each Class 2 simple
graph G of even order with A (G) > A|V(G)| contains an overfull subgraph
H with A(H ) = A(G). Then each T}'pe 2 simple graph G of odd order with
AG) > 2(1+A)|V(G)| §G) > 5 |V(G)|—A(G') and def (@) >
2(A(G) - 8(G) + 1) contains a non—confonnable subgraph H with A(H) =
A(G).
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2. Some Useful Lemmas

We give here some lemmas we shall use. The first is a well-known theorem of
Dirac [13].

Lemma 2. Let G be a simple graph whose minimum degree §(G) satisfies

5G) > V(B

Then G possesses 8 Hamiltonian circuit.
The next was proved by Chetwynd and Hilton [4].
Lemma 3. If a simple graph G is overfull, then

def (G) < A(G) —2.

Lemmad. Let G beasimple graph with |V(G)]| = 2n+1 and §(G) > n. Then
G contains no overfull subgraph H with A(H) = A(G) and |[V(H)| < 2n—1.

Proof: Suppose, to the contrary, that G does contain an overfull subgraph H with
A(H) =A(G) and |V(H)| < 2n—1.IfA(H) = §( H) then H is acomponent
of G. However 5(G\H) < [V(G\H)|-1= |V(G)|-|V(H)|-1 < [V(G)|-
(A(H)+1)-1=|V(G)|-A(H)-2=|V(GD)|-A(G)-2 < (2n+1)-n-2=
n—1 < §(G), a contradiction. Hence A( H) # 6(H).

Let|[V(G\H)| = z. Thenz = |V(G)|-|V(H)| < (2n+ 1) - (A(H)+ 1) =
2u+ 1) - (A(G)+1) < n Thusz < n Also |[V(H)| < 2n—1 so
z=|V(Q)|- V(D] >2.

By Lemma 3, def (H) < A(H) — 2 and so at most A(H) — 2 edges join
vertices of H to vertices of G\ H. Therefore the least degree §* in G of the vertices
of G\ H satisfies

ige)) gs'gz-nl@J g:-nl%J.

Since §(G) > nandsince A(H) -2 < |[V(H)|-3 < (2n—1) -3 =2n—4,
it follows that

2n—-4 2n—4

ng—l+ ,
]

ugx—l+l

from which it follows that

0<2* —(n+ )z +2n-4,
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The roots of 22 — (n+ 1)z + (25— 4) are $(n+ 1) + 1 /{2 — 6n+ 177,
that is . .
i+ -2-\/{(7;— 3)2 +8}.

Between the two roots the quadratic 22 — (n+ 1)z + 2n— 4 is negative, and so
it follows that either

z< —(n+ 1) — —\/{(n 3)2 + 8},

or

z> —(n+ 1)+ —\/{(n 3)2 + 8}.
Ifz < 7(n+ 1)— 2'\/ (n—3)2},thenz < 7(n+ l)——\/{(n—3)2 +8} =

2(u+ 1) - i‘(" 3)-2 a contradiction.

Ifz > 3(n+ )+ 3/{(n=3)2+ 8}, thenz > F(n+ 1)+ $(n-3) =n—1,
soz > n. Sincen > z it follows thatx = n Itfollows thatn= z = |V(G)| —
[V(H)| € 2n+ 1 —(A(H) +1) = 2n+1 = (A(G) + 1) < n,so that
A(H) =A(G) = §(G) = n. But

(G <z—1+ I.ﬂ-_ZJ

T

and so we now have thatn < z — 1+ | %2 |, so thatn < z ~ 1, a contradiction.
This contradiction shows that, in fact, G contains no such overfull subgraph H,
as required. |
The lower bound on §( G) in Lemma 4 cannot be lowered any further. For if nis
odd and G is the simple graph consisting of K, and a disjoint graph obtained from
K1 by removing a 1-factor, and if H is the K,,, then H is overfull, |V (G)| =
2n+1and8(G) = 8(H) =A(@) =A(H)=n—-1,

Lemma 5. Let G* be a simple graph with |V(G*)| = 2n+ 2 and §(G*) >
n+ 1. Then G* conlains no overfull subgraph H with A(H) = A(G*) and
[V(H)|<2n-1.

Proof: Suppose G* contains an overfull subgraph H with [V(H)| < 2n— 1 and
A(H) = A(G*). Then no vertex of V(G*Y\V(H) is joined to all vertices of
degree A of H. Letv € V(G*)\V(H) and let G = G*\{v}. Then |V(G)| =
22+ 1,8(G) > 8(G*) — 1 > nand A(G*) = A(G) = A(H). But this
contradicts Lemma 4. This contradiction proves Lemma 5. |

The lower bound on §( G*) in Lemma 5 can similarly not be lowered any further.
For let n be even and let G* consist of two copies of K. , and let H be one of
the K1 '’s. Then H is overfulland §( H) = 8(G*) = A(H) =A(GY) =n
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The restriction [V ( H)| < 2n— 1 in Lemma 5 cannot be removed. To see this
note that an overfull graph H with [V(H)|=2n+ 1 and |[E(H)|= A(H)n+ 1
has def (H) = (2n+ 1)A —2(An+ 1) = A — 1. Take any such H with
A(H) > n+3 and 5( H) > n, which has z vertices of degree atmost A (H) — 1
forsome z € {n+ 1,...,A(H) — 2}. Form G* by joining a further vertex v to
each of these z vertices.

Lemma 6. Let G be a conformable graph of odd order. Then G can be vertex-
coloured with A (G) + 1 colours so that each colour is used on at least one vertex,
and not more than def (G) colours are used on an even number of vertices.

Proof: Since G is conformable and of odd order, G can be vertex-coloured with
A(G) + 1 colours in such a way that the number of colours, say ¢, which occur
on an even number of vertices is at most def (G). Let the vertex colour classes be
C,...,Cas and, for 1 < i < A(G) + 1, let G; be coloured with colour c;.

If some of the colours are not actually used, then |C;| = O for some j. In that
case we can take some C; with |C;| > 2 and recolour two of its vertices with ¢; if
|Ci| > 2, or recolour one of its vertices if |C;| = 2. In both cases the number of
colours actually used increases by one. In the first case ¢ remains the same, and in
the second case t is reduced by one. Thus it remains true that ¢ < def (G).

Since G is a simple graph it follows that |[V(G)| > A(G) + 1, and so we can
always continue with this procedure until all colours are actually used. |

3. Proof of Theorem 2

Proof of Lemma 1: Let G be a simple conformable graph of odd order2n+ 1
withA(G) > $(1+ A)|V(P)],.8(G) > 5 V(G| -A(G) - 1 and def (G) >
2(A (@) - 8(G) + 1). We shall assume that the edge-colouring conjecture is true
for graphs J of even order satisfying A (J) > A|V(J)|, and shall deduce that G‘
is Type 1.

By Lemma 6, we may select a vertex-colouring with A(G) + 1 colours with the
property that each colour is used on at least one vertex and not more than def (G)
colours are used on an even number of vertices. For1 < i < A(G) + 1, let the
set of vertices of colour c; be C;. We may suppose that |Ci},...,|C:| are even,
and that |Cp41], . .., |Ca(c)+1] are odd. From G form a graph G* by introducing a
further vertex v* and joining v* to one vertex of each set C; of odd cardinality, i.e.,
to one vertex of each of Cy41, ..., Ca(c)+1- Thenthe degree of v* is A(G) + 1 —t.
The number of vertices not joined 1o v* is |Ci| + - - + |C,s¢| — s and is also
(2n+ 1) = dg.(v*) = 2n— A(G) + t. It follows that

|C’1|+...+|C°+t|_3= 2n—A(G) +1t.

Let s be the number of C;’s for which |C;| is odd and greater than one. [The
graph G* is illustrated in Figure 1.]
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Figure 1. The graph G*.
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.

Then the number of C;’s of cardinality 1 is at most |V | — 2t — 3 s and is exactly
A + 1 — s —t. Therefore

AG) +1—35—t<|V(G)|-2t—3s

so that
V(@) | >AG) +1+2s+1¢. ¢))

Since A(G) > (A + 1)|[V(G)| is follows that

V(| > %(A-l- DIV(G)| +2s+t+1
so that 1
25+t < (1= AV(G) - 1. @
From (1) it also follows that
s+t<2s+1 <L |V(Q)|-A(G) - 1. 3)

Since 5(G) > |IV(G)|-A(G) - 1 itfollows that §(G) + A(G) > 3|V(@)|—
3. 50 that 2A(G) > 3|V(G)| - 4. so that A(G) > 2|V(G)| - %. Since
2A(G) > $|V(G)| — & it follows that |V(G)| > 2(|V(G)| - A(G)) - +.
Therefore

(&) + Q) 2 IV(OI+ 7 IV(@)| - 5

2V @I+2IV(G)|-A(@D) -1
2 VDI+2AIV(G)-A(G@ - +1
SIV(G)|+2s+2t+1,
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by (3), and so
8§G) 2 V(| -A(G) +23+2t+1. @

We now find edge-disjoint matchings F},.. ., F,,¢ such that, in the graph G*\( F U
-UF;1),fort+1 < i < t+ s, F; contains the edge joining v* to the unique

vertex of C; joined to v*, but, apart from that, for 1 < 1 < s + ¢, no edge of F; is
incident with any vertex of C;; moreover, for 1 < 1 < s+, there is an edge of F;
incident with every other vertex of G*.

Let Ct,...,C3,1 be Ci,...,Ca+ reordered so that [Cy| > |C3| > -+ >
|Cx.1lsand, for 1 < § < s+ t let the matching in F, ..., Fyy¢ corresponding to
C; be denoted by F.

To see that such matchings exist, suppose that Fy, ..., F ; have been found,
and consider the graph G*\(FY U---U F* ;). Let
o ={(G‘\(F,U -UFIN\C; ifCt € {G,...,C},
SUL@NFT U UF ) \(CEU{v') iCF € {Gunny -, Ot

Then, as we show below,

8(G:. IV(G )|

-1 =z 2
To see this first note that

8(G 28(6) - (G- -G

and that
IV(Gi_D| = V(@) ] - |C;].
Therefore
8Giy) 2 IV(G.-| | if
1
5(G) — (=D = |G| 2 7 IV(&)] - 71C3,
ie. ’

1
5(G) 2 3 IV(Q)]+i= 1+ 3G
Thereare A(G) + 1 —s—t C}’s with cardinality 1, so there are
V(@|-(A(G@ +1-5s-1)

vertices in C} U - - - U C;,,. There are at least 2(s + t — 1) vertices in the sets
Chiy- -+, Chiprand sothereareatmost |V(G) |—(A (G +1—5—1) —2(s+t—1) =
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[V(G)|-A(G) —s—t—1+2i vertices inCy, ..., C}. Since |C}| > --- > |C!],
there are at most § {|V(G)| — A(G) — s —t — 1} + 2 vertices in C}.
Therefore 8(G}_,) > IV(GL))|if
1 1
8@ 2 FIV(Q)+i+ {IV(G)] - A(G) —s -t -1}
forl <i< s+t ie,if
0 > 24 — (28(G) — [V(G)Di+ [V(G)| - A(G) —s—t—1.

This inequality is satisfied for ¢ between the two roots of the quadratic 242 —
(28(G) - V(@) )i+ |V(G)| — A(G) —s—1t — 1. These two roots are, writing
§=6(G),A =A(G) and [V] = [V(G)|,

726=1VD + 7@ VD2~ &V~ & —s—t- D}

and

1 1
728 =V - 226 - VD? —8&(V[-4 —s—t- D}.
Since by (3) s+ ¢ < [V]| — A — 1 it follows that if
1 1
V-4 -1< 28— VD + 7VI@5- V)2 —&(VI-4 - 2)}

andif i < s+ ¢ then i is less than the upper root. But since A + § > 3|V| — 1 it
follows that |[V'[—1+5 > 3|V|—,sothat§ > 2|V|+1-,sothat26 V]-1 > 0.
Moreover 26+ A = 5+ (5+ A) > (3[VI+ 3) + (3IV| - 3) = 2|V]|. Since
2A +26 >3|V]itfollows that2|[V| — 2A < 26— |V| sothathI -A-1Z
$(286 — |V|) — 1. Therefore

1
VI-a-1< %(25—|V|)+ 7(28-1V| -

- 41(25— v + 31-\/{(25- VD2 —8(26—[V] + 16}

< %‘25‘ v+ 41\/{<25— VDZ=S(VI-4 -2)}

since —8(28 — |V|) + 16 < —8(|V| - A —2),as25+ A > 2|V|. Therefore 1
is less than the upper root. Similarly the lower root satisfies

1(26 VD - +VIZE VD —KVI-A —s—1-DJ

—-vh - —\/{25 VD)2 - 8(v|i-4 -2}
-1vh - —\/{25 VD2 - 8(26 - |V]) + 16}
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It follows that, for 1 < i < s+1, i lies between the two roots. It follows therefore
that,for1 < i < s+t,8(GL,) > $|V(GL))|, as asserted above.

It follows from Lemma 2 (Dirac’s theorem) that G}_, has a Hamiltonian circuit.
For F? we take alternate edges of this circuit; if F € {F1,..., F,.:}, we also
include the edge from v* to a vertex of ;.

Now consider the graph G}, = G*\( F1U: - :UF,4¢). This contains no overfull
subgraph of maximum degree A(G) + 1 — (s + t). To see this, suppose first
to the contrary that G},, contains an overfull subgraph H of maximum degree
A(GL) = A(G) + 1 — (s+1) with [V(H)| < 2n— 1. It has order at least
A(G)+2—(s+t). Since, by (4),A(G)+8(G) > |V(G)|+2s+2t,itfollows that
2A(G) > [V(G)|+2s+2t,s0that A(G) —s—t > |V(G) |, sothatA(G},,) >
$IV(G)| + 1. However, by assumption, §(G) + A(G) > 3V(G)| - .50
8@ > HV(OI+ (VD] -A(GQ) - D + 1 > 2|[V(GQ)| + s+1+ 3,by (3).
Therefore 5(G.e) > 8(G) — (s+t —1) > $|V(G)| + 3. But this contradicts
Lemma 4. Therefore G, contains no overfull subgraph H of maximum degree
AG)+1—(s+t) with|V(H)|<2n—-1.

Next consider the question of whether G;,, contains an overfull subgraph H of
maximum degree A (@) + 1 — (s+t) with |[V(H)| =2n+ 1.

Each vertex of G, , has degree at most A(G) + 1 — s — . We have

Y- do(v) = 2n+ DA(G) — def (O)

vev(G)
SO
3 de(v) = (2n+ DA(G) — def (G) + 2dg-(v*)
vev(G*)
= (2n+ 1)A(G) — def (G) + 2A(G) +2 - 2t.
Therefore

ST dg,(v) = (2n+ 3)A(G) —def (G) +2 — 2t

veV(G},,)
~(|Cy|+ <+ + |Cort] —8)(8+ 1= 1)
—(20+2 = (|C1|+ -+ |Csst] — 8))(s+ 1)
=(2n+ 3DA(G) —def (G) +2 -2t
— 2942 -(A(@)+2 =1t))(s+t—1)
—(A(G) +2 —t)(s+ 1)
=2a+D(A(G) +1 —3s—1) —def(G) —t.
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Let w be a vertex of G*. Then

> de (v) —2dg;, (w)
vevV(G,,)
=(2n+2)(A(G)+1—-5—1) —def(G) —t — 2(dg:(w) — (s+ 1))
=29(A(GQ)+1—-5—-1) +2A(G) —def (@) —t+ 2 — 2dg.(w).

Since dg.(w) > 8(G) and def (G) > 2(A(G) — 6(@) + 1) it follows that, if
w # v*, then
Y da,(v) —2d,(w)
veV(Gy,,)
<2n(A(G)+1—3s—1).

This also follows if w = v* since t < def(G) and dv(v*) = A(G) +1 — 1.
Therefore forany w € V(G*), G,+¢\w is not an overfull subgraph with maximum
degree A(G) + 1 — (s+1t).

[We interject here that if we could be sure that we could choose ¢ so that t =
def (@), then we could remove the restriction that def (G) > 2(A(G) —6(G) +
1); the only place where this restriction is needed is just above to show that G}, ,\w
is not overfull.]

Using (2), it follows that

A(G)+l—(s+t)2A+l—(%s+t)
2A+1—-21—(1—A)|V(G)|

> %(A+ HIV(G)| - -;-(1 — V(G| +1

= A|V(G)| + 1
> AlV(GM)|,

and so it follows that G;,; = G*\(Fi U - -- U F,) can be edge-coloured with
A(G@) +1—(s+1) colours.

Colour the edges of G*\(Fy U- - -U Fy4¢) withcolours csit41,...,ca(c)+1. We
may suppose that the edge joining the vertex v* to the single vertex of the set C; is
coloured c;. From this obtain a total colouring of G with colours ¢y, ..., ca(g)+1
as follows. For 1 < i < s+, colour the vertices of C; and the edges of F;NE(G)
with colour ¢;. For s+t+1 < i < A(G) + 1 colour the vertex of C; with colour c;,
and colour those edges of G with ¢; which have that colour in the edge colouring
of G*.

This proves Lemma 1.

Theorem 2 and Theorem 1 now follow.
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